
Calibration
RSMs and Computer Experiments
Robert B. Gramacy (rbg@vt.edu (mailto:rbg@vt.edu) : http://bobby.gramacy.com
(http://bobby.gramacy.com))
Department of Statistics, Virginia Tech

Goals
Many scientific phenomena are studied via mathematical (i.e., computer) models and field experiments, simultaneously.

Real experiments are expensive, and for this and other reasons (ethics, lack of materials/infrastructure, etc.), limited
configurations can be entertained.

Computer simulations are lots cheaper, but usually not so cheap as to allow infinite exploration of the configuration space(s).

Plus the simulations usually idealize reality (i.e., they are biased)
and can involve more “knobs”, or tuning parameters, than can be controlled (or even known) in the field.

So the goal here is to build an apparatus that can harmonize the two data types

for the purpose of learning about/predicting the “real” process,
or possibly optimizing some aspect of it.

Calibration

Notation
There are three processes involved:

1. the real process that dictates the dynamics of the phenomena being studied;
2. the field where a physical experiment observing takes place;
3. and a computer model implementing/solving a mathematical model that idealizes the real system.

Let denote a field observation under conditions , and denote the real output under condition .

 and are assumed to be related as follows.

We may have a small number of observations in the field at different locations, often under replication.

Computer model
Let denote the (deterministic) output of a computer model run under conditions and tuning or calibration parameters
.

These are any aspect of the computer model which cannot be controlled in and are unknown in .
They may be an artificial aspect of a computer implementation, like a mesh size.
Or they might have real physical meaning (like the acceleration due to gravity) which is not known (precisely
enough) to be recorded in the field.

Some people make a big deal about the difference between the two, calling the former a tuning parameter, and the latter a
calibration parameter.

We won’t generally make such a distinction.

R

F R

M

(x)yF x (x)yR x

R F

(x) = (x) + ε, where ε  (0,)yF yR ∼iid σ
2
ε

NF x

(x, u)yM x u

u F R

mailto:rbg@vt.edu
http://bobby.gramacy.com/

Kennedy and O’Hagan
Kennedy and O’Hagan (2001) (http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00294/abstract) proposed a framework for
coupling and .

KOH represent a real process as

the computer model output at the best setting of the calibration parameters, ,
plus a discrepancy term acknowledging that there can be systematic disagreement between the model and the truth.

The discrepancy is , for “bias”, even though the actual bias (which is a property of not) would work out to

Unknowns
The unknowns are , , and the discrepancy .

KOH propose a GP prior for .
Sometimes prior information is available, , otherwise uniform.

If the computer model is fast, then inference is straightforward via residuals between computer model outputs and field
observations

which can be computed at will for any (Higdon, et al., 2004)
(http://epubs.siam.org/doi/abs/10.1137/S1064827503426693).

If is slow or otherwise indirectly available,

an emulator can be fit to space-filling simulations of .
KOH recommend a GP prior for , as usual.

Joint inference
Rather than performing inference for separately, using just the runs, as is typical of a computer experiment in isolation,

they recommend joint inference with , , and
using both field observations and runs of the computer model.

From a Bayesian perspective this is the coherent thing to do:

infer all unknowns jointly given all data.

But this approach is fraught with computational challenges.

Liu, et al., (2009) (https://projecteuclid.org/download/pdf_1/euclid.ba/1340370392), proposed going “back to basics” by fitting

 first,

and gave it a fancy name: modularization.
The approach presented here could he called “modularize then maximize”.

Acceleration due to gravity
Ok, enough of the high-level stuff, lets see how this works …

M F

R

u∗

(x)yR

so that (x)yF
= (x,) + b(x),yM u∗

= (x,) + b(x) + εyM u∗

b(x) M R

−b(x) = (x,) − (x).yM u∗ yR

u∗ σ
2
ε

b(⋅)

b(⋅) + σ
ε

p(u)

M NF

() − (, u)yF XF yM XF

u

M

(⋅, ⋅)y ̂ M NM (x, u)yM

yM

yM NM

b(⋅) u∗ σ
2
ε

(⋅, ⋅)y ̂ M

http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00294/abstract
http://epubs.siam.org/doi/abs/10.1137/S1064827503426693
https://projecteuclid.org/download/pdf_1/euclid.ba/1340370392

We wish to predict the amount of time it takes for a wiffle ball to hit the ground when dropped at a certain height.

