
Calibration
RSMs and Computer Experiments
Robert B. Gramacy (rbg@vt.edu (mailto:rbg@vt.edu) : http://bobby.gramacy.com
(http://bobby.gramacy.com))  
Department of Statistics, Virginia Tech

Goals
Many scientific phenomena are studied via mathematical (i.e., computer) models and field experiments, simultaneously.

Real experiments are expensive, and for this and other reasons (ethics, lack of materials/infrastructure, etc.), limited
configurations can be entertained.

Computer simulations are lots cheaper, but usually not so cheap as to allow infinite exploration of the configuration space(s).

Plus the simulations usually idealize reality (i.e., they are biased)
and can involve more “knobs”, or tuning parameters, than can be controlled (or even known) in the field.

So the goal here is to build an apparatus that can harmonize the two data types

for the purpose of learning about/predicting the “real” process,
or possibly optimizing some aspect of it.

Calibration

Notation
There are three processes involved:

1. the real process  that dictates the dynamics of the phenomena being studied;
2. the field  where a physical experiment observing  takes place;
3. and a computer model  implementing/solving a mathematical model that idealizes the real system.

Let  denote a field observation under conditions , and  denote the real output under condition .

 and  are assumed to be related as follows.

We may have a small number of  observations in the field at different  locations, often under replication.

Computer model
Let  denote the (deterministic) output of a computer model run under conditions  and tuning or calibration parameters 
.

These  are any aspect of the computer model which cannot be controlled in  and are unknown in .
They may be an artificial aspect of a computer implementation, like a mesh size.
Or they might have real physical meaning (like the acceleration due to gravity) which is not known (precisely
enough) to be recorded in the field.

Some people make a big deal about the difference between the two, calling the former a tuning parameter, and the latter a
calibration parameter.

We won’t generally make such a distinction.
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Kennedy and O’Hagan
Kennedy and O’Hagan (2001) (http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00294/abstract) proposed a framework for
coupling  and .

KOH represent a real process  as

the computer model output at the best setting of the calibration parameters, ,
plus a discrepancy term acknowledging that there can be systematic disagreement between the model and the truth.

The discrepancy is , for “bias”, even though the actual bias (which is a property of  not ) would work out to

Unknowns
The unknowns are , , and the discrepancy .

KOH propose a GP prior for .
Sometimes prior information is available, , otherwise uniform.

If the computer model  is fast, then inference is straightforward via  residuals between computer model outputs and field
observations

which can be computed at will for any  (Higdon, et al., 2004)
(http://epubs.siam.org/doi/abs/10.1137/S1064827503426693).

If  is slow or otherwise indirectly available,

an emulator  can be fit to  space-filling simulations of .
KOH recommend a GP prior for , as usual.

Joint inference
Rather than performing inference for  separately, using just the  runs, as is typical of a computer experiment in isolation,

they recommend joint inference with , , and 
using both field observations and runs of the computer model.

From a Bayesian perspective this is the coherent thing to do:

infer all unknowns jointly given all data.

But this approach is fraught with computational challenges.

Liu, et al., (2009) (https://projecteuclid.org/download/pdf_1/euclid.ba/1340370392), proposed going “back to basics” by fitting 

 first,

and gave it a fancy name: modularization.
The approach presented here could he called “modularize then maximize”.

Acceleration due to gravity
Ok, enough of the high-level stuff, lets see how this works …
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We wish to predict the amount of time it takes for a wiffle ball to hit the ground when dropped at a certain height.

So we perform a physical experiment:

Drop a ball from different heights and measure how long it takes to hit the ground.
We have data on times from three replicates of 21 heights.
These comprise the field data  with .

(Many thanks to Derek Bingham and Jason Loeppky for this example.)

