
GP Fidelity & Scale
RSMs and Computer Experiments

Robert B. Gramacy (rbg@vt.edu : http://bobby.gramacy.com)
Department of Statistics, Virginia Tech

mailto:rbg@vt.edu
http://bobby.gramacy.com/

Goals

GPs are fantastic, but they are not without their drawbacks.

Flexibility is another.

In this segment we'll try to address those issues, ideally simultaneously.

Computational complexity is one: matrix decompositions and
storage can severely limit data sizes.

· ()n3 ()n2

Stationarity is a nice simplifying assumption,

but it is clearly not appropriate for all data generating mechanisms;

e.g., the LGBB rocket booster data.

·

·

·

The literature on GP approximation is booming: approximation and sparsity are
common themes.

The literature on nonstationary modeling is more niche.

·

·

2/111

Sparse Covariance

Big data remedies

Inroads into faster GP modeling are being made from a number of angles, usually by
approximation.

The trouble is, not many of them come with software.

"Pseudo inputs" (Snelson & Ghahramani, 2006)

Iterating over batches (Haaland & Qian, 2012)

Fixed rank kriging (Cressie & Johannesson, 2008)

Compactly supported covariances and fast sparse linear algebra (Kauffman, et al,
2011; Sang & Huang, 2011)

Treed Gaussian processes (Gramacy & Lee, 2008)

Composite likelihood (Eidsvik, et al., 2013)

Local Gaussian Processes (Gramacy & Apley, 2015)

·

·

·

·

·

·

·

4/111

http://www.gatsby.ucl.ac.uk/~snelson/SPGP_up.pdf
https://projecteuclid.org/euclid.aos/1327413775
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2007.00633.x/abstract
http://projecteuclid.org/euclid.aoas/1324399603
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.01007.x/abstract
http://www.tandfonline.com/doi/abs/10.1198/016214508000000689
http://www.tandfonline.com/doi/abs/10.1080/10618600.2012.76046
http://www.tandfonline.com/doi/abs/10.1080/10618600.2014.914442?journalCode=ucgs20

Underlying themes

But there are a couple of underlying themes, and representative softwares therein.

And in fact all three can be seen as mechanisms for inducing sparsity in the
covariance structure.

It is worth noting that you can't just truncate small entries of ,

sparse covariances

partitioning

local/composite approximation

·

·

·

But they differ in how they leverage that sparsity to speed up calculations,

and in how they offer scope for enhanced fidelity.

·

·

Kij

because the result will almost certainly not be positive definite.·

5/111

Compactly supported kernels

A kernel , where , is said to have compact support if
when .

A compactly supported kernel (CSK) introduces zeros into the the covariance
matrix,

(r)krmax
r = |x − |x′ (r) = 0krmax

r > rmax

We may proceed component-wise with and for a separable
(compactly supported) kernel.

Nuggets are allowed, but we'll drop them here for convenience.

We'll talk about lengthscales shortly.

· = | − |rj xj x′
j

rj,max

·

·

so sparse matrix methods can speed up computations.·

6/111

Polynomial basis

Now more sparsity means faster computation,

A key idea in Kaufman et al. (2011) is to use a rich nonlinear mean function to "mop
up" the long range non-linearity,

And they provide software.

but at the expense of "long distance" correlation.·

leaving the residual to be modeled by shorter-range (sparse) correlations.

Kauffman, et al., recommend degree 5 "tensor product" Legendre polynomials.

Inference, integrating out over the "partition" between long and short spatial
effects, is carried out by Bayesian MCMC.

·

·

·

library(SparseEm)

7/111

http://projecteuclid.org/euclid.aoas/1324399603

A big-ish example

Consider the borehole data, which is a classic computer experiments example
(Morris, et al., 1993).

It is a function of eight inputs, modeling water flow through a borehole.

The input ranges are

y = .
2π [−]Tu Hu Hl

log() [1 + +]r

rw

2LTu

log(r/)rw r 2
wKw

Tu

Tl

rw

Tl

L

∈ [0.05, 0.15]

∈ [63.1, 116]

∈ [1120, 1680]

r

Hu

Kw

∈ [100, 5000]

∈ [990, 1110]

∈ [9855, 12045].

Tu

Hl

∈ [63070, 115600]

∈ [700, 820]

8/111

https://www.sfu.ca/~ssurjano/borehole.html
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1993.10485320#.WCkSwswrKfY

Borehole simulation

Here is an implementation in coded inputs.

borehole <- function(x){

 rw <- x[1] * (0.15 - 0.05) + 0.05

 r <- x[2] * (50000 - 100) + 100

 Tu <- x[3] * (115600 - 63070) + 63070

 Hu <- x[4] * (1110 - 990) + 990

 Tl <- x[5] * (116 - 63.1) + 63.1

 Hl <- x[6] * (820 - 700) + 700

 L <- x[7] * (1680 - 1120) + 1120

 Kw <- x[8] * (12045 - 9855) + 9855

 m1 <- 2 * pi * Tu * (Hu - Hl)

 m2 <- log(r / rw)

 m3 <- 1 + 2*L*Tu/(m2*rw^2*Kw) + Tu/Tl

 return(m1/m2/m3)

}

9/111

LHS train/test partition

Here is a LHS training and testing partition.

The SparseEm package includes a subroutine to "find" the desired level of sparsity,
mc.

n <- 4000; npred <- 500; dim <- 8

library(lhs)

x <- randomLHS(n+npred, dim)

y <- apply(x, 1, borehole)

ypred.0 <- y[-(1:n)]; y <- y[1:n]

xpred <- x[-(1:n),]; x <- x[1:n,]

degree <- 2; maxint <- 2

sparsity <- 0.99

mc <- find.tau(den = 1 - sparsity, dim = ncol(x)) * ncol(x)

10/111

Sampling from the posterior

Now, lets gather 2000 samples from the posterior,

And then make predictions on the testing set,

saving the compute time for a later comparison.·

B <- 2000

suppressWarnings({

time1 <- system.time(

 tau <- mcmc.sparse(y, x, mc=mc,degree=degree,maxint=maxint,B=B,verbose=FALSE))

})

removing burn-in iterations, and sub-sampling every 10th iteration.·

burnin <- 500

index <- seq(burnin+1, B, by = 10)

suppressWarnings({

time2 <- system.time(ypred.sparse <-

 pred.sparse(tau[index,], x, y, xpred,degree=degree,maxint=maxint,verbose=FALSE))

})

11/111

Trace plots (sparse)

Pretty good on the convergence front (recall threshold/lengthscale parameter).τ

par(mfrow=c(1,2)); matplot(tau, type = "l", xlab="iter")

plot(apply(tau, 1, sum), type = "l", xlab="iter")

12/111

A fair comparison

Kauffman, et al. provide a non-sparse version,

This is going to be really slow, so we'll do an order of magnitude fewer MCMC
iterations.

that otherwise works identically,

for timing and accuracy comparisons.

