
GP Fidelity & Scale
RSMs and Computer Experiments
Robert B. Gramacy (rbg@vt.edu (mailto:rbg@vt.edu) : http://bobby.gramacy.com
(http://bobby.gramacy.com))
Department of Statistics, Virginia Tech

Goals
GPs are fantastic, but they are not without their drawbacks.

Computational complexity is one: matrix decompositions and storage can severely limit data sizes.

Flexibility is another.

Stationarity is a nice simplifying assumption,
but it is clearly not appropriate for all data generating mechanisms;
e.g., the LGBB rocket booster data.

In this segment we’ll try to address those issues, ideally simultaneously.

The literature on GP approximation is booming: approximation and sparsity are common themes.
The literature on nonstationary modeling is more niche.

Sparse Covariance
Big data remedies
Inroads into faster GP modeling are being made from a number of angles, usually by approximation.

“Pseudo inputs” (Snelson & Ghahramani, 2006) (http://www.gatsby.ucl.ac.uk/~snelson/SPGP_up.pdf)
Iterating over batches (Haaland & Qian, 2012) (https://projecteuclid.org/euclid.aos/1327413775)
Fixed rank kriging (Cressie & Johannesson, 2008) (http://onlinelibrary.wiley.com/doi/10.1111/j.1467-
9868.2007.00633.x/abstract)
Compactly supported covariances and fast sparse linear algebra (Kauffman, et al, 2011;
(http://projecteuclid.org/euclid.aoas/1324399603) Sang & Huang, 2011) (http://onlinelibrary.wiley.com/doi/10.1111/j.1467-
9868.2011.01007.x/abstract)
Treed Gaussian processes (Gramacy & Lee, 2008) (http://www.tandfonline.com/doi/abs/10.1198/016214508000000689)
Composite likelihood (Eidsvik, et al., 2013) (http://www.tandfonline.com/doi/abs/10.1080/10618600.2012.76046)
Local Gaussian Processes (Gramacy & Apley, 2015)
(http://www.tandfonline.com/doi/abs/10.1080/10618600.2014.914442?journalCode=ucgs20)

The trouble is, not many of them come with software.

Underlying themes
But there are a couple of underlying themes, and representative softwares therein.

sparse covariances
partitioning
local/composite approximation

And in fact all three can be seen as mechanisms for inducing sparsity in the covariance structure.

But they differ in how they leverage that sparsity to speed up calculations,

()n3 ()n2

mailto:rbg@vt.edu
http://bobby.gramacy.com/
http://www.gatsby.ucl.ac.uk/~snelson/SPGP_up.pdf
https://projecteuclid.org/euclid.aos/1327413775
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2007.00633.x/abstract
http://projecteuclid.org/euclid.aoas/1324399603
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.01007.x/abstract
http://www.tandfonline.com/doi/abs/10.1198/016214508000000689
http://www.tandfonline.com/doi/abs/10.1080/10618600.2012.76046
http://www.tandfonline.com/doi/abs/10.1080/10618600.2014.914442?journalCode=ucgs20

and in how they offer scope for enhanced fidelity.

It is worth noting that you can’t just truncate small entries of ,

because the result will almost certainly not be positive definite.

Compactly supported kernels
A kernel , where , is said to have compact support if when .

We may proceed component-wise with and for a separable (compactly supported) kernel.

Nuggets are allowed, but we’ll drop them here for convenience.
We’ll talk about lengthscales shortly.

A compactly supported kernel (CSK) introduces zeros into the the covariance matrix,

so sparse matrix methods can speed up computations.

Polynomial basis
Now more sparsity means faster computation,

but at the expense of “long distance” correlation.

A key idea in Kaufman et al. (2011) (http://projecteuclid.org/euclid.aoas/1324399603) is to use a rich nonlinear mean function to
“mop up” the long range non-linearity,

leaving the residual to be modeled by shorter-range (sparse) correlations.
Kauffman, et al., recommend degree 5 “tensor product” Legendre polynomials.
Inference, integrating out over the “partition” between long and short spatial effects, is carried out by Bayesian MCMC.

And they provide software.

library(SparseEm)

A big-ish example
Consider the borehole data (https://www.sfu.ca/~ssurjano/borehole.html), which is a classic computer experiments example
(Morris, et al., 1993) (http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1993.10485320#.WCkSwswrKfY).

It is a function of eight inputs, modeling water flow through a borehole.

The input ranges are

Borehole simulation
Here is an implementation in coded inputs.

Kij

(r)krmax
r = |x − |x′ (r) = 0krmax

r > rmax

= | − |rj xj x′
j rj,max

y = .
2π [−]Tu Hu Hl

log() [1 + +]r
rw

2LTu

log(r/)rw r 2
wKw

Tu
Tl

rw

Tl

L

∈ [0.05, 0.15]

∈ [63.1, 116]

∈ [1120, 1680]

r

Hu

Kw

∈ [100, 5000]

∈ [990, 1110]

∈ [9855, 12045].

Tu

Hl

∈ [63070, 115600]

∈ [700, 820]

http://projecteuclid.org/euclid.aoas/1324399603
https://www.sfu.ca/~ssurjano/borehole.html
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1993.10485320#.WCkSwswrKfY

borehole <- function(x){

 rw <- x[1] * (0.15 - 0.05) + 0.05

 r <- x[2] * (50000 - 100) + 100

 Tu <- x[3] * (115600 - 63070) + 63070

 Hu <- x[4] * (1110 - 990) + 990

 Tl <- x[5] * (116 - 63.1) + 63.1

 Hl <- x[6] * (820 - 700) + 700

 L <- x[7] * (1680 - 1120) + 1120

 Kw <- x[8] * (12045 - 9855) + 9855

 m1 <- 2 * pi * Tu * (Hu - Hl)

 m2 <- log(r / rw)

 m3 <- 1 + 2*L*Tu/(m2*rw^2*Kw) + Tu/Tl

 return(m1/m2/m3)

}

LHS train/test partition
Here is a LHS training and testing partition.

n <- 4000; npred <- 500; dim <- 8

library(lhs)

x <- randomLHS(n+npred, dim)

y <- apply(x, 1, borehole)

ypred.0 <- y[-(1:n)]; y <- y[1:n]

xpred <- x[-(1:n),]; x <- x[1:n,]

The SparseEm package includes a subroutine to “find” the desired level of sparsity, mc .

degree <- 2; maxint <- 2

sparsity <- 0.99

mc <- find.tau(den = 1 - sparsity, dim = ncol(x)) * ncol(x)

Sampling from the posterior
Now, lets gather 2000 samples from the posterior,

saving the compute time for a later comparison.

B <- 2000

suppressWarnings({

time1 <- system.time(

 tau <- mcmc.sparse(y, x, mc=mc,degree=degree,maxint=maxint,B=B,verbose=FALSE))

})

And then make predictions on the testing set,

removing burn-in iterations, and sub-sampling every 10th iteration.

burnin <- 500

index <- seq(burnin+1, B, by = 10)

suppressWarnings({

time2 <- system.time(ypred.sparse <-

 pred.sparse(tau[index,], x, y, xpred,degree=degree,maxint=maxint,verbose=FALSE))

})

Trace plots (sparse)
Pretty good on the convergence front (recall threshold/lengthscale parameter).

par(mfrow=c(1,2)); matplot(tau, type = "l", xlab="iter")

plot(apply(tau, 1, sum), type = "l", xlab="iter")

A fair comparison
Kauffman, et al. provide a non-sparse version,

that otherwise works identically,
for timing and accuracy comparisons.