Visualizing the field data
ball <- read.csv("ball.csv") 

plot(ball, xlab="height", ylab="time")

Staight-fit the field data
One option is, of course, to fit the field data with a GP, be done and go home.

library(laGP) 

field.fit <- newGP(as.matrix(ball$height), ball$time, d=0.1,  

    g=var(ball$time)/10, dK=TRUE) 

mle <- jmleGP(field.fit, drange=c(eps, 10), grange=c(eps, var(ball$time)),  

    dab=c(3/2, 8))

Now make a prediction using this  on a grid,

constructing some coded height inputs for later.

hr <- range(ball$height) 

hs <- seq(0, 1, length=100) 

heights <- hs*diff(hr)+hr[1] 

p <- predGP(field.fit, as.matrix(heights), lite=TRUE)

yF = 63NF

y ̂ F



The result is too wigly, and involves high uncertainty in the gap.

plot(ball, xlab="height", ylab="time"); lines(heights, p$mean) 

lines(heights, qnorm(0.05, p$mean, sqrt(p$s2)), lty=2) 

lines(heights, qnorm(0.95, p$mean, sqrt(p$s2)), lty=2) 

lines(heights, 10*sqrt(p$s2)-0.6, col=2, lty=3, lwd=2) 

legend("topleft", c("Fhat summary", "Fhat sd"), lty=c(1,3), col=c(1,2))

Mathematical model
Perhaps by coupling with “known physics” we can mitigate that effect.

What does “Physics 101” say?

The time  to drop a distance  for gravity  is given by

Somewhat realistically, we don’t know the value of  for the location where the balls were dropped.

So gravity is our calibration parameter.
And of course there are other unknowns, like the air resistance on the ball – which will interact differentially with
height/terminal velocity.

(I.e., the model is biased/there is potential to improve upon it.)

Computer model
Consider the following computer implementation of our mathematical model using coded inputs in 

for height ( ), taking the range from the observed field data,
and gravity ( ), restricting to , equivalently defining a (uniform) prior.

timedrop <- function(x, u, hr, gr)  

 { 

    g <- diff(gr)*u + gr[1] 

    h <- diff(hr)*x + hr[1] 

    return(sqrt(2*h/g)) 

 }
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Computer model design
Now lets fit the computer model on a maximin LHS in 2d of size 21.

Comparable to the field data size.

library(lhs)  

XU <- maximinLHS(21, 2)   ## we're going to want to randomize over this 

gr <- c(6, 14) 

ym <- timedrop(XU[,1], XU[,2], hr, gr)

Now lets train a GP on those realizations.

ymhat <- newGPsep(XU, ym, d=0.1, g=1e-7, dK=TRUE) 

mle <- mleGPsep(ymhat, tmax=10)

Lets visualize our computer model output over a range of heights, for particular choices of .

Some better than others, but possibly all biased.

us <- seq(0, 1, length=6) 

XX <- expand.grid(hs, us) 

pmhat <- predGPsep(ymhat, XX, lite=TRUE) 

plot(ball); matlines(heights, matrix(pmhat$m, ncol=length(us)))

Modularized calibration
The modularized apparatus calibrates  via the discrepancy between emulated computer model output and field data runs.
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bhat.fit <- function(X, Y, Ym, da, ga, clean=TRUE) 

  { 

    bhat <- newGPsep(X, Y-Ym, d=da$start, g=ga$start, dK=TRUE) 

    if(ga$mle) cmle <- jmleGPsep(bhat, drange=c(da$min, da$max),  

            grange=c(ga$min, ga$max), dab=da$ab, gab=ga$ab) 

    else cmle <- mleGPsep(bhat, tmin=da$min, tmax=da$max, ab=da$ab) 

    cmle$nll <- - llikGPsep(bhat, dab=da$ab, gab=ga$ab) 

    if(clean) deleteGPsep(bhat) 

    else cmle$gp <- bhat         

    return(cmle) 

  }

 log likelihood measures goodness-of-fit.

Here, bhat.fit  combines  fits.

