
Optimization
RSMs and Computer Experiments
Robert B. Gramacy (rbg@vt.edu (mailto:rbg@vt.edu) : http://bobby.gramacy.com
(http://bobby.gramacy.com))
Department of Statistics, Virginia Tech

Goals
To understand the role that GPs can play in optimizing a blackbox function,

i.e., one about which one knows little (it is opaque to the optimizer)
and which can only be probed through expensive evaluation.

Basically, the idea is to view optimization as an application of sequential design.

The role of “modeling” in optimization has a rich history,

and we’ll barely scratch the surface there.

But the potential role of modern statistical modeling is just recently being realized by the mathematical programming, statistics,
and machine learning communities.

Surrogate-based optimization
An old idea
Statistical methods in optimization, in particular of noisy blackbox functions, probably goes back to Box & Draper
(https://www.amazon.com/Empirical-Model-Building-Response-Probability-Statistics/dp/0471810339),

a pre-cursor to “steepest ascent” in classical RSMs.

However, the modern version is closest to methods described by Mockus, et al. (e.g., 1978)
(https://www.researchgate.net/publication/248818761_The_application_of_Bayesian_methods_for_seeking_the_extremum), in
a paper entitled

“The application of Bayesian methods for seeking the extremum”.

Although it would seem that many of these ideas were overlooked,

in part because the models involved were too crude (linear)

until the late 1990’s, after GPs became established in the computer experiments literature.

Surrogate-based optimization
The best reference for the core idea might be Booker, et al. (1999) (http://link.springer.com/article/10.1007/BF01197708).

They called it surrogate-based optimization, and it involved a nice collaboration between optimization and computer
modeling researchers.

The methodology is simple:

1. Train a GP on the function evaluations obtained so far.
2. Optimize the fitted predictive mean surface of the GP to choose the next location for evaluation.
3. Repeat.

mailto:rbg@vt.edu
http://bobby.gramacy.com/
https://www.amazon.com/Empirical-Model-Building-Response-Probability-Statistics/dp/0471810339
https://www.researchgate.net/publication/248818761_The_application_of_Bayesian_methods_for_seeking_the_extremum
http://link.springer.com/article/10.1007/BF01197708

Observe that Step 2 involves its own inner-optimization,

but an easy one that can be solved with conventional methods.

The problem
Before we continue, lets be clear about the problem.

We wish to find

 is usually a hyper-rectangle.
We do not have the derivatives of , nor do we necessarily want them (or want to approximate them).
The methods we prescribe fall under the class of derivative-free optimization, see., e.g., Conn, et al. (2009)
(http://epubs.siam.org/doi/book/10.1137/1.9780898718768).

This means that all we get to do is

evaluate , which for now is deterministic,
and we presume that it is expensive to do so (in terms of computing time, say).
So a tacit “constraint” on the solver is that it minimize the number of evaluations.

Implementation
Lets consider an implementation of the Booker et al. idea on a re-scaled/coded version of the Goldstein-Price
(http://www.sfu.ca/~ssurjano/goldpr.html) function.

f <- function(X)

 {

 if(is.null(nrow(X))) X <- matrix(X, nrow=1)

 m <- 8.6928

 s <- 2.4269

 x1 <- 4 * X[,1] - 2

 x2 <- 4 * X[,2] - 2

 a <- 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 *

 x2 + 6 * x1 * x2 + 3 * x2^2)

 b <- 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 +

 48 * x2 - 36 * x1 * x2 + 27 * x2^2)

 f <- log(a * b)

 f <- (f - m)/s

 return(f)

 }

We want to minimize this , pretending we can’t see how it is comprised.

Initial design
Lets start with a small initial design in the 2d space.

library(lhs)

ninit <- 12

X <- randomLHS(ninit, 2)

y <- f(X)

Now lets fit a (separable) GP to that data, with a small nugget.