This is going to be really slow, so we’ll do an order of magnitude fewer MCMC iterations.

B <- 200

suppressWarnings({

time3 <- system.time(phi <- mcmc.nonsparse(y, x, B=B, verbose=FALSE))

burnin <- 50

index <- seq(burnin+1, B, by = 10)

time4 <- system.time(ypred.nonsparse <-

 pred.nonsparse(phi[index,], x, y, xpred, 2, verbose=FALSE))

})

Trace plots (non-sparse)
Not converged, but that’s about all we can do in a reasonable amount of time.

matplot(phi, type = "l", xlab="iter")

τ

How do they compare?
In terms of time, about a speedup.

Not super impressive, but good potential.

print(times <- c(sparse=as.numeric(time1[3]+time2[3]),

 dense=10*as.numeric(time3[3]+time4[3])))

sparse dense

3457.123 9861.910

In terms of accuracy … (unfair to the dense version since it hasn’t burned in)

s2s <- ypred.sparse$var; s2n <- ypred.nonsparse$var

print(scores <- c(sparse=mean(- (ypred.sparse$mean - ypred.0)^2/s2s - log(s2s)),

 dense=mean(- (ypred.nonsparse$mean - ypred.0)^2/s2n - log(s2n))))

sparse dense

-1.508444 -2.131856

99.9% sparse?
Lets see how much faster (and how much less accurate) a 99.9% sparse version is.

3×

sparsity <- 0.999

mc <- find.tau(den = 1 - sparsity, dim = ncol(x)) * ncol(x)

B <- 2000

suppressWarnings({

time5 <- system.time(

 tau <- mcmc.sparse(y, x, mc=mc,degree=degree,maxint=maxint,B=B,verbose=FALSE))

})

burnin <- 500

index <- seq(burnin+1, B, by = 10)

suppressWarnings({

time6 <- system.time(ypred.sparse <-

 pred.sparse(tau[index,], x,y,xpred,degree=degree,maxint=maxint,verbose=FALSE))

})

Essentially cutting and pasting from above.

Expanded comparison
Much faster.

times <- c(times, s999=as.numeric(time5[3]+time6[3]))

times

sparse dense s999

3457.123 9861.910 420.356

A little less accurate.

s2 <- ypred.sparse$var

scores <- c(scores, s999=mean(- (ypred.sparse$mean - ypred.0)^2/s2 - log(s2)))

scores

sparse dense s999

-1.508444 -2.131856 -1.680680

Partition models
Divvy it up
Another way to induce sparsity in the covariance structure is to

partition the input space into independent regions.
Then the covariance is essentially block-diagonal.

The trouble is, its hard to know just how to split things up.

Ideally, we’d let the data decide.

Once we’ve figured that out, it makes sense to fit hyperparameters independently in each partition,

thereby obtaining a cheap non-stationary model.
But all bets for continuity are off, unless we can average over all (likely) partitions.

Easy to say …

… hard to do, especially with Gaussian processes.

I know of only two (successful) attempts.

1. via Voronoi tesselations (Kim, et al. ,2012) (http://amstat.tandfonline.com/doi/abs/10.1198/016214504000002014?
journalCode=uasa20)

2. via trees (Gramacy & Lee, 2008) (http://www.tandfonline.com/doi/abs/10.1198/016214508000000689)

Tesselations are easy to characterize mathematically, but a nightmare computationally.

Trees are easy mathematically too,

and much easier computationally.

Divide-and-conquer regression

Recursive, axis-aligned, splits divvy up the input space into independent predictive models for the response ().
Predictions are dictated by tree structure and leaf model.

The plan is to use GPs at the leaves, but lets take a step back first …

Turn back the clock
Use of trees in regression dates back to AID (Automatic Interaction Detection) by Morgan and Sonquist (1963)
(https://www.cs.nyu.edu/~roweis/csc2515-2006/readings/morgan_sonquist63.pdf)

Classification and Regression Trees (CART) (Breiman, et al., 1984) (https://www.amazon.com/Classification-Regression-
Wadsworth-Statistics-Probability/dp/0412048418),

a suite of methods obtaining fitted partition trees,
popularized the idea.

The selling point was that

trees facilitate parsimonious divide-and-conquer, leading to flexible yet interpretable modeling.

Fitting a partition structure (depth, splits, etc.) requires

a leaf prediction rule and goodness-of-fit criteria,
and a “search” algorithm.

Likelihood-based modeling

y

= (x)y ̂ fn

http://amstat.tandfonline.com/doi/abs/10.1198/016214504000002014?journalCode=uasa20
http://www.tandfonline.com/doi/abs/10.1198/016214508000000689
https://www.cs.nyu.edu/~roweis/csc2515-2006/readings/morgan_sonquist63.pdf
https://www.amazon.com/Classification-Regression-Wadsworth-Statistics-Probability/dp/0412048418

I prefer the likelihood, whenever possible.

Given a particular tree, , the (marginal) likelihood factorizes into a product form.

The simplest leaf model for regression is the “constant model”:

a “local” Gaussian with unknown mean and variance ().
Gaussian modeling means a convenient closed form for each .

Tree prior
Some kind of regularization is needed for inference,

otherwise the product-form likelihood is maximized when there is a leaf for each observation.

Chipman, George & McCulloch (1998) (https://www.jstor.org/stable/2669832?seq=1#page_scan_tab_contents)

describe how trees may stochastically be grown from a leaf node with a probability that depends on the depth of that node
in the tree, .

This induces a prior for the full tree via the probability that internal nodes split and leaves do not:

Everything else is uniform.

Inference by MCMC
Inference then proceeds by MCMC.

Note that there are no parameters except the tree, ,
when the leaf-node parameters are integrated out.

Here is how the MCMC would go.

Randomly choose part of the tree to alter, and how to alter it (prune, grow, change, swap, rotate, …).
Accept the move with Metropolis–Hastings probability:

Potential savings comes with local moves in tree space,

since terms above cancel for the un-altered leaves in the product form of the marginal likelihood.