An objective to optimize
Now we need to create an objective that we can optimize, over coded gravity -values, to find the best setting  estimating the
unknown .

calib <- function(u, X, Y, ymhat, da, ga, clean=TRUE) 

  { 

    Xu <- cbind(X, matrix(rep(u, nrow(X)), ncol=length(u), byrow=TRUE)) 

    Ym <- predGPsep(ymhat, Xu, lite=TRUE)$mean 

    cmle <- bhat.fit(X, Y, Ym, da, ga, clean=clean) 

    return(cmle) 

  }

Since its in 1d, lets evaluate it on a -grid.

u <- seq(0, 1, length=100) 

unll <- rep(NA, length(u)) 

X <- as.matrix((ball$height - hr[1])/diff(hr)) 

da <- darg(list(mle=TRUE), expand.grid(X[,1], u)) 

ga <- garg(list(mle=TRUE), ball$time) 

for(i in 1:length(u)) unll[i] <- calib(u[i], X, ball$time, ymhat, da, ga)$nll

Visualizing the likelihood surface for .

plot(u, unll, type="l", xlab="u", ylab="negative log likelihood") 

obj <- function(x, X, Y, ymhat, da, ga) calib(x, X, Y, ymhat, da, ga)$nll 

soln <- optimize(obj, lower=0, upper=1, X=X, Y=ball$time,  

  ymhat=ymhat, da=da, ga=ga) 

uhat <- soln$minimum; abline(v=uhat, col=2, lty=2)
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Getting 
Lets run back through some of the calculations to get out the estimated bias ( gpi  reference) with the  value we found.

Provide clean=FALSE  to bhat :

bhat <- calib(uhat, X, ball$time, ymhat, da, ga, clean=FALSE)

Then we may obtain predictions over our heights grid, with full covariance for later.

p <- predGPsep(bhat$gp, as.matrix(hs)) 

mb <- p$mean 

q1b <- qnorm(0.95, mb, sqrt(diag(p$Sigma))) 

q2b <- qnorm(0.05, mb, sqrt(diag(p$Sigma))) 

qr <- range(c(q1b, q2b))

Visualizing the discrepancy
The bias straddles zero.

plot(heights, mb, type="l", xlab="height", ylab="time bias", ylim=qr) 

lines(heights, q1b, col=2, lty=2); lines(heights, q2b, col=2, lt=2) 
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Adjusting 
First, obtain the prediction from the emulator, with full covariance structure.

pmhat <- predGPsep(ymhat, cbind(hs, uhat))

Now, for full propagation of uncertainty, lets combine sample paths from both emulator and bias processes.

library(mvtnorm) 

Ym <- rmvnorm(1000, pmhat$mean, pmhat$Sigma) 

Yb <- rmvnorm(1000, p$mea, p$Sigma) 

Yc <- Ym + Yb

Extract quantiles from the combined sample paths.

q1c <- apply(Yc, 2, quantile, prob=0.05) 

q2c <- apply(Yc, 2, quantile, prob=0.95)

Craziness!

plot(ball); lines(heights, pmhat$mean) 

lines(heights, pmhat$mean + mb, col=3, lwd=2) 

lines(heights, q1c, col=3, lty=2) 

lines(heights, q2c, col=3, lty=2) 

legend("topleft", c("yMhat", "yMhat+bhat"), col=c(1,3), lty=1, lwd=1:2)

ŷ M



What’s happening here?
The calibration apparatus doesn’t care about minimizing bias;

rather maximizing the likelihood of the residual process

via  trained at those values.

When it chooses the  hyperparameters and , via large likelihood,

it may actually be better to have a larger amplitude bias,

preferring  that push  away from  rather than toward it.

Interpreting calibration parameters
In particular, our estimate of the gravitational constant,  via 

ghat <- uhat*diff(gr)+gr[1] 

ghat

## [1] 6.454133

loses some of its physical interpretation (and its way too small).

We have to be satisfied with  as a “tuning” parameter, challenging interpretation.

If minimizing bias is really what we want, then some adjustments are needed. See

Plumlee (2016) (http://www.tandfonline.com/doi/abs/10.1080/01621459.2016.1211016): forcing the  to be orthogonal to 

Wu & Tuo (2015) (http://projecteuclid.org/euclid.aos/1444222077): using least squares for  rather than a full GP.

Both sacrifice prediction for enhanced interpretation.

A supremely flexible model
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The thing to keep in mind is that the calibration apparatus couples two highly flexible nonparametric GP models, linked by a
tuning parameter .

It will find a way to use that flexibility to its advantage,
especially when coping with a data-generating mechanism which may not be faithful to the GP modeling assumptions
(and when is it ever?).

Authors looking for more flexible GP models have deliberately deployed similar tactics outside the calibration setting.