So we perform a physical experiment:

Drop a ball from different heights and measure how long it takes to hit the ground.
We have data on times from three replicates of 21 heights.
These comprise the field data with .

(Many thanks to Derek Bingham and Jason Loeppky for this example.)

Visualizing the field data
ball <- read.csv("ball.csv")

plot(ball, xlab="height", ylab="time")

Staight-fit the field data
One option is, of course, to fit the field data with a GP, be done and go home.

library(laGP)

field.fit <- newGP(as.matrix(ball$height), ball$time, d=0.1,

 g=var(ball$time)/10, dK=TRUE)

mle <- jmleGP(field.fit, drange=c(eps, 10), grange=c(eps, var(ball$time)),

 dab=c(3/2, 8))

Now make a prediction using this on a grid,

constructing some coded height inputs for later.

hr <- range(ball$height)

hs <- seq(0, 1, length=100)

heights <- hs*diff(hr)+hr[1]

p <- predGP(field.fit, as.matrix(heights), lite=TRUE)

yF = 63NF

y ̂ F

The result is too wigly, and involves high uncertainty in the gap.

plot(ball, xlab="height", ylab="time"); lines(heights, p$mean)

lines(heights, qnorm(0.05, p$mean, sqrt(p$s2)), lty=2)

lines(heights, qnorm(0.95, p$mean, sqrt(p$s2)), lty=2)

lines(heights, 10*sqrt(p$s2)-0.6, col=2, lty=3, lwd=2)

legend("topleft", c("Fhat summary", "Fhat sd"), lty=c(1,3), col=c(1,2))

Mathematical model
Perhaps by coupling with “known physics” we can mitigate that effect.

What does “Physics 101” say?

The time to drop a distance for gravity is given by

Somewhat realistically, we don’t know the value of for the location where the balls were dropped.

So gravity is our calibration parameter.
And of course there are other unknowns, like the air resistance on the ball – which will interact differentially with
height/terminal velocity.

(I.e., the model is biased/there is potential to improve upon it.)

Computer model
Consider the following computer implementation of our mathematical model using coded inputs in

for height (), taking the range from the observed field data,
and gravity (), restricting to , equivalently defining a (uniform) prior.

timedrop <- function(x, u, hr, gr)

 {

 g <- diff(gr)*u + gr[1]

 h <- diff(hr)*x + hr[1]

 return(sqrt(2*h/g))

 }

t h g

t = .2h/g‾ ‾‾‾√

g

[0, 1]2

x

u g ∈ [6, 14]

Computer model design
Now lets fit the computer model on a maximin LHS in 2d of size 21.

Comparable to the field data size.

library(lhs)

XU <- maximinLHS(21, 2) ## we're going to want to randomize over this

gr <- c(6, 14)

ym <- timedrop(XU[,1], XU[,2], hr, gr)

Now lets train a GP on those realizations.

ymhat <- newGPsep(XU, ym, d=0.1, g=1e-7, dK=TRUE)

mle <- mleGPsep(ymhat, tmax=10)

Lets visualize our computer model output over a range of heights, for particular choices of .

Some better than others, but possibly all biased.

us <- seq(0, 1, length=6)

XX <- expand.grid(hs, us)

pmhat <- predGPsep(ymhat, XX, lite=TRUE)

plot(ball); matlines(heights, matrix(pmhat$m, ncol=length(us)))

Modularized calibration
The modularized apparatus calibrates via the discrepancy between emulated computer model output and field data runs.

g

u

bhat.fit <- function(X, Y, Ym, da, ga, clean=TRUE)

 {

 bhat <- newGPsep(X, Y-Ym, d=da$start, g=ga$start, dK=TRUE)

 if(ga$mle) cmle <- jmleGPsep(bhat, drange=c(damin, damax),

 grange=c(gamin, gamax), dab=da$ab, gab=ga$ab)

 else cmle <- mleGPsep(bhat, tmin=da$min, tmax=da$max, ab=da$ab)

 cmle$nll <- - llikGPsep(bhat, dab=da$ab, gab=ga$ab)

 if(clean) deleteGPsep(bhat)

 else cmle$gp <- bhat

 return(cmle)

 }

 log likelihood measures goodness-of-fit.

Here, bhat.fit combines fits.