·

·

B <- 200

suppressWarnings({

time3 <- system.time(phi <- mcmc.nonsparse(y, x, B=B, verbose=FALSE))

burnin <- 50

index <- seq(burnin+1, B, by = 10)

time4 <- system.time(ypred.nonsparse <-

 pred.nonsparse(phi[index,], x, y, xpred, 2, verbose=FALSE))

})

13/111

Trace plots (non-sparse)

Not converged, but that's about all we can do in a reasonable amount of time.

matplot(phi, type = "l", xlab="iter")

14/111

How do they compare?

In terms of time, about a speedup.

In terms of accuracy … (unfair to the dense version since it hasn't burned in)

3×

Not super impressive, but good potential.·

print(times <- c(sparse=as.numeric(time1[3]+time2[3]),

 dense=10*as.numeric(time3[3]+time4[3])))

sparse dense

3472.272 9830.340

s2s <- ypred.sparse$var; s2n <- ypred.nonsparse$var

print(scores <- c(sparse=mean(- (ypred.sparse$mean - ypred.0)^2/s2s - log(s2s)),

 dense=mean(- (ypred.nonsparse$mean - ypred.0)^2/s2n - log(s2n))))

sparse dense

-1.508444 -2.131856

15/111

99.9% sparse?

Lets see how much faster (and how much less accurate) a 99.9% sparse version is.

sparsity <- 0.999

mc <- find.tau(den = 1 - sparsity, dim = ncol(x)) * ncol(x)

B <- 2000

suppressWarnings({

time5 <- system.time(

 tau <- mcmc.sparse(y, x, mc=mc,degree=degree,maxint=maxint,B=B,verbose=FALSE))

})

burnin <- 500

index <- seq(burnin+1, B, by = 10)

suppressWarnings({

time6 <- system.time(ypred.sparse <-

 pred.sparse(tau[index,], x,y,xpred,degree=degree,maxint=maxint,verbose=FALSE))

})

Essentially cutting and pasting from above.·

16/111

Expanded comparison

Much faster.

A little less accurate.

times <- c(times, s999=as.numeric(time5[3]+time6[3]))

times

sparse dense s999

3472.272 9830.340 528.662

s2 <- ypred.sparse$var

scores <- c(scores, s999=mean(- (ypred.sparse$mean - ypred.0)^2/s2 - log(s2)))

scores

sparse dense s999

-1.508444 -2.131856 -1.680680

17/111

Partition models

Divvy it up

Another way to induce sparsity in the covariance structure is to

The trouble is, its hard to know just how to split things up.

Once we've figured that out, it makes sense to fit hyperparameters independently in
each partition,

partition the input space into independent regions.

Then the covariance is essentially block-diagonal.

·

·

Ideally, we'd let the data decide.·

thereby obtaining a cheap non-stationary model.

But all bets for continuity are off, unless we can average over all (likely) partitions.

·

·

19/111

Easy to say …
… hard to do, especially with Gaussian processes.

I know of only two (successful) attempts.

Tesselations are easy to characterize mathematically, but a nightmare
computationally.

Trees are easy mathematically too,

1. via Voronoi tesselations (Kim, et al. ,2012)

2. via trees (Gramacy & Lee, 2008)

and much easier computationally.·

20/111

http://amstat.tandfonline.com/doi/abs/10.1198/016214504000002014?journalCode=uasa20
http://www.tandfonline.com/doi/abs/10.1198/016214508000000689

Divide-and-conquer regression

The plan is to use GPs at the leaves, but lets take a step back first …

Recursive, axis-aligned, splits divvy up the input space into independent predictive
models for the response ().

Predictions are dictated by tree structure and leaf model.

·
y

· = (x)ŷ fn

21/111

Turn back the clock

Use of trees in regression dates back to AID (Automatic Interaction Detection) by
Morgan and Sonquist (1963)

Classification and Regression Trees (CART) (Breiman, et al., 1984),

The selling point was that

Fitting a partition structure (depth, splits, etc.) requires

a suite of methods obtaining fitted partition trees,

popularized the idea.

·

·

trees facilitate parsimonious divide-and-conquer, leading to flexible yet
interpretable modeling.

·

a leaf prediction rule and goodness-of-fit criteria,

and a "search" algorithm.

·

·

22/111

https://www.cs.nyu.edu/~roweis/csc2515-2006/readings/morgan_sonquist63.pdf
https://www.amazon.com/Classification-Regression-Wadsworth-Statistics-Probability/dp/0412048418

Likelihood-based modeling

I prefer the likelihood, whenever possible.

Given a particular tree, , the (marginal) likelihood factorizes into a product form.

The simplest leaf model for regression is the "constant model":



p(∣  ,) ≡ p(,… , ∣  , ,… ,) = p(∣)yn xn y1 yn x1 xn ∏
η∈

yη xη

a "local" Gaussian with unknown mean and variance ().

Gaussian modeling means a convenient closed form for each .

· = (,)θη μη σ2
η

· p(∣)yη xη

23/111

Tree prior

Some kind of regularization is needed for inference,

Chipman, George & McCulloch (1998)

describe how trees may stochastically be grown from a leaf node with a probability
that depends on the depth of that node in the tree, .

This induces a prior for the full tree via the probability that internal nodes split
and leaves do not:

otherwise the product-form likelihood is maximized when there is a leaf for each
observation.

·

η

Dη 

(η,) = α(1 +psplit Dη)−β

 



π() ∝ (η,) [1 − (η,)].∏
η ∈ 

psplit ∏
η ∈ 

psplit

Everything else is uniform.·

24/111

https://www.jstor.org/stable/2669832?seq=1#page_scan_tab_contents

Inference by MCMC

Inference then proceeds by MCMC.

Here is how the MCMC would go.

Potential savings comes with local moves in tree space,

Note that there are no parameters except the tree, ,

when the leaf-node parameters are integrated out.

· 

· θη

Randomly choose part of the tree to alter, and how to alter it (prune, grow,
change, swap, rotate, …).

Accept the move with Metropolis–Hastings probability:

·

·

= × .
p(∣ ,)

′ yn xn

p( ∣ ,)yn xn
p(∣ ,)yn 

′ xn

p(∣  ,)yn xn
π()

′

π()

since terms above cancel for the un-altered leaves in the product form of the
marginal likelihood.

·

25/111

Tree proposals

What do tree proposals look like? Here is an example of the four most popular "tree
moves".

26/111

Motorcycle data

The tgp package will sample from the Bayesian treed constant model ("Bayesian
CART") posterior.w

As an illustration, consider the motorcycle accident data in the MASS library for R.