Ba and Joseph (2012) (https://projecteuclid.org/euclid.aoas/1356629062) coupled two GPs to deal with
heteroskedasticity.
Bornn, Shaddick and Zidek (2012) (http://www.tandfonline.com/doi/abs/10.1080/01621459.2011.646919) introduced a
latent input dimension (e.g., a ) to gain nonstationary flexibility.

Surprisingly, the KOH framework nests these two options, yet precedes them by more than a decade.

Removing the bias
What happens when we remove some of that flexibility in the calibration context?

I.e., forcing a zero bias and estimating zero-mean noise .

Here is how you can accomplish that with laGP .

se2.fit <- function(X, Y, Ym, clean=TRUE) 

  { 

    gp <- newGP(X, Y-Ym, d = 0, g = 0) 

    cmle <- list(nll=-llikGP(gp)) 

    if(clean) deleteGP(gp) 

    else cmle$gp <- gp       

    return(cmle) 

  }

To replace our bhat.fit .

New no-bias calibration function
We need a slightly adjusted calibration objective.

calib.nobias <- function(u, X, Y, ymhat, clean=TRUE) 

  { 

    Xu <- cbind(X, matrix(rep(u, nrow(X)), ncol=length(u), byrow=TRUE)) 

    Ym <- predGPsep(ymhat, Xu, lite=TRUE)$mean 

    cmle <- se2.fit(X, Y, Ym, clean=clean) 

    return(cmle) 

  }

Again, since its in 1d, lets evaluate it on a -grid.

unll.se2 <- rep(NA, length(u)) 

for(i in 1:length(u))  

  unll.se2[i] <- calib.nobias(u[i], X, ball$time, ymhat)$nll

Unbiased 
plot(u, unll.se2, type="l", xlab="u", ylab="negative log likelihood") 

abline(v=uhat, col=2, lty=2); legend("top", "uhat-biased", col=2, lty=2, bty="n")
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Much bigger than before.

Our unbiased gravity estimate
obj.nobias <- function(x, X, Y, ymhat) calib.nobias(x, X, Y, ymhat)$nll 

soln <- optimize(obj.nobias, lower=0, upper=1, X=X, Y=ball$time, ymhat=ymhat) 

uhat.nobias <- soln$minimum 

ghat.nobias <- uhat.nobias*diff(gr)+gr[1] 

ghat.nobias

## [1] 8.158814

Still too small, but perhaps it is compensating for some air resistance.

How do our predicted times look?

cmle.nobias <- calib.nobias(uhat.nobias, X, ball$time, ymhat, clean=FALSE) 

se2.p <- predGP(cmle.nobias$gp, as.matrix(hs), lite=TRUE) 

pmhat.nobias <- predGPsep(ymhat, cbind(hs, uhat.nobias), lite=TRUE) 

q1nob <- qnorm(0.05, pmhat.nobias$mean, sqrt(pmhat.nobias$s2+se2.p$s2)) 

q2nob <- qnorm(0.95, pmhat.nobias$mean, sqrt(pmhat.nobias$s2+se2.p$s2))

Cleaner, but better? Maybe it under-predicts for higher balls?

plot(ball); lines(heights, pmhat.nobias$mean, col=4, lwd=2) 

lines(heights, q1nob, col=4, lty=2) 

lines(heights, q2nob, col=4, lty=2) 

legend("topleft", c("yMhat+se2"), col=4, lty=1, lwd=2)



Cross-validation
When we have two models and we don’t know which is best,

set up a prediction exercise.

In what follows we collect some of the code above into stand-alone functions that can be called in a leave-one-out fashion,

Note that throughout we are conditioning on the computer model fit to the full LHS sample.

The CV will be over the field data only.
At the same time we will be able to get a jackknife sampling distribution for ,

a precursor to the bootstrap.