An objective to optimize
Now we need to create an objective that we can optimize, over coded gravity -values, to find the best setting estimating the
unknown .

calib <- function(u, X, Y, ymhat, da, ga, clean=TRUE)

 {

 Xu <- cbind(X, matrix(rep(u, nrow(X)), ncol=length(u), byrow=TRUE))

 Ym <- predGPsep(ymhat, Xu, lite=TRUE)$mean

 cmle <- bhat.fit(X, Y, Ym, da, ga, clean=clean)

 return(cmle)

 }

Since its in 1d, lets evaluate it on a -grid.

u <- seq(0, 1, length=100)

unll <- rep(NA, length(u))

X <- as.matrix((ball$height - hr[1])/diff(hr))

da <- darg(list(mle=TRUE), expand.grid(X[,1], u))

ga <- garg(list(mle=TRUE), ball$time)

for(i in 1:length(u)) unll[i] <- calib(u[i], X, ball$time, ymhat, da, ga)$nll

Visualizing the likelihood surface for .

plot(u, unll, type="l", xlab="u", ylab="negative log likelihood")

obj <- function(x, X, Y, ymhat, da, ga) calib(x, X, Y, ymhat, da, ga)$nll

soln <- optimize(obj, lower=0, upper=1, X=X, Y=ball$time,

 ymhat=ymhat, da=da, ga=ga)

uhat <- soln$minimum; abline(v=uhat, col=2, lty=2)

b ̂

+b ̂
σ ̂ 2
ε

u u ̂

u∗

u

u

Getting
Lets run back through some of the calculations to get out the estimated bias (gpi reference) with the value we found.

Provide clean=FALSE to bhat :

bhat <- calib(uhat, X, ball$time, ymhat, da, ga, clean=FALSE)

Then we may obtain predictions over our heights grid, with full covariance for later.

p <- predGPsep(bhat$gp, as.matrix(hs))

mb <- p$mean

q1b <- qnorm(0.95, mb, sqrt(diag(p$Sigma)))

q2b <- qnorm(0.05, mb, sqrt(diag(p$Sigma)))

qr <- range(c(q1b, q2b))

Visualizing the discrepancy
The bias straddles zero.

plot(heights, mb, type="l", xlab="height", ylab="time bias", ylim=qr)

lines(heights, q1b, col=2, lty=2); lines(heights, q2b, col=2, lt=2)

b̂

u ̂

Adjusting
First, obtain the prediction from the emulator, with full covariance structure.

pmhat <- predGPsep(ymhat, cbind(hs, uhat))

Now, for full propagation of uncertainty, lets combine sample paths from both emulator and bias processes.

library(mvtnorm)

Ym <- rmvnorm(1000, pmhat$mean, pmhat$Sigma)

Yb <- rmvnorm(1000, pmea, pSigma)

Yc <- Ym + Yb

Extract quantiles from the combined sample paths.

q1c <- apply(Yc, 2, quantile, prob=0.05)

q2c <- apply(Yc, 2, quantile, prob=0.95)

Craziness!

plot(ball); lines(heights, pmhat$mean)

lines(heights, pmhat$mean + mb, col=3, lwd=2)

lines(heights, q1c, col=3, lty=2)

lines(heights, q2c, col=3, lty=2)

legend("topleft", c("yMhat", "yMhat+bhat"), col=c(1,3), lty=1, lwd=1:2)

ŷ M

What’s happening here?
The calibration apparatus doesn’t care about minimizing bias;

rather maximizing the likelihood of the residual process

via trained at those values.

When it chooses the hyperparameters and , via large likelihood,

it may actually be better to have a larger amplitude bias,

preferring that push away from rather than toward it.

Interpreting calibration parameters
In particular, our estimate of the gravitational constant, via

ghat <- uhat*diff(gr)+gr[1]

ghat

[1] 6.454133

loses some of its physical interpretation (and its way too small).

We have to be satisfied with as a “tuning” parameter, challenging interpretation.

If minimizing bias is really what we want, then some adjustments are needed. See

Plumlee (2016) (http://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1211016): forcing the to be orthogonal to

Wu & Tuo (2015) (http://projecteuclid.org/euclid.aos/1444222077): using least squares for rather than a full GP.

Both sacrifice prediction for enhanced interpretation.