Samples from the posterior predictive distribution are gathered at locations XX:

library(tgp)

library(MASS)

XX <- seq(0,max(mcycle[,1]), length=1000)

out.bcart <- bcart(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=100, verb=0)

For maximum a'posteriori (MAP) predictor, you can run the following afterwards.·

outp.bcart <- predict(out.bcart, XX=XX)

27/111

Moto-visualization macro

To visualize the predictive surface(s), I'm going to write a little macro that we can re-
use in several variations later.

plot.moto <- function(out, outp)

 {

 plot(outp$XX[,1], outp$ZZ.km, ylab="accel", xlab="time",

 ylim=c(-150, 80), lty=2, col=1, type="l")

 points(mcycle)

 lines(outp$XX[,1], outp$ZZ.km + 1.96*sqrt(outp$ZZ.ks2), col=2, lty=2)

 lines(outp$XX[,1], outp$ZZ.km - 1.96*sqrt(outp$ZZ.ks2), col=2, lty=2)

 lines(out$XX[,1], out$ZZ.mean, col=1, lwd=2)

 lines(out$XX[,1], out$ZZ.q1, col=2, lwd=2)

 lines(out$XX[,1], out$ZZ.q2, col=2, lwd=2)

 }

28/111

Bayesian CART surface(s)

The MCMC is good at smoothing out rough transitions.

plot.moto(out.bcart, outp.bcart)

29/111

BCART surface features

What do we get?

The MAP estimate has many of those features,

Try tgp.trees(out.bcart) to visualize the best trees.

Organic non-stationarity and heteroskedasticity.

But both are obviously limited. E.g., the variance is too high at the start and the
end.

·

·

and can be taken as an analogue of the "old CART way".

The hard breaks are unappealing.

The smoothed predictions from the MCMC are a bit better.

·

·

·

30/111

Bayesian treed linear model

Any data type/leaf model may be used without extra computational effort as long as
 is analytic.

Here is the fit in tgp,

We'll use the plotting macro we made earlier for easy visualization.

p(∣)yη xη

Linear models at the leaves are one example, leading to the so-called Bayesian
treed linear model (BTLM) (Chipman, et al., 2002) uses

·

out.btlm <- btlm(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=100, verb=0)

The MAP predictor can be extracted as follows.·

outp.btlm <- predict(out.btlm, XX=XX)

31/111

http://link.springer.com/article/10.1023/A:1013916107446

BTLM surface(s)

Fewer partitions, but is it better?

plot.moto(out.btlm, outp.btlm)

32/111

What else?

If the response is categorical,

Other members of the exponential family proceed similarly:

However, to my knowledge none of these choices have been actually implemented
as leaf models in a Bayesian treed regression setting.

then a multinomial leaf model and Dirichlet prior pair leads to an analytic
marginal likelihood (Chipman, et al., 1998).

·

Poisson, exponential, negative binomial, …
and others too (potentially).

·

·

33/111

https://www.jstor.org/stable/2669832?seq=1#page_scan_tab_contents

Non-analytic marginal likelihood

Technically, any leaf model can be deployed

An important exception is GPs.

GP leaves encourage shallow trees with fewer leaf nodes.

First, lets look at a stationary GP fit to the motorcycle data.

by extending the Monte Carlo to integrate over leaf parameters too.

But deep trees/many leaves could result in a prohibitively large parameter space.

· θη

·

GPs offer a parsimonious take on nonlinear nonparametric regression,

mopping up much of the variability left to the tree with simpler leaf models.

·

·

At the same time, treed partitioning enables (axis aligned) regime changes in
stationarity and skedasticity.

·

34/111

Stationary "BGP" fit

Smooth, but equally as bad as BCART and BTLM in other (opposite) respects?

out.bgp <- bgp(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=10, verb=0)

outp.bgp <- predict(out.bgp, XX=XX)

plot.moto(out.bgp, outp.bgp)

35/111

Treed Gaussian process

Bayesian treed Gaussian process (TGP) models (Gramacy & Lee, 2008) can offer the
best of both worlds, marrying

Their divide-and-conquer nature mean

As before, we can extract the MAP predictor, mostly for comparison.

the smooth global perspective of GPs,

with the thrifty local adaptivity of trees.

·

·

faster computation: smaller matrix inversions

and disparate spatial dependencies.

·

·

out.btgp <- btgp(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=30, bprior="b0", verb=0)

outp.btgp <- predict(out.btgp, XX=XX)

36/111

http://www.tandfonline.com/doi/abs/10.1198/016214508000000689

BTGP surface(s)

Pretty darn good, if you ask me.

plot.moto(out.btgp, outp.btgp)

37/111

2-d surface

Lets revisit the 2-d exponential data,

First lets fit an ordinary (Bayesian) GP.

which was actually created to showcase subtle nonstationarity with tgp.

It even comes in the package.

·

·

exp2d.data <- exp2d.rand(n1=25, n2=75)

X <- exp2d.data$X; Z <- exp2d.data$Z

XX <- exp2d.data$XX

Since there is radial symmetry we can use an isotropic correlation with
corr="exp".

·

out.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0)

38/111

2-d Stationary GP surface

A stationary process means uniform uncertainty (in distance).

plot(out.bgp, pc="c")

39/111

2-d TGP surface

A nonstationary process means we can learn that it is hard in the SW corner.

out.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", R=10, verb=0)

plot(out.btgp, pc="c")

40/111

Maximum a' posteriori tree

A clean treed partition of the input space.

tgp.trees(out.btgp, heights="map")

41/111

LGBB data

Treed GPs were invented for the rocket booster (LGBB) data.

Those files contain

NASA scientists knew they needed to partition the model (and the design) to
separate subsonic and supersonic speeds,

but they didn't know right where the partition should be.

They wanted the data to tell them;

and to tell them if more splits were helpful.

·

·

·

·

lgbb.as <- read.table("lgbb/lgbb_as.txt", header=TRUE)

lgbb.rest <- read.table("lgbb/lgbb_as_rest.txt", header=TRUE)

inputs/outputs on a sequential (ALC) design selected from a dense candidate grid
(Gramacy & Lee, 2009),

and the un-selected elements from that grid.

·

·

42/111

http://amstat.tandfonline.com/doi/abs/10.1198/TECH.2009.0015#.Vgw-37SbOTA

Final prediction

Here we develop the "final predictive surface" after the sequential design effort, on
the lift response.

The fit is computationally intensive, so we won't do any restarts (with default R=1).

X <- lgbb.as[,2:4]

Y <- lgbb.as$lift

XX <- lgbb.rest[2:4]

c(X=nrow(X), XX=nrow(XX))

X XX

780 37128

t1 <- system.time(fit <- btgpllm(X=X, Z=Y, XX=XX, bprior="b0", verb=0))

t1[3]

elapsed

7532.5

43/111

Visualizing the (lift) predictive mean

We can inspect a 2-d slice of the posterior predictive surface, say for a side-slip-angle
of zero.

plot(fit, slice=list(x=3, z=0), gridlen=c(100, 100), layout="surf", span=0.01)

44/111

Lift MAP tree

A clean two-element partition.

tgp.trees(fit, heights="map")

45/111

Visualizing ALM

Future samples will be in the sub-sonic regime.

plot(fit, slice=list(x=3,z=0), gridlen=c(100,100), layout="as",as="alm",span=0.01)

46/111

Speed

But yeah, that was pretty slow.

tgp contains a number of "switches" and "knobs" to help speed things up,

One way is to change the prior.