= f (x).x∗ argminx∈



f (x)

f (x)

f (x)

http://epubs.siam.org/doi/book/10.1137/1.9780898718768
http://www.sfu.ca/~ssurjano/goldpr.html

library(laGP)

gpi <- newGPsep(X, y, d=0.1, g=1e-6, dK=TRUE)

da <- darg(list(mle=TRUE, max=0.5), X)

mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)$msg

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Surrogate-optimize
Now, set up an objective to search based on the predictive mean.

obj.mean <- function(x, gpi) predGPsep(gpi, matrix(x, nrow=1), lite=TRUE)$mean

That predictive surface (like the function) may have many local minima,

but lets punt on the idea of global optimization for the moment,
and see where we get with a search initialized at the current best value.

m <- which.min(y)

opt <- optim(X[m,], obj.mean, lower=0, upper=1, method="L-BFGS-B", gpi=gpi)

opt$par

[1] 0.4491681 0.1494378

So this is the next point to try.

One-step of search
Here’s what that looks like in the input domain.

plot(X[1:ninit,], xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(X[m,1], X[m,2], opt$par[1], opt$par[2], length=0.1)

f

Another iteration
Evaluate at opt$par , update the GP …

ynew <- f(opt$par)

updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

X <- rbind(X, opt$par)

y <- c(y, ynew)

… and solve for the next point.

m <- which.min(y)

opt <- optim(X[m,], obj.mean, lower=0, upper=1, method="L-BFGS-B", gpi=gpi)

opt$par

[1] 0.4343782 0.3078317

Here’s what that looks like in the input domain.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

n <- nrow(X)

arrows(X[m,1], X[m,2], opt$par[1], opt$par[2], length=0.1)

Five more iterations
Update for the most recent point.

ynew <- f(opt$par)

updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

X <- rbind(X, opt$par)

y <- c(y, ynew)

Looping: five more iterations.

f

while(1) {

 m <- which.min(y)

 opt <- optim(X[m,], obj.mean, lower=0, upper=1,

 method="L-BFGS-B", gpi=gpi)

 ynew <- f(opt$par)

 if(abs(ynew - y[length(y)]) < 1e-4) break;

 updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)

 mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

 X <- rbind(X, opt$par)

 y <- c(y, ynew)

}

Progress
prog <- y

for(i in 2:length(y))

 if(prog[i] > prog[i-1]) prog[i] <- prog[i-1]

plot(prog, type="l")

Encapsulating function

optim.surr <- function(f, ninit, stop, tol=1e-4)

 {

 X <- randomLHS(ninit, 2)

 y <- f(X)

 gpi <- newGPsep(X, y, d=0.1, g=1e-7, dK=TRUE)

 da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, 2))

 mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

 for(i in (ninit+1):stop) {

 m <- which.min(y)

 opt <- optim(X[m,], obj.mean, lower=0, upper=1,

 method="L-BFGS-B", gpi=gpi)

 ynew <- f(opt$par)

 if(abs(ynew - y[length(y)]) < tol) break;

 updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)

 mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

 X <- rbind(X, opt$par)

 y <- c(y, ynew)

 }

 deleteGPsep(gpi)

 return(list(X=X, y=y))

 }

Average progress under random init
Lets repeatedly solve the problem in this way with 100 random initializations.

reps <- 100

prog <- matrix(NA, nrow=reps, ncol=50)

for(r in 1:reps) {

 os <- optim.surr(f, 12, 50)

 prog[r,1:length(os$y)] <- os$y

 for(i in 2:50) {

 if(is.na(prog[r,i]) || prog[r,i] > prog[r,i-1])

 prog[r,i] <- prog[r,i-1]

 }

}

Note that these are random initializations.

not random searches.
These searches are completely deterministic.

(I.e., this is not stochastic optimization.)

Visualizing average progress
Clearly this is not a global optimization tool.

matplot(t(prog), type="l", col="gray", lty=1, ylab="progress", xlab="its")

How does optim compare?
First, we need to modify so we can keep track of the path of evaluations.

because optim will call to approximate gradients.

fprime <- function(x)

 {

 ynew <- f(x)

 y <<- c(y, ynew)

 return(ynew)

 }

Now lets loop a bunch of times.