Bias-calibrated prediction
Cutting-and-pasting from earlier code.

calib.pred <- function(XX, X, Y, ymhat, da, ga, T=1000) 

 { 

  g <- unll <- u <- seq(0,1, length(100)) 

  for(i in 1:length(u)) { 

    cmle <- calib(u[i], X, Y, ymhat, da, ga) 

    unll[i] <- cmle$nll; g[i] <- cmle$g 

  } 

  ga$mle <- FALSE; ga$start <- g[which.min(unll)] 

  soln <- optimize(obj, lower=0, upper=1, X=X, Y=Y, ymhat=ymhat, da=da, ga=ga) 

  bhat <- calib(soln$minimum, X, Y, ymhat, da, ga, clean=FALSE) 

  p <- predGPsep(bhat$gp, XX) 

  pmhat <- predGPsep(ymhat, cbind(XX, soln$minimum)) 

  Yc <- rmvnorm(T, pmhat$mean, pmhat$Sigma) + rmvnorm(T, p$mean, p$Sigma) 

  mc <- pmhat$mean + p$mean; s2c <- apply(Yc, 2, var) 

  q1c <- apply(Yc, 2, quantile, prob=0.05) 

  q2c <- apply(Yc, 2, quantile, prob=0.95) 

  deleteGPsep(bhat$gp) 

  return(list(mean=mc, s2=s2c, q1=q1c, q2=q2c, uhat=soln$minimum)) 

 }

u ̂ 



Leave-one-out (biased)
ga <- garg(list(mle=TRUE), ball$time) 

uhat <- q1 <- q2 <- m <- s2 <- rep(NA, nrow(X)) 

for(i in 1:nrow(X)) { 

    cp <- calib.pred(X[i,,drop=FALSE], X[-i,,drop=FALSE], ball$time[-i],  

        ymhat, da, ga) 

    m[i] <- cp$mean; s2[i] <- cp$s2 

    q1[i] <- cp$q1; q2[i] <- cp$q2 

    uhat[i] <- cp$uhat 

}

What  values did we get?

summary(uhat)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

## 0.01783 0.05225 0.05597 0.05762 0.06238 0.12770

Some are really small.

How did we do?
plot(ball) 

points(ball$height, m, col=2, pch=20) 

segments(ball$height, q1, ball$height, q2, col=2)

Leave-one-out (un-biased)

u ̂ 



calib.nobias.pred <- function(XX, X, Y, ymhat) 

 { 

    soln <- optimize(obj.nobias, lower=0, upper=1, X=X, Y=Y, ymhat=ymhat) 

    bhat <- calib.nobias(soln$minimum, X, Y, ymhat, clean=FALSE) 

    p <- predGP(bhat$gp, XX, lite=TRUE) 

    pmhat <- predGPsep(ymhat, cbind(XX, soln$minimum), lite=TRUE) 

    mc <- pmhat$mean + p$mean; s2c <- pmhat$s2 + p$s2 

    q1c <- qnorm(0.05, mc, sqrt(s2c)); q2c <- qnorm(0.95, mc, sqrt(s2c)) 

  deleteGP(bhat$gp) 

    return(list(mean=mc, s2=s2c, q1=q1c, q2=q2c, uhat=soln$minimum)) 

 }

Again, cutting and pasting above. Then leave-one-out prediction below.

q1nb <- q2nb <- mnb <- s2nb <- rep(NA, nrow(X)) 

for(i in 1:nrow(X)) { 

    cp <- calib.nobias.pred(X[i,,drop=FALSE], X[-i,,drop=FALSE],  

        ball$time[-i], ymhat) 

    mnb[i] <- cp$mean; s2nb[i] <- cp$s2; q1nb[i] <- cp$q1; q2nb[i] <- cp$q2 

}

Doesn’t look as good
plot(ball) 

points(ball$height, mnb, col=3, pch=20) 

segments(ball$height, q1nb, ball$height, q2nb, col=3)

Calculating scores
Comparison by proper scoring (Gneiting & Raftery, 2007;
(https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf) Eq (27)):

https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


b <- mean(- (ball$time - m)^2/s2 - log(s2)) 

nb <- mean(- (ball$time - mnb)^2/s2nb - log(s2nb)) 

scores <- c(biased=b, unbiased=nb) 

scores

##   biased unbiased  

## 4.216665 3.977722

Higher is better: biased wins!

Don’t forget that the computer experiment design was random (LHS),

So these results have a distribution which we can explore via Monte Carlo.