Tree proposals
What do tree proposals look like? Here is an example of the four most popular “tree moves”.

p(∣ ,) ≡ p(,… , ∣ , ,… ,) = p(∣)yn xn y1 yn x1 xn ∏
η∈

yη xη

= (,)θη μη σ2
η

p(∣)yη xη

η Dη

(η,) = α(1 +psplit Dη)−β

π() ∝ (η,) [1 − (η,)].∏
η ∈

psplit ∏
η ∈

psplit

θη

= × .
p(∣ ,)

′
yn xn

p(∣ ,)yn xn

p(∣ ,)yn
′
xn

p(∣ ,)yn xn
π()

′

π()

https://www.jstor.org/stable/2669832?seq=1#page_scan_tab_contents

Motorcycle data
The tgp package will sample from the Bayesian treed constant model (“Bayesian CART”) posterior.w

library(tgp)

As an illustration, consider the motorcycle accident data in the MASS library for R.

library(MASS)

Samples from the posterior predictive distribution are gathered at locations XX :

XX <- seq(0,max(mcycle[,1]), length=1000)

out.bcart <- bcart(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=100, verb=0)

For maximum a’posteriori (MAP) predictor, you can run the following afterwards.

outp.bcart <- predict(out.bcart, XX=XX)

Moto-visualization macro
To visualize the predictive surface(s), I’m going to write a little macro that we can re-use in several variations later.

plot.moto <- function(out, outp)

 {

 plot(outp$XX[,1], outp$ZZ.km, ylab="accel", xlab="time",

 ylim=c(-150, 80), lty=2, col=1, type="l")

 points(mcycle)

 lines(outp$XX[,1], outp$ZZ.km + 1.96*sqrt(outp$ZZ.ks2), col=2, lty=2)

 lines(outp$XX[,1], outp$ZZ.km - 1.96*sqrt(outp$ZZ.ks2), col=2, lty=2)

 lines(out$XX[,1], out$ZZ.mean, col=1, lwd=2)

 lines(out$XX[,1], out$ZZ.q1, col=2, lwd=2)

 lines(out$XX[,1], out$ZZ.q2, col=2, lwd=2)

 }

Bayesian CART surface(s)
The MCMC is good at smoothing out rough transitions.

plot.moto(out.bcart, outp.bcart)

BCART surface features
What do we get?

Organic non-stationarity and heteroskedasticity.
But both are obviously limited. E.g., the variance is too high at the start and the end.

The MAP estimate has many of those features,

and can be taken as an analogue of the “old CART way”.
The hard breaks are unappealing.
The smoothed predictions from the MCMC are a bit better.

Try tgp.trees(out.bcart) to visualize the best trees.

Bayesian treed linear model
Any data type/leaf model may be used without extra computational effort as long as is analytic.

Linear models at the leaves are one example, leading to the so-called Bayesian treed linear model (BTLM) (Chipman,
et al., 2002) (http://link.springer.com/article/10.1023/A:1013916107446) uses

Here is the fit in tgp ,

out.btlm <- btlm(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=100, verb=0)

The MAP predictor can be extracted as follows.

outp.btlm <- predict(out.btlm, XX=XX)

p(∣)yη xη

http://link.springer.com/article/10.1023/A:1013916107446

We’ll use the plotting macro we made earlier for easy visualization.

BTLM surface(s)
Fewer partitions, but is it better?

plot.moto(out.btlm, outp.btlm)

What else?
If the response is categorical,

then a multinomial leaf model and Dirichlet prior pair leads to an analytic marginal likelihood (Chipman, et al., 1998)
(https://www.jstor.org/stable/2669832?seq=1#page_scan_tab_contents).

Other members of the exponential family proceed similarly:

Poisson, exponential, negative binomial, …
and others too (potentially).

However, to my knowledge none of these choices have been actually implemented as leaf models in a Bayesian treed
regression setting.

Non-analytic marginal likelihood
Technically, any leaf model can be deployed

by extending the Monte Carlo to integrate over leaf parameters too.
But deep trees/many leaves could result in a prohibitively large parameter space.

An important exception is GPs.

GPs offer a parsimonious take on nonlinear nonparametric regression,
mopping up much of the variability left to the tree with simpler leaf models.

GP leaves encourage shallow trees with fewer leaf nodes.

At the same time, treed partitioning enables (axis aligned) regime changes in stationarity and skedasticity.

θη

https://www.jstor.org/stable/2669832?seq=1#page_scan_tab_contents

First, lets look at a stationary GP fit to the motorcycle data.

Stationary “BGP” fit
Smooth, but equally as bad as BCART and BTLM in other (opposite) respects?

out.bgp <- bgp(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=10, verb=0)

outp.bgp <- predict(out.bgp, XX=XX)

plot.moto(out.bgp, outp.bgp)

Treed Gaussian process
Bayesian treed Gaussian process (TGP) models (Gramacy & Lee, 2008)
(http://www.tandfonline.com/doi/abs/10.1198/016214508000000689) can offer the best of both worlds, marrying

the smooth global perspective of GPs,
with the thrifty local adaptivity of trees.

Their divide-and-conquer nature mean

faster computation: smaller matrix inversions
and disparate spatial dependencies.

out.btgp <- btgp(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=30, bprior="b0", verb=0)

As before, we can extract the MAP predictor, mostly for comparison.

outp.btgp <- predict(out.btgp, XX=XX)

BTGP surface(s)
Pretty darn good, if you ask me.

plot.moto(out.btgp, outp.btgp)

http://www.tandfonline.com/doi/abs/10.1198/016214508000000689

2-d surface
Lets revisit the 2-d exponential data,

which was actually created to showcase subtle nonstationarity with tgp .
It even comes in the package.

exp2d.data <- exp2d.rand(n1=25, n2=75)

X <- exp2d.data$X; Z <- exp2d.data$Z

XX <- exp2d.data$XX

First lets fit an ordinary (Bayesian) GP.

Since there is radial symmetry we can use an isotropic correlation with corr="exp" .

out.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0)

2-d Stationary GP surface
A stationary process means uniform uncertainty (in distance).

plot(out.bgp, pc="c")

2-d TGP surface
A nonstationary process means we can learn that it is hard in the SW corner.

out.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", R=10, verb=0)

plot(out.btgp, pc="c")

Maximum a’ posteriori tree
A clean treed partition of the input space.

tgp.trees(out.btgp, heights="map")

LGBB data
Treed GPs were invented for the rocket booster (LGBB) data.

NASA scientists knew they needed to partition the model (and the design) to separate subsonic and supersonic speeds,
but they didn’t know right where the partition should be.
They wanted the data to tell them;
and to tell them if more splits were helpful.

lgbb.as <- read.table("lgbb/lgbb_as.txt", header=TRUE)

lgbb.rest <- read.table("lgbb/lgbb_as_rest.txt", header=TRUE)

Those files contain

inputs/outputs on a sequential (ALC) design selected from a dense candidate grid (Gramacy & Lee, 2009)
(http://amstat.tandfonline.com/doi/abs/10.1198/TECH.2009.0015#.Vgw-37SbOTA),
and the un-selected elements from that grid.

Final prediction
Here we develop the “final predictive surface” after the sequential design effort, on the lift response.

X <- lgbb.as[,2:4]

Y <- lgbb.as$lift

XX <- lgbb.rest[2:4]

c(X=nrow(X), XX=nrow(XX))

X XX

780 37128

The fit is computationally intensive, so we won’t do any restarts (with default R=1).

t1 <- system.time(fit <- btgpllm(X=X, Z=Y, XX=XX, bprior="b0", verb=0))

t1[3]

http://amstat.tandfonline.com/doi/abs/10.1198/TECH.2009.0015#.Vgw-37SbOTA

elapsed

7414.643

Visualizing the (lift) predictive mean
We can inspect a 2-d slice of the posterior predictive surface, say for a side-slip-angle of zero.

plot(fit, slice=list(x=3, z=0), gridlen=c(100, 100), layout="surf", span=0.01)

Lift MAP tree
A clean two-element partition.

tgp.trees(fit, heights="map")

Visualizing ALM
Future samples will be in the sub-sonic regime.

plot(fit, slice=list(x=3,z=0), gridlen=c(100,100), layout="as",as="alm",span=0.01)

Speed
But yeah, that was pretty slow.

tgp contains a number of “switches” and “knobs” to help speed things up,

at the expense of faithful modeling.