Another way is via the MCMC.

at the expense of faithful modeling.·

Change arguments (bigger) and (smaller) to encourage deeper trees.· psplit α β

The argument linburn=TRUE will "burn-in" the BTGP MCMC with a BTLM, and
then "switch-on" GPs at the leaves toward the end.

That ensures smaller partitions, but initializes the chain in a local mode of the tree
space.

The MCMC will usually "prune" back out of the modes, but almost never entirely.

·

·

·

47/111

linburn predictive mean

Not much impact on the surface.

t2 <- system.time(fit2 <-

 btgpllm(X=X, Z=Y, XX=XX, bprior="b0", linburn=TRUE, verb=0))

plot(fit2, slice=list(x=3, z=0), gridlen=c(100, 100), layout="surf", span=0.01)

48/111

Pretty good

An order of magnitude faster.

Indeed, much of the space is plausibly piece-wise linear anyway,

c(full=t1[3], linburn=t2[3])

full.elapsed linburn.elapsed

7532.500 1253.932

but it helps to smooth out rough edges with the GP.·

49/111

Sequential design

The predictive variance make great active learning heuristics.

plot(fit2, slice=list(x=3,z=0), gridlen=c(100,100), layout="as",as="alm",span=0.01)

50/111

Other heuristics

Integrated (over the input space) predictive variance is available with Ds2X=TRUE.

Giving improv=TRUE returns samples of posterior mean of improvement

For more details/tutorials, see

An analog of Integrate Mean-Squared Prediction Error (IMSPE) sequential design.·

So you get a fully Bayesian EI, averaged over tree and leaf model uncertainty,

for a truly Bayesian Optimization.

·

·

Gramacy (2007): a beginners primer;

Gramacy & Taddy (2010): advanced topics like EI, categorical inputs, sensitivity
analysis, and tempering.

·

·

51/111

https://www.jstatsoft.org/article/view/v019i09
https://www.jstatsoft.org/article/view/v033i06

Local approximate GPs

Local kriging neighborhoods

The local approximate GP (laGP) idea has aspects in common with partition based
schemes,

It is reminiscent of what Cressie (1991, pp. 131-134) called an "ad hoc" method of
local kriging neighborhoods,

I think Cressie didn't anticipate

in the sense that it creates sparsity in the covariance structure in a
"geographically" local way.

·

which is not a very nice thing to say about a decent idea.·

the scale of modern data,

applications to computer models and machine learning data (with inputs other
than longitude and latitude),

and the architecture of modern computers (mult-core/cluster computing begs for
divide-and-conquer).

·

·

·

53/111

https://www.amazon.com/Statistics-Spatial-Data-Wiley-Probability-ebook/dp/B00VOY1LGS/ref=sr_1_1?ie=UTF8&qid=1479478617&sr=8-1&keywords=cressie+noel

Transductive learning

All together, the idea is more modern than could have been anticipated in 1991 (and
earlier).

It draws, in part, on recent findings

But a big divergence from previous approaches, particularly those from the spatial
stats literature, lies in an emphasis on prediction

laGP is an example of transductive learning (Vapnik, 1995), as opposed to inductive
learning, in that

for approximate likelihoods in spatial data (e.g., Stein et al., 2004),

and active learning techniques for sequential design (e.g., Cohn, 1996).

·

·

which is the primary goal in computer experiments and machine learning
applications.

·

the behavior of the method/fit depends crucially on the testing locations.·

54/111

https://www.amazon.com/Statistical-Learning-Information-Science-Statistics/dp/0387987800/ref=sr_1_2?ie=UTF8&qid=1479479476&sr=8-2&keywords=The+nature+of+statistical+learning+theory
http://onlinelibrary.wiley.com/doi/10.1046/j.1369-7412.2003.05512.x/pdf
http://www.cs.cmu.edu/~cohn/psyche/AIM-1491.ps.Z

Local sub-design

For the next little bit, focus on prediction at a single predictive location .

Lets think about the properties of GP predictive equations (an emulator in the
computer experiments context, say) at .

So how about we search for the most useful data points (a sub-design relative to)

x

 is arbitrary; it is only important that it be a single location (for now).· x

x

Data far from vanishingly small influence on GP predictions.

This is what motivates a CSK approach to inducing sparsity,

but the difference here is that we're thinking about a particular , not the entire
spatial field.

· x

·

· x

x

for prediction at , without considering/handling large matrices.· x

55/111

Nearest neighbor GP prediction

One option is a nearest neighbor (NN) subset:

The best modern reference for this idea is Emery (2009).

1. Fill with closest locations to .

2. Emulate with where .

(x) ⊂Xn XN local-n ≪ full-N x

Y(x) ∣ (x)Dn (x) = (,)Dn Xn Yn

This is a very simple prediction rule, and potentially very fast: not

Choose as large as computational constraints allow.

· O()n3 O()N 3

· n

56/111

http://link.springer.com/article/10.1007/s10596-008-9116-8

An animation … (1)

57/111

An animation … (2)

58/111

An animation … (3)

59/111

An animation … (4)

60/111

An animation … (5)

61/111

What about that?

Is it sensible?

Is it good?

Our questions:

As , predictions .

, reflecting uncertainties inflated by the smaller design, where
.

· n → N Y(x) ∣ → Y(x) ∣Dn DN

· V(x) ∣ ≫ V(x) ∣Dn DN

(x) = V(x)σ2 τ ̂ 2

It's not optimal given computational limits, (Vecchia, 1998; Stein, et al., 2004).

But, finding the optimal solution(s) is a combinatorially huge undertaking.

· n

·

Can we do better than NN (in terms of prediction accuracy) without much extra
effort (in terms of computational cost)?

I.e., with computation in ?

·

· O()n3

62/111

https://www.jstor.org/stable/2345768?seq=1#page_scan_tab_contents
http://onlinelibrary.wiley.com/doi/10.1046/j.1369-7412.2003.05512.x/pdf

Greedy scheme

Yes!: with a greedy/forward stepwise scheme.

For a particular , solve a sequence of easy decision problems.

For :

Optimizing the criterion (1), and updating the GP (2), must not exceed so the
total scheme remains in .

x

j = ,… ,nn0

1. given , choose according to some criterion;

2. augment the design and update the GP
approximation.

(x)Dj xj+1

(x) = (x) ∪ (, y())Dj+1 Dj xj+1 xj+1

O()j2

O()n3

Initialize with a small comprised of NNs.· (x)Dn0

63/111

A criterion …
… for sequential (sub-) design:

Given for particular , we search for by minimizing empirical Bayes mean-
squared prediction error:

That is:

(x)Dj x xj+1

J(, x)xj+1 = 𝔼{[Y(x) − (x;) ∣ (x)}μj+1 θ ̂
j+1]2 Dj

≈ (x ∣ ;) + something smallVj xj+1 θ ̂
j

The reduced variance at after is added into the design;

plus something that is relatively small.