A supremely flexible model

= − |uY ̂ B|u

NF
Y F
NF

Y ̂ M
NF

(⋅)b ̂

b ̂ u ̂

u ̂ (⋅,)y ̂ M u ̂ (⋅)yR

g ̂ u ̂

g

b

yM

b

http://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1211016
http://projecteuclid.org/euclid.aos/1444222077

The thing to keep in mind is that the calibration apparatus couples two highly flexible nonparametric GP models, linked by a
tuning parameter .

It will find a way to use that flexibility to its advantage,
especially when coping with a data-generating mechanism which may not be faithful to the GP modeling assumptions
(and when is it ever?).

Authors looking for more flexible GP models have deliberately deployed similar tactics outside the calibration setting.

Ba and Joseph (2012) (https://projecteuclid.org/euclid.aoas/1356629062) coupled two GPs to deal with
heteroskedasticity.
Bornn, Shaddick and Zidek (2012) (http://www.tandfonline.com/doi/abs/10.1080/01621459.2011.646919) introduced a
latent input dimension (e.g., a) to gain nonstationary flexibility.

Surprisingly, the KOH framework nests these two options, yet precedes them by more than a decade.

Removing the bias
What happens when we remove some of that flexibility in the calibration context?

I.e., forcing a zero bias and estimating zero-mean noise .

Here is how you can accomplish that with laGP .

se2.fit <- function(X, Y, Ym, clean=TRUE)

 {

 gp <- newGP(X, Y-Ym, d = 0, g = 0)

 cmle <- list(nll=-llikGP(gp))

 if(clean) deleteGP(gp)

 else cmle$gp <- gp

 return(cmle)

 }

To replace our bhat.fit .

New no-bias calibration function
We need a slightly adjusted calibration objective.

calib.nobias <- function(u, X, Y, ymhat, clean=TRUE)

 {

 Xu <- cbind(X, matrix(rep(u, nrow(X)), ncol=length(u), byrow=TRUE))

 Ym <- predGPsep(ymhat, Xu, lite=TRUE)$mean

 cmle <- se2.fit(X, Y, Ym, clean=clean)

 return(cmle)

 }

Again, since its in 1d, lets evaluate it on a -grid.

unll.se2 <- rep(NA, length(u))

for(i in 1:length(u))

 unll.se2[i] <- calib.nobias(u[i], X, ball$time, ymhat)$nll

Unbiased
plot(u, unll.se2, type="l", xlab="u", ylab="negative log likelihood")

abline(v=uhat, col=2, lty=2); legend("top", "uhat-biased", col=2, lty=2, bty="n")

u

u

σ
2
ε

u

û

https://projecteuclid.org/euclid.aoas/1356629062
http://www.tandfonline.com/doi/abs/10.1080/01621459.2011.646919

Much bigger than before.

Our unbiased gravity estimate
obj.nobias <- function(x, X, Y, ymhat) calib.nobias(x, X, Y, ymhat)$nll

soln <- optimize(obj.nobias, lower=0, upper=1, X=X, Y=ball$time, ymhat=ymhat)

uhat.nobias <- soln$minimum

ghat.nobias <- uhat.nobias*diff(gr)+gr[1]

ghat.nobias

[1] 8.158814

Still too small, but perhaps it is compensating for some air resistance.

How do our predicted times look?

cmle.nobias <- calib.nobias(uhat.nobias, X, ball$time, ymhat, clean=FALSE)

se2.p <- predGP(cmle.nobias$gp, as.matrix(hs), lite=TRUE)

pmhat.nobias <- predGPsep(ymhat, cbind(hs, uhat.nobias), lite=TRUE)

q1nob <- qnorm(0.05, pmhat.nobias$mean, sqrt(pmhat.nobias$s2+se2.p$s2))

q2nob <- qnorm(0.95, pmhat.nobias$mean, sqrt(pmhat.nobias$s2+se2.p$s2))

Cleaner, but better? Maybe it under-predicts for higher balls?

plot(ball); lines(heights, pmhat.nobias$mean, col=4, lwd=2)

lines(heights, q1nob, col=4, lty=2)

lines(heights, q2nob, col=4, lty=2)

legend("topleft", c("yMhat+se2"), col=4, lty=1, lwd=2)

Cross-validation
When we have two models and we don’t know which is best,

set up a prediction exercise.

In what follows we collect some of the code above into stand-alone functions that can be called in a leave-one-out fashion,

Note that throughout we are conditioning on the computer model fit to the full LHS sample.

The CV will be over the field data only.
At the same time we will be able to get a jackknife sampling distribution for ,

a precursor to the bootstrap.