Note that optim will only allow us to control the “outer” iterations.

Average optim progress
Here is the same for loop we did with the surrogate-based optimizer,

with a direct optim instead,
randomly initialized.

prog.optim <- matrix(NA, nrow=reps, ncol=50)

for(r in 1:reps) {

 y <- c()

 os <- optim(runif(2), fprime, lower=0, upper=1, method="L-BFGS-B")

 prog.optim[r,1:length(y)] <- y <- y[1:min(50, length(y))]

 for(i in 2:length(y)) {

 if(is.na(prog.optim[r,i]) || prog.optim[r,i] > prog.optim[r,i-1])

 prog.optim[r,i] <- prog.optim[r,i-1]

 }

}

Clear winner

f

f

optim progress is much slower on a fixed budget.

matplot(t(prog.optim), type="l", col="red", lty=1, ylab="progress", xlab="its")

matlines(t(prog), type="l", col="gray", lty=1)

legend("topright", c("surr", "optim"), col=c("gray", "red"), lty=1)

Why do “we” do well?
Our surrogate-based optimization is more efficient because

it does not need to evaluate the expensive blackbox function, , to approximate derivatives.
Rather, the surrogate is providing a sense of derivative for “free”.
It also can (potentially) take big steps because its knowledge of the response surface is more global than optim ’s.

optim only bases evaluations on a local linear approximation.

How can “we” do better?
But surrogate optimization is still mostly a local affair.

It exploits, by moving to the next best spot from where it left off,
descending with its own optim subroutine on the predictive surface.
It does not explore places that cannot easily be reached from the current best value.

We need some way to balance exploration and exploitation.

BTW, notice that we’re not actually doing statistics,
because at no point is uncertainty being taken into account.

Expected improvement
Striking a balance
In the mid 90s, Matthias Schonlau was working on his dissertation (http://www.schonlau.net/publication/thesis1side.pdf),

f

http://www.schonlau.net/publication/thesis1side.pdf

which basically revisited Mockus’ Bayesian optimization idea from a Gaussian process and computer experiments
perspective.

He came up with a heuristic called expected improvement (EI), which is the basis of a so-called

efficient global optimization (EGO) algorithm.

His key insight was that predictive uncertainty was underutilized in the surrogate framework for optimization,

which is especially a shame when GPs are involved, because they provide such a beautiful predictive variance function.
The basic idea, however, is not limited to GP surrogates.

Improvement
Schonlau defined a statistic called the improvement

which is a random variable measuring the amount by which an unknown response is below the current point known to be
the minimum

That is, measuring potential for to “improve” upon the current best minimum.
If has non-zero probability of taking on any value on the real line, then has nonzero probability of being
positive.

Expected improvement
Now there are lots of things you could imagine doing with the improvement,

but probably the most important thing to do (to make it useful) is to remove the randomness.
And the simplest way to do that is to take an expectation.

It is easiest to imagine what the expected improvement might look like through a Monte Carlo approximation.

Draw in the case of Gaussian , .
And average:

This works no matter what the distribution of is (so long as you can simulate from it).

Analytic expression
The cool thing is that if is Gaussian,

as it is under the predictive equations of a GP,

the EI has a convenient closed form expression.

 and are the standard normal cdf and pdf, respectively.

Notice how it organically balances

exploitation: below , and
exploration: large .

I(x) = max{0, − Y(x)}f min
n

Y(x)

= min{ ,… , }.f min
n y1 yn

Y(x)

Y(x) I(x)

∼  (μ(x), (x))y(t) σ2 Y(x) t = 1,… , T

max{0, − } → 𝔼{I(x)} as T → ∞.
1

T ∑
t=0

T

f n
min y(t)

Y(x)

Y(x)

𝔼{I(x)} = (− (x))Φ() + (x)ϕ()f n
min μn

− (x)f n
min μn

(x)σn
σn

− (x)f n
min μn

(x)σn

Φ ϕ

(x)μn f n
min

(x)σn

– A useful cartoon –

Interactive EI demo

See gp_ei_sin.R with the course materials.