· x xj+1

·

64/111

For example

Consider a full- sized design on a 2-d grid.

And evaluate that to get responses (we optimized this with the AL earlier).

N

xg <- seq(-2, 2, by = 0.02)

X <- as.matrix(expand.grid(xg, xg))

print(N <- nrow(X))

[1] 40401

f2d <- function(x) {

 g <- function(z) {

 return(exp(-(z - 1)^2) + exp(-0.8 * (z + 1)^2) - 0.05 * sin(8 * (z + 0.1)))

 }

 return(-g(x[, 1]) * g(x[, 2]))

}

Y <- f2d(X)

65/111

Local sub-design(s)

Consider prediction location , denoted by Xref in the code below,

Pretty fast:

For a point of reference, inverting a matrix takes about five seconds on
the same machine, using a mult-threaded BLAS/Lapack.

x

with local designs built up to with initial NNs.· n = 50 = 6n0

library(laGP)

Xref <- matrix(c(-1.725, 1.725), nrow=1)

p <- laGP(Xref, 6, 50, X, Y, d=0.1)

p$time

elapsed

0.051

4000 × 4000

Never mind a one – impossible on my machine.· 40, 000 × 40, 000

66/111

plot(X[p$Xi,], xlab="x1", ylab="x2", type="n",

 xlim=range(X[p$Xi,1]), ylim=range(X[p$Xi,2]))

text(X[p$Xi,], labels=1:length(p$Xi), cex=0.7, col=2)

points(Xref[1], Xref[2],pch =19, col=3)

67/111

A surprising result?

Why does the criteria not prefer the closest possible points, i.e., the NNs?

Gramacy & Haaland (2016) explain that the form of the correlation has very little to
do with it.

The reduction in variance

An exponentially decaying correlation should substantially devalue locations far
from .

·
x

(x; θ) − (x; θ) = (x) () () (x) + ⋯ + K(, x / ()vj vj+1 k⊤j Gj xj+1 vj xj+1 kj xj+1)2 vj xj+1

is quadratic in inverse distance: ,

but also quadratic in inverse inverse distance via

· K(, xxj+1)2

·

() ≡ () () where () = − ()/ ().Gj x
′ gj x

′ g⊤j x′ gj x
′ K−1

j kj x
′ vj x

′

68/111

http://www.tandfonline.com/doi/abs/10.1080/00401706.2015.1027067

A trade-off

So the criteria makes a trade-off:

Or in other words, the potential value of new design element depends not
just on its proximity to ,

minimize "distance" to

while maximizing "distance" (or minimizing inverse distance) to the existing design
.

· x

·
(x)Xj

(,)xj+1 yj+1

x

but also on how potentially different that information is to where we already have
(lots of) it, at .

·
(x)Xj

69/111

Global emulation

How do we extend this to predict on a big testing/predictive set?

One option is to serialize:

But why serialize when you can parallelize?

In laGP's C implementation, that's as simple as a "parallel-for" OpenMP pragma.

for loop over each .· x ∈ 

Each is obtained independently of the other 's,

so they can be constructed simultaneously.

· (x)Dn x

·

#ifdef _OPENMP

 #pragma omp parallel for private(i)

#endif

 for(i = 0; i < npred; i++) { ...

70/111

Big prediction

To illustrate, consider the following K-element predictive grid in ,

The aGP function iterates over the elements of XX,

∼ 10 [−2, 2]2

spaced to avoid the original K design.· N = 40

xx <- seq(-1.97, 1.95, by=0.04)

XX <- as.matrix(expand.grid(xx, xx))

YY <- f2d(XX)

 =

and its omp.threads argument controls the number of OpenMP threads.

Here we'll use 8 threads, even though my desktop is hyperthreaded (can do 16).

·

·

nth <- 8

P.alc <- aGP(X, Y, XX, omp.threads=nth, verb=0)

71/111

Visualizing the surface

persp(xx, xx, -matrix(P.alc$mean, ncol = length(xx)), phi = 45,

 theta = 45, xlab = "x1", ylab = "x2", zlab = "yhat(x)")

72/111

A challenging surface

Although the input dimension is low,

For a closer look, consider a slice through the predictive surface at .

The code below sets up the slice and its plot.

the input–output relationship is nuanced

and merits a dense design in the input space to fully map.

·

·

= 0.51x2

med <- 0.51

zs <- XX[, 2] == med

sv <- sqrt(P.alc$var[zs])

r <- range(c(-P.alc$mean[zs] + 2*sv, -P.alc$mean[zs] - 2*sv))

73/111

Visualizing the slice

plot(XX[zs,1], -P.alc$mean[zs], type="l", lwd=2, ylim=r, xlab="x1", ylab="y")

lines(XX[zs,1], -P.alc$mean[zs] + 2*sv, col=2, lty=2, lwd=2)

lines(XX[zs,1], -P.alc$mean[zs] - 2*sv, col=2, lty=2, lwd=2)

lines(XX[zs,1], -YY[zs], col=3, lwd=2, lty=3)

74/111

What do we see?

The error bars are very tight on the scale of the response,

What don't we see?

Accuracy, however, is not uniform.

and although no continuity is enforced

the resulting surface looks smooth to the eye.

·

(calculations at nearby locations are independent and potentially occur in
parallel)

-

·

Consider the discrepancy with the truth.·

diff <- P.alc$mean - YY

75/111

Visualizing discrepancy

Systematic bias in prediction, although extremely small.

plot(XX[zs,1], diff[zs], type="l", lwd=2, xlab = "x1", ylab = "y(x)-yhat(x)")

76/111

Lacking fully dynamic ability

Considering the density of the input design, one could easily guess that

Although an approximation, the local nature of modeling means that, from a global
perspective,

aGP goes beyond that by learning separate local to each

the model may not be flexible enough to characterize the fast-moving changes in
the input–output relationship.

·

the predictor is more flexible than the full- stationary Gaussian process
predictor.

Inferring separate independent predictors across the elements of a vast predictive
grid lends aGP a degree of nonstationarity.

· N

·

(x)θ ̂
n x ∈ 

by maximizing the local likelihoods.·

77/111

In fact, the lengthscales vary spatially, and relatively smoothly.

plot(XX[zs,1], P.alcmled[zs], type="l", lwd=2, xlab="x1", ylab="thetahat(x)")

df <- data.frame(y = log(P.alcmled), XX)

lo <- loess(y ~ ., data=df, span=0.01)

lines(XX[zs,1], exp(lo$fitted)[zs], col=2, lty=2, lwd=2)

legend("topleft", "smoothed", col=2, lty=2, lwd=2, bty="n")

78/111

Local isotropy, global nonstationarity

So even though the spatial field may be locally isotropic,

Nevertheless, even the extra degree of flexibility afforded by spatially varying is
not enough to entirely mitigate the small amount of bias we saw.

Several enhancements offer potential for improved performance.

and therefore assumes stationarity to a certain extent,

globally the characteristics are less constrained.