One way is to change the prior.

Change arguments (bigger) and (smaller) to encourage deeper trees.

Another way is via the MCMC.

The argument linburn=TRUE will “burn-in” the BTGP MCMC with a BTLM, and then “switch-on” GPs at the leaves
toward the end.
That ensures smaller partitions, but initializes the chain in a local mode of the tree space.
The MCMC will usually “prune” back out of the modes, but almost never entirely.

linburn predictive mean
Not much impact on the surface.

t2 <- system.time(fit2 <-

 btgpllm(X=X, Z=Y, XX=XX, bprior="b0", linburn=TRUE, verb=0))

plot(fit2, slice=list(x=3, z=0), gridlen=c(100, 100), layout="surf", span=0.01)

Pretty good
An order of magnitude faster.

c(full=t1[3], linburn=t2[3])

full.elapsed linburn.elapsed

7414.643 1253.932

Indeed, much of the space is plausibly piece-wise linear anyway,

but it helps to smooth out rough edges with the GP.

psplit α β

Sequential design
The predictive variance make great active learning heuristics.

plot(fit2, slice=list(x=3,z=0), gridlen=c(100,100), layout="as",as="alm",span=0.01)

Other heuristics
Integrated (over the input space) predictive variance is available with Ds2X=TRUE .

An analog of Integrate Mean-Squared Prediction Error (IMSPE) sequential design.

Giving improv=TRUE returns samples of posterior mean of improvement

So you get a fully Bayesian EI, averaged over tree and leaf model uncertainty,
for a truly Bayesian Optimization.

For more details/tutorials, see

Gramacy (2007) (https://www.jstatsoft.org/article/view/v019i09): a beginners primer;
Gramacy & Taddy (2010) (https://www.jstatsoft.org/article/view/v033i06): advanced topics like EI, categorical inputs,
sensitivity analysis, and tempering.

Local approximate GPs
Local kriging neighborhoods
The local approximate GP (laGP) idea has aspects in common with partition based schemes,

in the sense that it creates sparsity in the covariance structure in a “geographically” local way.

It is reminiscent of what Cressie (1991, pp. 131-134) (https://www.amazon.com/Statistics-Spatial-Data-Wiley-Probability-
ebook/dp/B00VOY1LGS/ref=sr_1_1?ie=UTF8&qid=1479478617&sr=8-1&keywords=cressie+noel) called an “ad hoc” method of
local kriging neighborhoods,

https://www.jstatsoft.org/article/view/v019i09
https://www.jstatsoft.org/article/view/v033i06
https://www.amazon.com/Statistics-Spatial-Data-Wiley-Probability-ebook/dp/B00VOY1LGS/ref=sr_1_1?ie=UTF8&qid=1479478617&sr=8-1&keywords=cressie+noel

which is not a very nice thing to say about a decent idea.

I think Cressie didn’t anticipate

the scale of modern data,
applications to computer models and machine learning data (with inputs other than longitude and latitude),
and the architecture of modern computers (mult-core/cluster computing begs for divide-and-conquer).

Transductive learning
All together, the idea is more modern than could have been anticipated in 1991 (and earlier).

It draws, in part, on recent findings

for approximate likelihoods in spatial data (e.g., Stein et al., 2004) (http://onlinelibrary.wiley.com/doi/10.1046/j.1369-
7412.2003.05512.x/pdf),
and active learning techniques for sequential design (e.g., Cohn, 1996) (http://www.cs.cmu.edu/~cohn/psyche/AIM-
1491.ps.Z).

But a big divergence from previous approaches, particularly those from the spatial stats literature, lies in an emphasis on
prediction

which is the primary goal in computer experiments and machine learning applications.

laGP is an example of transductive learning (Vapnik, 1995) (https://www.amazon.com/Statistical-Learning-Information-
Science-Statistics/dp/0387987800/ref=sr_1_2?ie=UTF8&qid=1479479476&sr=8-
2&keywords=The+nature+of+statistical+learning+theory), as opposed to inductive learning, in that

the behavior of the method/fit depends crucially on the testing locations.

Local sub-design
For the next little bit, focus on prediction at a single predictive location .

 is arbitrary; it is only important that it be a single location (for now).

Lets think about the properties of GP predictive equations (an emulator in the computer experiments context, say) at .

Data far from vanishingly small influence on GP predictions.
This is what motivates a CSK approach to inducing sparsity,
but the difference here is that we’re thinking about a particular , not the entire spatial field.

So how about we search for the most useful data points (a sub-design relative to)

for prediction at , without considering/handling large matrices.

Nearest neighbor GP prediction
One option is a nearest neighbor (NN) subset:

1. Fill with closest locations to .
2. Emulate with where .

The best modern reference for this idea is Emery (2009) (http://link.springer.com/article/10.1007/s10596-008-9116-8).

This is a very simple prediction rule, and potentially very fast: not
Choose as large as computational constraints allow.

x

x

x

x

x

x

x

(x) ⊂Xn XN local-n ≪ full-N x

Y(x) ∣ (x)Dn (x) = (,)Dn Xn Yn

O()n3 O()N3

n

http://onlinelibrary.wiley.com/doi/10.1046/j.1369-7412.2003.05512.x/pdf
http://www.cs.cmu.edu/~cohn/psyche/AIM-1491.ps.Z
https://www.amazon.com/Statistical-Learning-Information-Science-Statistics/dp/0387987800/ref=sr_1_2?ie=UTF8&qid=1479479476&sr=8-2&keywords=The+nature+of+statistical+learning+theory
http://link.springer.com/article/10.1007/s10596-008-9116-8

An animation … (1)

An animation … (2)

An animation … (3)

An animation … (4)

An animation … (5)

What about that?
Is it sensible?

As , predictions .
, reflecting uncertainties inflated by the smaller design, where .

Is it good?

It’s not optimal given computational limits, (Vecchia, 1998 (https://www.jstor.org/stable/2345768?
seq=1#page_scan_tab_contents); Stein, et al., 2004) (http://onlinelibrary.wiley.com/doi/10.1046/j.1369-
7412.2003.05512.x/pdf).
But, finding the optimal solution(s) is a combinatorially huge undertaking.

Our questions:

Can we do better than NN (in terms of prediction accuracy) without much extra effort (in terms of computational cost)?
I.e., with computation in ?

Greedy scheme
Yes!: with a greedy/forward stepwise scheme.

For a particular , solve a sequence of easy decision problems.