Bias-calibrated prediction
Cutting-and-pasting from earlier code.

calib.pred <- function(XX, X, Y, ymhat, da, ga, T=1000)

 {

 g <- unll <- u <- seq(0,1, length(100))

 for(i in 1:length(u)) {

 cmle <- calib(u[i], X, Y, ymhat, da, ga)

 unll[i] <- cmle$nll; g[i] <- cmle$g

 }

 ga$mle <- FALSE; ga$start <- g[which.min(unll)]

 soln <- optimize(obj, lower=0, upper=1, X=X, Y=Y, ymhat=ymhat, da=da, ga=ga)

 bhat <- calib(soln$minimum, X, Y, ymhat, da, ga, clean=FALSE)

 p <- predGPsep(bhat$gp, XX)

 pmhat <- predGPsep(ymhat, cbind(XX, soln$minimum))

 Yc <- rmvnorm(T, pmhat$mean, pmhat$Sigma) + rmvnorm(T, p$mean, p$Sigma)

 mc <- pmhat$mean + p$mean; s2c <- apply(Yc, 2, var)

 q1c <- apply(Yc, 2, quantile, prob=0.05)

 q2c <- apply(Yc, 2, quantile, prob=0.95)

 deleteGPsep(bhat$gp)

 return(list(mean=mc, s2=s2c, q1=q1c, q2=q2c, uhat=soln$minimum))

 }

u ̂

Leave-one-out (biased)
ga <- garg(list(mle=TRUE), ball$time)

uhat <- q1 <- q2 <- m <- s2 <- rep(NA, nrow(X))

for(i in 1:nrow(X)) {

 cp <- calib.pred(X[i,,drop=FALSE], X[-i,,drop=FALSE], ball$time[-i],

 ymhat, da, ga)

 m[i] <- cp$mean; s2[i] <- cp$s2

 q1[i] <- cp$q1; q2[i] <- cp$q2

 uhat[i] <- cp$uhat

}

What values did we get?

summary(uhat)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01783 0.05225 0.05597 0.05762 0.06238 0.12770

Some are really small.

How did we do?
plot(ball)

points(ball$height, m, col=2, pch=20)

segments(ball$height, q1, ball$height, q2, col=2)

Leave-one-out (un-biased)

u ̂

calib.nobias.pred <- function(XX, X, Y, ymhat)

 {

 soln <- optimize(obj.nobias, lower=0, upper=1, X=X, Y=Y, ymhat=ymhat)

 bhat <- calib.nobias(soln$minimum, X, Y, ymhat, clean=FALSE)

 p <- predGP(bhat$gp, XX, lite=TRUE)

 pmhat <- predGPsep(ymhat, cbind(XX, soln$minimum), lite=TRUE)

 mc <- pmhat$mean + p$mean; s2c <- pmhat$s2 + p$s2

 q1c <- qnorm(0.05, mc, sqrt(s2c)); q2c <- qnorm(0.95, mc, sqrt(s2c))

 deleteGP(bhat$gp)

 return(list(mean=mc, s2=s2c, q1=q1c, q2=q2c, uhat=soln$minimum))

 }

Again, cutting and pasting above. Then leave-one-out prediction below.

q1nb <- q2nb <- mnb <- s2nb <- rep(NA, nrow(X))

for(i in 1:nrow(X)) {

 cp <- calib.nobias.pred(X[i,,drop=FALSE], X[-i,,drop=FALSE],

 ball$time[-i], ymhat)

 mnb[i] <- cp$mean; s2nb[i] <- cp$s2; q1nb[i] <- cp$q1; q2nb[i] <- cp$q2

}

Doesn’t look as good
plot(ball)

points(ball$height, mnb, col=3, pch=20)

segments(ball$height, q1nb, ball$height, q2nb, col=3)

Calculating scores
Comparison by proper scoring (Gneiting & Raftery, 2007;
(https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf) Eq (27)):

https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

b <- mean(- (ball$time - m)^2/s2 - log(s2))

nb <- mean(- (ball$time - mnb)^2/s2nb - log(s2nb))

scores <- c(biased=b, unbiased=nb)

scores

biased unbiased

4.216665 3.977722

Higher is better: biased wins!

Don’t forget that the computer experiment design was random (LHS),

So these results have a distribution which we can explore via Monte Carlo.