·

·

(x)θ ̂
n

Anisotropic/separable correlation structure (hold that thought a sec).

A two-stage scheme, re-designing , …

·

· (x) ∣ (x)Xn θ ̂
n

79/111

Two-stage local/global approximation

Here, sub-design search is based on the smoothed first-stage lengthscales.

Now consider comparing the predictions from the first iteration to those from the
second in terms of RMSE.

First, a harder example …

P.alc2 <- aGP(X, Y, XX, d=exp(lo$fitted), omp.threads=nth, verb=0)

rmse <- data.frame(alc = sqrt(mean((P.alc$mean - YY)^2)),

 alc2 = sqrt(mean((P.alc2$mean - YY)^2)))

rmse

alc alc2

1 0.0006434536 0.0003222866

Possibly not impressive (50%), but consistent across a large range of examples.

It doesn't completely solve the bias problem, but our sleeves have more tricks.

·

·

80/111

Back to the borehole

Check this out.

Much faster; much more accurate.

out1 <- aGP(x,y, xpred, d=list(max=20), omp.threads=nth, verb=0)

out2 <- aGP(x,y, xpred, d=list(start=out1mled,max=20), omp.threads=nth, verb=0)

print(times <- c(times, aGP=as.numeric(out1$time), aGP2=as.numeric(out2$time)))

sparse dense s999 aGP aGP2

3472.272 9830.340 528.662 4.657 4.472

s21 <- out1$var; s22 <- out2$var

print(scores <- c(scores, aGP=mean(-(out1$mean - ypred.0)^2/s21 - log(s21)),

 aGP2=mean(-(out1$mean - ypred.0)^2/s22 - log(s22))))

sparse dense s999 aGP aGP2

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215

81/111

Can we do even better?

And we did all that with an isotropic correlation function,

Similar compute times; quite a bit more accurate.

compared to Kauffman's separable CSK. Lets be fair …·

outs <- aGPsep(x, y, xpred, d=list(max=20), omp.threads=nth, verb=0)

print(times <- c(times, aGPs=as.numeric(outs$time)))

sparse dense s999 aGP aGP2 aGPs

3472.272 9830.340 528.662 4.657 4.472 4.819

s2 <- outs$var

print(scores <- c(scores, aGPs=mean(-(outs$mean - ypred.0)^2/s2 - log(s2))))

sparse dense s999 aGP aGP2 aGPs

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281

82/111

Global/local modeling

Surely something is lost on this local approach to GP approximation.

Kaufman et al. astutely observed that, especially when inducing sparsity in the
covariance structure,

That's not easily mapped to the laGP setup,

But the idea has merit, and we ought to be able to find an appropriate analog in the
laGP world.

it is important to "put something global back in".

They partition modeling between basis-expanded (non-stationary) linear trend
and locally (stationary) spatial residual.

·

·

where the local part is where the nonstationary effect comes in.·

83/111

Global lengthscale

Instead, consider not a partition between trend and residual,

Liu (2014) showed that a consistent estimator of the global (separable) lengthscale
can be estimated via (more manageably sized) random data subsets.

but rather between lengthscales.·

n <- 1000

d2 <- darg(list(mle=TRUE, max=100), x)

subs <- sample(1:nrow(x), n, replace=FALSE)

gpsi <- newGPsep(x[subs,], y[subs], rep(d2$start, dim), g=1/1000, dK=TRUE)

that <- mleGPsep(gpsi, param="d", tmin=d2$min, tmax=d2$max, ab=d2$ab, maxit=200)

psub <- predGPsep(gpsi, xpred, lite=TRUE)

deleteGPsep(gpsi)

84/111

https://rucore.libraries.rutgers.edu/rutgers-lib/44163/PDF/1/

Predicting with the subset

Observe that local subset GP prediction is pretty good on its own,

The estimated lengthscales, stored in that, are super handy.

because the response is super smooth and pretty stationary.

And 1000 is a sizable portion of 4000.

·

·

s2 <- psub$s2

print(scores <- c(scores, sub=mean(-(psub$mean - ypred.0)^2/s2 - log(s2))))

sparse dense s999 aGP aGP2 aGPs sub

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281 0.8140304

(Makes you wonder what was going on with CSK.)·

They can be used to "pre-scale" the inputs, so that afterwards the global
lengthscale will be 1.

·

85/111

Multi-resolution global/local GP

Don't forget to scale both training and testing inputs.

Now fit a local GP on the the scaled inputs, achieving a multiresolution effect; note
that is initialized to 1.

scale <- sqrt(that$d)

xs <- x; xpreds <- xpred

for(j in 1:ncol(xs)) {

 xs[,j] <- xs[,j] / scale[j]

 xpreds[,j] <- xpreds[,j] / scale[j]

}

θ

out3 <- aGP(xs, y, xpreds, d=list(start=1, max=20), omp.threads=nth, verb=0)

s2 <- out3$var

print(scores <- c(scores, aGPsm=mean(-(out3$mean - ypred.0)^2/s2 - log(s2))))

sparse dense s999 aGP aGP2 aGPs sub

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281 0.8140304

aGPsm

1.2003101

86/111

One more thing

The default nugget value in laGP and aGP is too large for most deterministic
computer experiments applications.

Holy smokes!

It is conservative so users don't get errors.

But we can dial it way down for this borehole example.

·

·

g <- 1/10000000

out4 <- aGP(xs, y, xpreds, d=list(start=1, max=20), g=g, omp.threads=nth, verb=0)

s2 <- out4$var

print(scores <- c(scores, aGPsm2=mean(-(out4$mean - ypred.0)^2/s2 - log(s2))))

sparse dense s999 aGP aGP2 aGPs sub

-1.5084444 -2.1318560 -1.6806796 -0.5698724 -0.5508215 0.2059281 0.8140304

aGPsm aGPsm2

1.2003101 5.5685688

87/111

Satellite drag

Hubble space telescope

Lets revisit the HST drag data we introduced a while back.

Recall that the goal was to be able to predict the drag coefficient (response), globally,

There are eight inputs, including HST's panel angle, and files with runs obtained on
LHS designs, separately for each chemical species (O, O , N, N , He, H).

to within 1% root-mean-squared percentage error (RMSPE).·

2 2

We'll focus on 1 million runs in Helium (He) here;·

one of the harder species.-

89/111

http://bobby.gramacy.com/teaching/dataworks_rsm/lect1.html#57

Coding the data

Read in the data …

… and (as usual) work with coded the inputs.

hstHe <- read.table("lanl/HST/hstHe.dat", header=TRUE)

nrow(hstHe)

[1] 1000000

m <- ncol(hstHe)-1

X <- hstHe[,1:m]

Y <- hstHe[,m+1]

maxX <- apply(X, 2, max)

minX <- apply(X, 2, min)

for(j in 1:ncol(X)) {

 X[,j] <- X[,j] - minX[j]

 X[,j] <- X[,j]/(maxX[j]-minX[j])

}

90/111

Cross-validation

Consider a 10-fold CV setup …

… but only "loop" through one fold here.

cv.folds <- function (n, folds = 10)

 split(sample(1:n), rep(1:folds, length = n))

f <- cv.folds(nrow(X), 10)

(The other folds proceed very similarly.)·

o <- f[[1]]

Xtest <- X[o,]; Xtrain <- X[-o,]

Ytest <- Y[o]; Ytrain <- Y[-o]

c(test=length(Ytest), train=length(Ytrain))

test train

100000 900000

91/111

Subset GP first

We'll need it for our multiresolution approach later anyway, so lets start with a
subset GP first.