For :

1. given , choose according to some criterion;

n → N Y(x) ∣ → Y(x) ∣Dn DN

V(x) ∣ ≫ V(x) ∣Dn DN (x) = V(x)σ2 τ ̂ 2

n

O()n3

x

j = ,… , nn0

(x)Dj xj+1

https://www.jstor.org/stable/2345768?seq=1#page_scan_tab_contents
http://onlinelibrary.wiley.com/doi/10.1046/j.1369-7412.2003.05512.x/pdf

2. augment the design and update the GP approximation.

Optimizing the criterion (1), and updating the GP (2), must not exceed so the total scheme remains in .

Initialize with a small comprised of NNs.

A criterion …
… for sequential (sub-) design:

Given for particular , we search for by minimizing empirical Bayes mean-squared prediction error:

That is:

The reduced variance at after is added into the design;
plus something that is relatively small.

For example
Consider a full- sized design on a 2-d grid.

xg <- seq(-2, 2, by = 0.02)

X <- as.matrix(expand.grid(xg, xg))

print(N <- nrow(X))

[1] 40401

And evaluate that to get responses (we optimized this with the AL earlier).

f2d <- function(x) {

 g <- function(z) {

 return(exp(-(z - 1)^2) + exp(-0.8 * (z + 1)^2) - 0.05 * sin(8 * (z + 0.1)))

 }

 return(-g(x[, 1]) * g(x[, 2]))

}

Y <- f2d(X)

Local sub-design(s)
Consider prediction location , denoted by Xref in the code below,

with local designs built up to with initial NNs.

library(laGP)

Xref <- matrix(c(-1.725, 1.725), nrow=1)

p <- laGP(Xref, 6, 50, X, Y, d=0.1)

Pretty fast:

p$time

(x) = (x) ∪ (, y())Dj+1 Dj xj+1 xj+1

O()j2 O()n3

(x)Dn0

(x)Dj x xj+1

J(, x)xj+1 = 𝔼{[Y(x) − (x;) ∣ (x)}μj+1 θ ̂
j+1]2 Dj

≈ (x ∣ ;) + something smallVj xj+1 θ ̂
j

x xj+1

N

x

n = 50 = 6n0

elapsed

0.051

For a point of reference, inverting a matrix takes about five seconds on the same machine, using a mult-threaded
BLAS/Lapack.

Never mind a one – impossible on my machine.

plot(X[p$Xi,], xlab="x1", ylab="x2", type="n",

 xlim=range(X[p$Xi,1]), ylim=range(X[p$Xi,2]))

text(X[p$Xi,], labels=1:length(p$Xi), cex=0.7, col=2)

points(Xref[1], Xref[2],pch =19, col=3)

A surprising result?
Why does the criteria not prefer the closest possible points, i.e., the NNs?

An exponentially decaying correlation should substantially devalue locations far from .

Gramacy & Haaland (2016) (http://www.tandfonline.com/doi/abs/10.1080/00401706.2015.1027067) explain that the form of the
correlation has very little to do with it.

The reduction in variance

is quadratic in inverse distance: ,
but also quadratic in inverse inverse distance via

A trade-off
So the criteria makes a trade-off:

minimize “distance” to

4000 × 4000

40, 000 × 40, 000

x

(x; θ) − (x; θ) = (x) () () (x) + ⋯ + K(, x / ()vj vj+1 k⊤j Gj xj+1 vj xj+1 kj xj+1)2 vj xj+1

K(, xxj+1)2

() ≡ () () where () = − ()/ ().Gj x
′ gj x

′ g⊤j x′ gj x
′ K

−1
j kj x

′ vj x
′

x

http://www.tandfonline.com/doi/abs/10.1080/00401706.2015.1027067

while maximizing “distance” (or minimizing inverse distance) to the existing design .

Or in other words, the potential value of new design element depends not just on its proximity to ,

but also on how potentially different that information is to where we already have (lots of) it, at .

Global emulation
How do we extend this to predict on a big testing/predictive set?

One option is to serialize:

for loop over each .

But why serialize when you can parallelize?

Each is obtained independently of the other ’s,
so they can be constructed simultaneously.

In laGP ’s C implementation, that’s as simple as a “parallel-for” OpenMP pragma.

#ifdef _OPENMP

 #pragma omp parallel for private(i)

#endif

 for(i = 0; i < npred; i++) { ...

Big prediction
To illustrate, consider the following K-element predictive grid in ,

spaced to avoid the original K design.

xx <- seq(-1.97, 1.95, by=0.04)

XX <- as.matrix(expand.grid(xx, xx))

YY <- f2d(XX)

The aGP function iterates over the elements of XX ,

and its omp.threads argument controls the number of OpenMP threads.
Here we’ll use 8 threads, even though my desktop is hyperthreaded (can do 16).

nth <- 8

P.alc <- aGP(X, Y, XX, omp.threads=nth, verb=0)

Visualizing the surface
persp(xx, xx, -matrix(P.alc$mean, ncol = length(xx)), phi = 45,

 theta = 45, xlab = "x1", ylab = "x2", zlab = "yhat(x)")

(x)Xj

(,)xj+1 yj+1 x

(x)Xj

x ∈

(x)Dn x

∼ 10 [−2, 2]2

N = 40

 =

A challenging surface
Although the input dimension is low,

the input–output relationship is nuanced
and merits a dense design in the input space to fully map.

For a closer look, consider a slice through the predictive surface at .

The code below sets up the slice and its plot.

med <- 0.51

zs <- XX[, 2] == med

sv <- sqrt(P.alc$var[zs])

r <- range(c(-P.alc$mean[zs] + 2*sv, -P.alc$mean[zs] - 2*sv))

Visualizing the slice
plot(XX[zs,1], -P.alc$mean[zs], type="l", lwd=2, ylim=r, xlab="x1", ylab="y")

lines(XX[zs,1], -P.alc$mean[zs] + 2*sv, col=2, lty=2, lwd=2)

lines(XX[zs,1], -P.alc$mean[zs] - 2*sv, col=2, lty=2, lwd=2)

lines(XX[zs,1], -YY[zs], col=3, lwd=2, lty=3)

= 0.51x2

What do we see?
The error bars are very tight on the scale of the response,

and although no continuity is enforced
(calculations at nearby locations are independent and potentially occur in parallel)

the resulting surface looks smooth to the eye.

What don’t we see?

Accuracy, however, is not uniform.

Consider the discrepancy with the truth.

diff <- P.alc$mean - YY

Visualizing discrepancy
Systematic bias in prediction, although extremely small.

plot(XX[zs,1], diff[zs], type="l", lwd=2, xlab = "x1", ylab = "y(x)-yhat(x)")

Lacking fully dynamic ability
Considering the density of the input design, one could easily guess that

the model may not be flexible enough to characterize the fast-moving changes in the input–output relationship.

Although an approximation, the local nature of modeling means that, from a global perspective,

the predictor is more flexible than the full- stationary Gaussian process predictor.
Inferring separate independent predictors across the elements of a vast predictive grid lends aGP a degree of
nonstationarity.

aGP goes beyond that by learning separate local to each

by maximizing the local likelihoods.

In fact, the lengthscales vary spatially, and relatively smoothly.

plot(XX[zs,1], P.alcmled[zs], type="l", lwd=2, xlab="x1", ylab="thetahat(x)")

df <- data.frame(y = log(P.alcmled), XX)

lo <- loess(y ~ ., data=df, span=0.01)

lines(XX[zs,1], exp(lo$fitted)[zs], col=2, lty=2, lwd=2)

legend("topleft", "smoothed", col=2, lty=2, lwd=2, bty="n")

N

(x)θ ̂
n x ∈

Local isotropy, global nonstationarity
So even though the spatial field may be locally isotropic,

and therefore assumes stationarity to a certain extent,
globally the characteristics are less constrained.

Nevertheless, even the extra degree of flexibility afforded by spatially varying is not enough to entirely mitigate the small
amount of bias we saw.

Several enhancements offer potential for improved performance.

Anisotropic/separable correlation structure (hold that thought a sec).
A two-stage scheme, re-designing , …

Two-stage local/global approximation
Here, sub-design search is based on the smoothed first-stage lengthscales.

P.alc2 <- aGP(X, Y, XX, d=exp(lo$fitted), omp.threads=nth, verb=0)

Now consider comparing the predictions from the first iteration to those from the second in terms of RMSE.

rmse <- data.frame(alc = sqrt(mean((P.alc$mean - YY)^2)),

 alc2 = sqrt(mean((P.alc2$mean - YY)^2)))

rmse

alc alc2

1 0.0006434536 0.0003222866

Possibly not impressive (50%), but consistent across a large range of examples.
It doesn’t completely solve the bias problem, but our sleeves have more tricks.

First, a harder example …

Back to the borehole

(x)θ ̂
n

(x) ∣ (x)Xn θ ̂
n

Check this out.

out1 <- aGP(x,y, xpred, d=list(max=20), omp.threads=nth, verb=0)

out2 <- aGP(x,y, xpred, d=list(start=out1mled,max=20), omp.threads=nth, verb=0)

Much faster; much more accurate.

print(times <- c(times, aGP=as.numeric(out1$time), aGP2=as.numeric(out2$time)))

sparse dense s999 aGP aGP2

3457.123 9861.910 420.356 4.653 4.474

s21 <- out1$var; s22 <- out2$var

print(scores <- c(scores, aGP=mean(-(out1$mean - ypred.0)^2/s21 - log(s21)),

 aGP2=mean(-(out1$mean - ypred.0)^2/s22 - log(s22))))

sparse dense s999 aGP aGP2

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215

Can we do even better?
And we did all that with an isotropic correlation function,

compared to Kauffman’s separable CSK. Lets be fair …

outs <- aGPsep(x, y, xpred, d=list(max=20), omp.threads=nth, verb=0)

Similar compute times; quite a bit more accurate.

print(times <- c(times, aGPs=as.numeric(outs$time)))

sparse dense s999 aGP aGP2 aGPs

3457.123 9861.910 420.356 4.653 4.474 4.898

s2 <- outs$var

print(scores <- c(scores, aGPs=mean(-(outs$mean - ypred.0)^2/s2 - log(s2))))

sparse dense s999 aGP aGP2 aGPs

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281

Global/local modeling
Surely something is lost on this local approach to GP approximation.

Kaufman et al. astutely observed that, especially when inducing sparsity in the covariance structure,

it is important to “put something global back in”.
They partition modeling between basis-expanded (non-stationary) linear trend and locally (stationary) spatial residual.

That’s not easily mapped to the laGP setup,

where the local part is where the nonstationary effect comes in.

But the idea has merit, and we ought to be able to find an appropriate analog in the laGP world.

Global lengthscale
Instead, consider not a partition between trend and residual,

but rather between lengthscales.

Liu (2014) (https://rucore.libraries.rutgers.edu/rutgers-lib/44163/PDF/1/) showed that a consistent estimator of the global
(separable) lengthscale can be estimated via (more manageably sized) random data subsets.

n <- 1000

d2 <- darg(list(mle=TRUE, max=100), x)

subs <- sample(1:nrow(x), n, replace=FALSE)

gpsi <- newGPsep(x[subs,], y[subs], rep(d2$start, dim), g=1/1000, dK=TRUE)

that <- mleGPsep(gpsi, param="d", tmin=d2$min, tmax=d2$max, ab=d2$ab, maxit=200)

psub <- predGPsep(gpsi, xpred, lite=TRUE)

deleteGPsep(gpsi)

Predicting with the subset
Observe that local subset GP prediction is pretty good on its own,

because the response is super smooth and pretty stationary.
And 1000 is a sizable portion of 4000.

s2 <- psub$s2

print(scores <- c(scores, sub=mean(-(psub$mean - ypred.0)^2/s2 - log(s2))))

sparse dense s999 aGP aGP2 aGPs sub

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281 0.8140304

(Makes you wonder what was going on with CSK.)

The estimated lengthscales, stored in that , are super handy.

They can be used to “pre-scale” the inputs, so that afterwards the global lengthscale will be 1.

Multi-resolution global/local GP
Don’t forget to scale both training and testing inputs.

scale <- sqrt(that$d)

xs <- x; xpreds <- xpred

for(j in 1:ncol(xs)) {

 xs[,j] <- xs[,j] / scale[j]

 xpreds[,j] <- xpreds[,j] / scale[j]

}

Now fit a local GP on the the scaled inputs, achieving a multiresolution effect; note that is initialized to 1.

out3 <- aGP(xs, y, xpreds, d=list(start=1, max=20), omp.threads=nth, verb=0)

s2 <- out3$var

print(scores <- c(scores, aGPsm=mean(-(out3$mean - ypred.0)^2/s2 - log(s2))))

θ

https://rucore.libraries.rutgers.edu/rutgers-lib/44163/PDF/1/

sparse dense s999 aGP aGP2 aGPs sub

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281 0.8140304

aGPsm

1.2003101

One more thing
The default nugget value in laGP and aGP is too large for most deterministic computer experiments applications.

It is conservative so users don’t get errors.
But we can dial it way down for this borehole example.

g <- 1/10000000

out4 <- aGP(xs, y, xpreds, d=list(start=1, max=20), g=g, omp.threads=nth, verb=0)

s2 <- out4$var

print(scores <- c(scores, aGPsm2=mean(-(out4$mean - ypred.0)^2/s2 - log(s2))))

sparse dense s999 aGP aGP2 aGPs sub

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281 0.8140304

aGPsm aGPsm2

1.2003101 5.5685688

Holy smokes!

Satellite drag
Hubble space telescope
Lets revisit the HST drag data we introduced a while back (lect1.html#57).

Recall that the goal was to be able to predict the drag coefficient (response), globally,

to within 1% root-mean-squared percentage error (RMSPE).

There are eight inputs, including HST’s panel angle, and files with runs obtained on LHS designs, separately for each chemical
species (O, O , N, N , He, H).

We’ll focus on 1 million runs in Helium (He) here;
one of the harder species.

Coding the data
Read in the data …

hstHe <- read.table("lanl/HST/hstHe.dat", header=TRUE)

nrow(hstHe)

[1] 1000000

… and (as usual) work with coded the inputs.