Recall that this data is not deterministic.

It involves a Monte Carlo, and so has a small amount of noise.

·

·

da.orig <- darg(list(mle=TRUE), Xtrain, samp.size=10000)

sub <- sample(1:nrow(Xtrain), 1000, replace=FALSE)

gpsi <- newGPsep(Xtrain[sub,], Ytrain[sub], d=0.1, g=1/1000, dK=TRUE)

mle <- mleGPsep(gpsi, tmin=da.orig$min, tmax=10*da.orig$max, ab=da.orig$ab)

psub <- predGPsep(gpsi, Xtest, lite=TRUE)

deleteGPsep(gpsi)

rmspe <- c(sub=sqrt(mean((100*(psub$mean - Ytest)/Ytest)^2)))

rmspe

sub

10.35999

Not even close to our 1% target.·

92/111

Local GP

How about a separable local GP?

Notice that a () smaller nugget doesn't help here.

alcsep <- aGPsep(Xtrain, Ytrain, Xtest, d=da.orig, omp.threads=nth, verb=0)

print(rmspe <- c(rmspe, alc=sqrt(mean((100*(alcsep$mean - Ytest)/Ytest)^2))))

sub alc

10.35999 5.86535

Much better, but not quite to our 1% goal.·

10×

g <- 1/100000

alcsep2 <- aGPsep(Xtrain, Ytrain, Xtest, d=da.orig, g=g, omp.threads=nth, verb=0)

print(rmspe <- c(rmspe, alc2=sqrt(mean((100*(alcsep2$mean - Ytest)/Ytest)^2))))

sub alc alc2

10.359987 5.865350 5.948451

93/111

Multiresolution global/local GP

First pre-scale the inputs with the mle calculated on the subset above.

Construct a default prior appropriate for the scaled inputs.

Now the local fit on the scaled inputs. Woot!

for(j in 1:ncol(Xtrain)) {

 Xtrain[,j] <- Xtrain[,j] / sqrt(mle$d[j])

 Xtest[,j] <- Xtest[,j] / sqrt(mle$d[j])

}

da.s <- darg(list(mle=TRUE), Xtrain, samp.size=10000)

da.s$start <- 1; if(da.s$max < 2) da.s$max <- 2

alcsep.s <- aGPsep(Xtrain, Ytrain, Xtest, d=da.s, omp.threads=nth, verb=0)

print(rmspe <- c(rmspe, alcs=sqrt(mean((100*(alcsep.s$mean - Ytest)/Ytest)^2))))

sub alc alc2 alcs

10.3599865 5.8653502 5.9484513 0.7824052

94/111

Calibration

Local is ideal

Recall the modularized KOH calibration apparatus,

That is, we only need GP predictions at a relatively small set of locations,

Local GPs couldn't be more ideal for this setup.

which relied on computer model emulations at a small number field data sites,

paired with promising values of the calibration parameter .

· XF

· u

determined "on-line" as optimization over proceeds in search of ,

regardless of the (potentially massive) size of the computer experiment.

· u û

·

96/111

http://bobby.gramacy.com/teaching/dataworks_rsm/lect5.html

A drawback

One drawback, however, is that the discrete nature of independent local design
searches for ,

is going to ensure that our likelihood-based calibration objective is not a continuous
in

Gramacy, et al. (2015) suggest a derivative-free approach:

(,u)ŷ
M

xFj

for each index into ,· j = 1,… ,NF XF

u

which will thwart most local optimization methods.·

the MADS algorithm (Audet & Dennis, Jr., 2006)·

as implemented in NOMAD.-

97/111

http://projecteuclid.org/euclid.aoas/1446488734
http://www.caam.rice.edu/caam/trs/2004/TR04-02.pdf
https://www.gerad.ca/nomad/Project/Home.html

Initialization & implementation

As MADS is a local solver, NOMAD requires initialization.

Gramacy et al. suggest choosing starting -values from the best value(s) of the
objective found on a small space-filling design.

The laGP package contains several functions that automate that objective, e.g.,

u

fcalib is like the calib function we implemented for the full GP case;

discrep.est is like our bhat function;

special cases for unbiased calibration are also implemented.

·

·

·

98/111

A synthetic example

I'd love to show you the CRASH calibration,

Consider a computer model formulated below, and its implementation in R.

but there are too many nuances for a tutorial setting.

Instead, we'll look at a synthetic analog from the same paper.

·

·

(x,u) = (1 −) .yM e
−

1

2x2

1000 + 1900 + 2092 + 60u1x
3
1 x2

1 x1

100 + 500 + 4 + 20u2x
3
1 x2

1 x1

M <- function(x,u)

 {

 x <- as.matrix(x)

 u <- as.matrix(u)

 out <- (1-exp(-1/(2*x[,2])))

 out <- out * (1000*u[,1]*x[,1]^3+1900*x[,1]^2+2092*x[,1]+60)

 out <- out / (100*u[,2]*x[,1]^3+500*x[,1]^2+4*x[,1]+20)

 return(out)

}

99/111

http://bobby.gramacy.com/teaching/dataworks_rsm/lect1.html#48
http://projecteuclid.org/euclid.aoas/1446488734

Bias and field data

The field data is generated as

using .

In R:

(x)yF

 and ε

= (x,) + b(x) + ε, where b(x) =yM u∗
10 + 4x2

1 x2
2

50 + 10x1x2

 (0,),∼
iid

0.52

= (0.2, 0.1)u∗

bias <- function(x)

{

 x<-as.matrix(x)

 out<- 2*(10*x[,1]^2+4*x[,2]^2) / (50*x[,1]*x[,2]+10)

 return(out)

}

100/111

Field data

Conider field data runs comprised of two replicates of a 50-sized 2d LHS of
-values.

= 100NF

x

Zu is the intermediate computer model evaluation at .· u∗

ny <- 50

X <- randomLHS(ny, 2)

u <- c(0.2, 0.1)

Zu <- M(X, matrix(u, nrow=1))

sd <- 0.5

reps <- 2

Y <- rep(Zu, reps) + rep(bias(X), reps) + rnorm(reps*length(Zu), sd=sd)

length(Y)

[1] 100

101/111

Computer model runs

Augment the field data with computer model runs comprised of= 10500NM

a 4d LHS of size 10000 of -values,

and runs at the 50 field data locations, paired with 500 2d-LHSs of -values.