2 2

file:///home/bobby/Desktop/lect1.html#57

m <- ncol(hstHe)-1

X <- hstHe[,1:m]

Y <- hstHe[,m+1]

maxX <- apply(X, 2, max)

minX <- apply(X, 2, min)

for(j in 1:ncol(X)) {

 X[,j] <- X[,j] - minX[j]

 X[,j] <- X[,j]/(maxX[j]-minX[j])

}

Cross-validation
Consider a 10-fold CV setup …

cv.folds <- function (n, folds = 10)

 split(sample(1:n), rep(1:folds, length = n))

f <- cv.folds(nrow(X), 10)

… but only “loop” through one fold here.

(The other folds proceed very similarly.)

o <- f[[1]]

Xtest <- X[o,]; Xtrain <- X[-o,]

Ytest <- Y[o]; Ytrain <- Y[-o]

c(test=length(Ytest), train=length(Ytrain))

test train

100000 900000

Subset GP first
We’ll need it for our multiresolution approach later anyway, so lets start with a subset GP first.

Recall that this data is not deterministic.
It involves a Monte Carlo, and so has a small amount of noise.

da.orig <- darg(list(mle=TRUE), Xtrain, samp.size=10000)

sub <- sample(1:nrow(Xtrain), 1000, replace=FALSE)

gpsi <- newGPsep(Xtrain[sub,], Ytrain[sub], d=0.1, g=1/1000, dK=TRUE)

mle <- mleGPsep(gpsi, tmin=da.orig$min, tmax=10*da.orig$max, ab=da.orig$ab)

psub <- predGPsep(gpsi, Xtest, lite=TRUE)

deleteGPsep(gpsi)

rmspe <- c(sub=sqrt(mean((100*(psub$mean - Ytest)/Ytest)^2)))

rmspe

sub

10.35999

Not even close to our 1% target.

Local GP
How about a separable local GP?

alcsep <- aGPsep(Xtrain, Ytrain, Xtest, d=da.orig, omp.threads=nth, verb=0)

print(rmspe <- c(rmspe, alc=sqrt(mean((100*(alcsep$mean - Ytest)/Ytest)^2))))

sub alc

10.35999 5.86535

Much better, but not quite to our 1% goal.

Notice that a () smaller nugget doesn’t help here.

g <- 1/100000

alcsep2 <- aGPsep(Xtrain, Ytrain, Xtest, d=da.orig, g=g, omp.threads=nth, verb=0)

print(rmspe <- c(rmspe, alc2=sqrt(mean((100*(alcsep2$mean - Ytest)/Ytest)^2))))

sub alc alc2

10.359987 5.865350 5.948451

Multiresolution global/local GP
First pre-scale the inputs with the mle calculated on the subset above.

for(j in 1:ncol(Xtrain)) {

 Xtrain[,j] <- Xtrain[,j] / sqrt(mle$d[j])

 Xtest[,j] <- Xtest[,j] / sqrt(mle$d[j])

}

Construct a default prior appropriate for the scaled inputs.

da.s <- darg(list(mle=TRUE), Xtrain, samp.size=10000)

da.s$start <- 1; if(da.s$max < 2) da.s$max <- 2

Now the local fit on the scaled inputs. Woot!

alcsep.s <- aGPsep(Xtrain, Ytrain, Xtest, d=da.s, omp.threads=nth, verb=0)

print(rmspe <- c(rmspe, alcs=sqrt(mean((100*(alcsep.s$mean - Ytest)/Ytest)^2))))

sub alc alc2 alcs

10.3599865 5.8653502 5.9484513 0.7824052

Calibration
Local is ideal
Recall the modularized KOH calibration (lect5.html) apparatus,

which relied on computer model emulations at a small number field data sites,
paired with promising values of the calibration parameter .

That is, we only need GP predictions at a relatively small set of locations,

determined “on-line” as optimization over proceeds in search of ,
regardless of the (potentially massive) size of the computer experiment.

Local GPs couldn’t be more ideal for this setup.

10×

XF

u

u u ̂

file:///home/bobby/Desktop/lect5.html

A drawback
One drawback, however, is that the discrete nature of independent local design searches for ,

for each index into ,

is going to ensure that our likelihood-based calibration objective is not a continuous in

which will thwart most local optimization methods.

Gramacy, et al. (2015) (http://projecteuclid.org/euclid.aoas/1446488734) suggest a derivative-free approach:

the MADS algorithm (Audet & Dennis, Jr., 2006) (http://www.caam.rice.edu/caam/trs/2004/TR04-02.pdf)
as implemented in NOMAD (https://www.gerad.ca/nomad/Project/Home.html).

Initialization & implementation
As MADS is a local solver, NOMAD requires initialization.

Gramacy et al. suggest choosing starting -values from the best value(s) of the objective found on a small space-filling design.

The laGP package contains several functions that automate that objective, e.g.,

fcalib is like the calib function we implemented for the full GP case;
discrep.est is like our bhat function;

special cases for unbiased calibration are also implemented.

A synthetic example
I’d love to show you the CRASH calibration (lect1.html#48),

but there are too many nuances for a tutorial setting.
Instead, we’ll look at a synthetic analog from the same paper (http://projecteuclid.org/euclid.aoas/1446488734).

Consider a computer model formulated below, and its implementation in R.

M <- function(x,u)

 {

 x <- as.matrix(x)

 u <- as.matrix(u)

 out <- (1-exp(-1/(2*x[,2])))

 out <- out * (1000*u[,1]*x[,1]^3+1900*x[,1]^2+2092*x[,1]+60)

 out <- out / (100*u[,2]*x[,1]^3+500*x[,1]^2+4*x[,1]+20)

 return(out)

}

Bias and field data
The field data is generated as

using .

(, u)y ̂ M xFj

j = 1,… ,NF XF

u

u

(x, u) = (1 −) .yM e
− 1

2x2

1000 + 1900 + 2092 + 60u1x
3
1 x2

1 x1

100 + 500 + 4 + 20u2x
3
1 x2

1 x1

(x)yF

 and ε

= (x,) + b(x) + ε, where b(x) =yM u∗
10 + 4x2

1 x2
2

50 + 10x1x2

 (0,),∼
iid

0.52

= (0.2, 0.1)u∗

http://projecteuclid.org/euclid.aoas/1446488734
http://www.caam.rice.edu/caam/trs/2004/TR04-02.pdf
https://www.gerad.ca/nomad/Project/Home.html
file:///home/bobby/Desktop/lect1.html#48
http://projecteuclid.org/euclid.aoas/1446488734

In R:

bias <- function(x)

{

 x<-as.matrix(x)

 out<- 2*(10*x[,1]^2+4*x[,2]^2) / (50*x[,1]*x[,2]+10)

 return(out)

}

Field data
Conider field data runs comprised of two replicates of a 50-sized 2d LHS of -values.

Zu is the intermediate computer model evaluation at .

ny <- 50

X <- randomLHS(ny, 2)

u <- c(0.2, 0.1)

Zu <- M(X, matrix(u, nrow=1))

sd <- 0.5

reps <- 2

Y <- rep(Zu, reps) + rep(bias(X), reps) + rnorm(reps*length(Zu), sd=sd)

length(Y)

[1] 100

Computer model runs
Augment the field data with computer model runs comprised of

a 4d LHS of size 10000 of -values,
and runs at the 50 field data locations, paired with 500 2d-LHSs of -values.

nz <- 10000

XU <- randomLHS(nz, 4)

XU2 <- matrix(NA, nrow = 10*ny, ncol=4)

for(i in 1:10) {

 I <- ((i-1)*ny + 1):(ny*i)

 XU2[I, 1:2] <- X

}

XU2[,3:4] <- randomLHS(10*ny, 2)

XU <- rbind(XU, XU2)

Z <- M(XU[,1:2], XU[,3:4])

length(Z)

[1] 10500

The variable Z contains our values.

The setup
The following block of code sets default priors and specifies details of the model(s) to be estimated.

= 100NF x

u∗

= 10500NM

(x, u)

u

yM

bias.est <- TRUE ## change to FALSE for unbiased version

methods <- rep("alc", 2) ## two passes of laGP design/MLE

da <- d <- darg(NULL, XU)

g <- garg(list(mle = TRUE), Y)

The prior is completed with a (log) prior density on the calibration parameter, , chosen to discourage settings on the “edges” of
the space.

beta.prior <- function(u, a=2, b=2, log=TRUE)

{

 if(length(a) == 1) a <- rep(a, length(u))

 else if(length(a) != length(u)) stop("length(a) must be 1 or length(u)")

 if(length(b) == 1) b <- rep(b, length(u))

 else if(length(b) != length(u)) stop("length(b) must be 1 or length(u)")

 if(log) return(sum(dbeta(u, a, b, log = TRUE)))

 else return(prod(dbeta(u, a, b, log = FALSE)))

}

Initialization search
Now we are ready to evaluate the objective on a “grid” to search for a starting value for NOMAD .

Here is the “grid”, via maximin LHS away from the edges.

initsize <- 10*ncol(X)

uinit <- maximinLHS(initsize, 2)

uinit <- 0.9*uinit + 0.05

Here are the objective evaluations on that “grid”.

llinit <- rep(NA, nrow(uinit))

for(i in 1:nrow(uinit)) {

 llinit[i] <- fcalib(uinit[i,], XU, Z, X, Y, da, d, g, beta.prior,

 methods, NULL, bias.est, nth, verb=0)

}

Now NOMAD
An R interface to NOMAD is provided by snomadr in the crs package,

which allows the passing of a number of NOMAD options.
The options below have been found to work well in a number of laGP -based calibration examples.

library(crs)

imesh <- 0.1

opts <- list("MAX_BB_EVAL"=1000, "INITIAL_MESH_SIZE"=imesh,

 "MIN_POLL_SIZE"="r0.001", "DISPLAY_DEGREE"=0)

The code on the following slide invokes snomadr on the best input(s) found on the “grid”,

looping over them until a minimum number of NOMAD iterations has been reached.

Usually one pass is sufficient to meet the iteration threshold.

u

its <- 0; i <- 1; out <- NULL

o <- order(llinit)

while(its < 10) {

 outi <- snomadr(fcalib, 2, c(0,0), 0, x0=uinit[o[i],], lb=c(0,0), ub=c(1,1),

 opts=opts, XU=XU, Z=Z, X=X, Y=Y, da=da, d=d,g=g, methods=methods, M=NULL, verb=0,

 bias=bias.est, omp.threads=nth, uprior=beta.prior, save.global=.GlobalEnv)

 its <- its + outi$iterations

 if(is.null(out) || outi$objective < out$objective) out <- outi

 i <- i + 1

}

Then, extract information for visualizing/interpolating a posterior surface over .

Xp <- rbind(uinit, as.matrix(fcalib.save[,1:2]))

Zp <- c(-llinit, fcalib.save[,3])

wi <- which(!is.finite(Zp))

if(length(wi) > 0) { Xp <- Xp[-wi,]

Zp <- Zp[-wi]}

library(akima)

surf <- interp(Xp[,1], Xp[,2], Zp, duplicate = "mean")

u.hat <- out$solution

image(surf, xlab="u1", ylab="u2", col=heat.colors(128), xlim=c(0,1), ylim=c(0,1))

points(uinit); points(fcalib.save[,1:2], col = 3, pch = 18)

points(u.hat[1], u.hat[2], col = 4, pch = 18)

abline(v=u[1], lty = 2); abline(h=u[2], lty = 2)

Did we do good?
Observe that the true value is far from the that we found.

Indeed, the surface is fairly peaked around around ,

u

u∗ u ̂

u ̂

giving very little support to the true value.

Since there are far fewer evaluations made near ,

it is worth checking if the solver missed an area of high likelihood.

Xu <- cbind(X, matrix(rep(u, ny), ncol=2, byrow=TRUE))

Mhat.u <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)

cmle.u <- discrep.est(X, Y, Mhat.u$mean, d, g, bias.est, FALSE)

cmle.u$ll <- cmle.u$ll + beta.prior(u)

c(u.hat= -out$objective, u=cmle.u$ll)

u.hat u

-130.5904 -133.6634

Nope, that’s not it.

Out-of-sample exercise
Lets see which (or) leads to better prediction out-of-sample.

nny <- 1000

XX <- randomLHS(nny, 2)

ZZu <- M(XX, matrix(u, nrow=1))

YYtrue <- ZZu + bias(XX)

First, prediction with the true .

XXu <- cbind(XX, matrix(rep(u, nny), ncol=2, byrow=TRUE))

Mhat.oos.u <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2, omp.threads=nth, verb=0)

YYm.pred.u <- predGP(cmle.u$gp, XX)

YY.pred.u <- YYm.pred.u$mean + Mhat.oos.u$mean

rmse.u <- sqrt(mean((YY.pred.u - YYtrue)^2))

deleteGP(cmle.u$gp)

Estimated version
For the estimated we need to backtrack through what we did earlier,

and save the intermediate steps to re-build the composite for prediction.

Xu <- cbind(X, matrix(rep(u.hat, ny), ncol=2, byrow=TRUE))

Mhat <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)

cmle <- discrep.est(X, Y, Mhat$mean, d, g, bias.est, FALSE)

cmle$ll <- cmle$ll + beta.prior(u.hat)

Here is a sanity check that this gives the same objective evaluation as what came out of snomadr .

 print(c(cmle$ll, -out$objective))

[1] -130.5904 -130.5904

Predicting with
Now we can repeat what we did with the true value with our estimated one .

u∗

u ̂ u∗

u∗

u ̂

û
u∗ u ̂

XXu <- cbind(XX, matrix(rep(u.hat, nny), ncol = 2, byrow = TRUE))

Mhat.oos <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2, omp.threads=nth, verb=0)

YYm.pred <- predGP(cmle$gp, XX)

YY.pred <- YYm.pred$mean + Mhat.oos$mean

rmse <- sqrt(mean((YY.pred - YYtrue)^2))

How do our RMSEs compare?

c(u.hat=rmse, u=rmse.u)

u.hat u

0.1451248 0.1821815

Indeed, our estimated version leads to better predictions.
Clearly there is an identifiability issue in this supremely flexible calibration apparatus; but it does a good job of predicting.

u ̂