· (x,u)

· u

nz <- 10000

XU <- randomLHS(nz, 4)

XU2 <- matrix(NA, nrow = 10*ny, ncol=4)

for(i in 1:10) {

 I <- ((i-1)*ny + 1):(ny*i)

 XU2[I, 1:2] <- X

}

XU2[,3:4] <- randomLHS(10*ny, 2)

XU <- rbind(XU, XU2)

Z <- M(XU[,1:2], XU[,3:4])

length(Z)

[1] 10500

The variable Z contains our values.· yM

102/111

The setup

The following block of code sets default priors and specifies details of the model(s) to
be estimated.

The prior is completed with a (log) prior density on the calibration parameter, ,
chosen to discourage settings on the "edges" of the space.

bias.est <- TRUE ## change to FALSE for unbiased version

methods <- rep("alc", 2) ## two passes of laGP design/MLE

da <- d <- darg(NULL, XU)

g <- garg(list(mle = TRUE), Y)

u

beta.prior <- function(u, a=2, b=2, log=TRUE)

{

 if(length(a) == 1) a <- rep(a, length(u))

 else if(length(a) != length(u)) stop("length(a) must be 1 or length(u)")

 if(length(b) == 1) b <- rep(b, length(u))

 else if(length(b) != length(u)) stop("length(b) must be 1 or length(u)")

 if(log) return(sum(dbeta(u, a, b, log = TRUE)))

 else return(prod(dbeta(u, a, b, log = FALSE)))

}

103/111

Initialization search

Now we are ready to evaluate the objective on a "grid" to search for a starting value
for NOMAD.

Here is the "grid", via maximin LHS away from the edges.

Here are the objective evaluations on that "grid".

initsize <- 10*ncol(X)

uinit <- maximinLHS(initsize, 2)

uinit <- 0.9*uinit + 0.05

llinit <- rep(NA, nrow(uinit))

for(i in 1:nrow(uinit)) {

 llinit[i] <- fcalib(uinit[i,], XU, Z, X, Y, da, d, g, beta.prior,

 methods, NULL, bias.est, nth, verb=0)

}

104/111

Now NOMAD

An R interface to NOMAD is provided by snomadr in the crs package,

The code on the following slide invokes snomadr on the best input(s) found on the
"grid",

which allows the passing of a number of NOMAD options.

The options below have been found to work well in a number of laGP-based
calibration examples.

·

·

library(crs)

imesh <- 0.1

opts <- list("MAX_BB_EVAL"=1000, "INITIAL_MESH_SIZE"=imesh,

 "MIN_POLL_SIZE"="r0.001", "DISPLAY_DEGREE"=0)

looping over them until a minimum number of NOMAD iterations has been reached.·

105/111

Usually one pass is sufficient to meet the iteration threshold.

Then, extract information for visualizing/interpolating a posterior surface over .

its <- 0; i <- 1; out <- NULL

o <- order(llinit)

while(its < 10) {

 outi <- snomadr(fcalib, 2, c(0,0), 0, x0=uinit[o[i],], lb=c(0,0), ub=c(1,1),

 opts=opts, XU=XU, Z=Z, X=X, Y=Y, da=da, d=d,g=g, methods=methods, M=NULL, verb=0,

 bias=bias.est, omp.threads=nth, uprior=beta.prior, save.global=.GlobalEnv)

 its <- its + outi$iterations

 if(is.null(out) || outi$objective < out$objective) out <- outi

 i <- i + 1

}

u

Xp <- rbind(uinit, as.matrix(fcalib.save[,1:2]))

Zp <- c(-llinit, fcalib.save[,3])

wi <- which(!is.finite(Zp))

if(length(wi) > 0) { Xp <- Xp[-wi,]

Zp <- Zp[-wi]}

library(akima)

surf <- interp(Xp[,1], Xp[,2], Zp, duplicate = "mean")

u.hat <- out$solution

106/111

image(surf, xlab="u1", ylab="u2", col=heat.colors(128), xlim=c(0,1), ylim=c(0,1))

points(uinit); points(fcalib.save[,1:2], col = 3, pch = 18)

points(u.hat[1], u.hat[2], col = 4, pch = 18)

abline(v=u[1], lty = 2); abline(h=u[2], lty = 2)

107/111

Did we do good?

Observe that the true value is far from the that we found.

Since there are far fewer evaluations made near ,

u∗ û

Indeed, the surface is fairly peaked around around ,

giving very little support to the true value.

· û

·

u∗

it is worth checking if the solver missed an area of high likelihood.·

Xu <- cbind(X, matrix(rep(u, ny), ncol=2, byrow=TRUE))

Mhat.u <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)

cmle.u <- discrep.est(X, Y, Mhat.u$mean, d, g, bias.est, FALSE)

cmle.u$ll <- cmle.u$ll + beta.prior(u)

c(u.hat= -out$objective, u=cmle.u$ll)

u.hat u

-130.5904 -133.6634

Nope, that's not it.·

108/111

Out-of-sample exercise

Lets see which (or) leads to better prediction out-of-sample.

First, prediction with the true .

û u∗

nny <- 1000

XX <- randomLHS(nny, 2)

ZZu <- M(XX, matrix(u, nrow=1))

YYtrue <- ZZu + bias(XX)

u∗

XXu <- cbind(XX, matrix(rep(u, nny), ncol=2, byrow=TRUE))

Mhat.oos.u <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2, omp.threads=nth, verb=0)

YYm.pred.u <- predGP(cmle.u$gp, XX)

YY.pred.u <- YYm.pred.u$mean + Mhat.oos.u$mean

rmse.u <- sqrt(mean((YY.pred.u - YYtrue)^2))

deleteGP(cmle.u$gp)

109/111

Estimated version

For the estimated we need to backtrack through what we did earlier,

Here is a sanity check that this gives the same objective evaluation as what came out
of snomadr.

û

and save the intermediate steps to re-build the composite for prediction.·

Xu <- cbind(X, matrix(rep(u.hat, ny), ncol=2, byrow=TRUE))

Mhat <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)

cmle <- discrep.est(X, Y, Mhat$mean, d, g, bias.est, FALSE)

cmle$ll <- cmle$ll + beta.prior(u.hat)

 print(c(cmle$ll, -out$objective))

[1] -130.5904 -130.5904

110/111

Predicting with

Now we can repeat what we did with the true value with our estimated one .

How do our RMSEs compare?

û

u∗ û

XXu <- cbind(XX, matrix(rep(u.hat, nny), ncol = 2, byrow = TRUE))

Mhat.oos <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2, omp.threads=nth, verb=0)

YYm.pred <- predGP(cmle$gp, XX)

YY.pred <- YYm.pred$mean + Mhat.oos$mean

rmse <- sqrt(mean((YY.pred - YYtrue)^2))

c(u.hat=rmse, u=rmse.u)

u.hat u

0.1451248 0.1821815

Indeed, our estimated version leads to better predictions.

Clearly there is an identifiability issue in this supremely flexible calibration
apparatus; but it does a good job of predicting.

· û

·

111/111