This code uses a hodge-podge of libraries, and I didn’t want to re-write it.

We’ll code our own stuff up in a sec.

Our own EI calculation
The laGP package doesn’t include an EI calculation,

but it is easy to use the output of the predict functions to calculate EI.

EI <- function(gpi, x, fmin, pred=predGPsep)

 {

 if(is.null(nrow(x))) x <- matrix(x, nrow=1)

 p <- pred(gpi, x, lite=TRUE)

 d <- fmin - p$mean

 sigma <- sqrt(p$s2)

 dn <- d/sigma

 ei <- d*pnorm(dn) + sigma*dnorm(dn)

 return(ei)

 }

To use it as an objective in a surrogate-based optimization:

obj.EI <- function(x, fmin, gpi) - EI(gpi, x, fmin)

Multi-start scheme
Although EI has a “maximizing variance” aspect, which could cause the EI surface to be multi-modal

it will not be as pathologically so.

The number of EI modes will fluctuate as the algorithm runs,

but eventually it will resemble the actual (number of) modes in .

Therefore a sensible multi-start scheme might include

the best point you have so far ()
and a few other points spread around the input space.

A search scheme
How about the following?

EI.search <- function(X, y, gpi, multi.start=5)

 {

 m <- which.min(y)

 fmin <- y[m]

 start <- matrix(X[m,], nrow=1)

 if(multi.start > 1)

 start <- rbind(start, randomLHS(multi.start-1, ncol(X)))

 xnew <- matrix(NA, nrow=nrow(start), ncol=ncol(X)+1)

 for(i in 1:nrow(start)) {

 if(EI(gpi, start[i,], fmin) <= eps)

 { out <- list(value=-Inf); next }

 out <- optim(start[i,], obj.EI, method="L-BFGS-B",

 lower=0, upper=1, gpi=gpi, fmin=fmin)

 xnew[i,] <- c(out$par, -out$value)

 }

 solns <- data.frame(cbind(start, xnew))

 names(solns) <- c("s1", "s2", "x1", "x2", "val")

 solns <- solns[(solns$val > sqrt(.Machine$double.eps)),]

 return(solns)

}

Initializing an EI search
Initializing the GP fit.

X <- randomLHS(ninit, 2)

y <- f(X)

gpi <- newGPsep(X, y, d=0.1, g=1e-6, dK=TRUE)

da <- darg(list(mle=TRUE, max=0.5), X)

Performing an EI search.

solns <- EI.search(X, y, gpi)

m <- which.max(solns$val)

maxei <- solns$val[m]

f

f n
min

First iteration visualized
plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)

points(solns$x1[m], solns$x2[m], col=2, pch=20)

Next iteration
Incorporate the new data at the chosen input location.

xnew <- as.matrix(solns[m,3:4])

X <- rbind(X, xnew)

y <- c(y, f(xnew))

updateGPsep(gpi, xnew, y[length(y)])

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

And do another iteration, and update.

solns <- EI.search(X, y, gpi)

m <- which.max(solns$val)

maxei <- c(maxei, solns$val[m])

xnew <- as.matrix(solns[m,3:4])

X <- rbind(X, xnew)

y <- c(y, f(xnew))

updateGPsep(gpi, xnew, y[length(y)])

mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

Clearly a multi-modal criteria.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)

points(solns$x1[m], solns$x2[m], col=2, pch=20)

More iterations
Careful, similar -values is no longer a good measure of convergence.

for(i in nrow(X):50) {

 solns <- EI.search(X, y, gpi)

 m <- which.max(solns$val)

 maxei <- c(maxei, solns$val[m])

 xnew <- as.matrix(solns[m,3:4])

 ynew <- f(xnew)

 X <- rbind(X, xnew); y <- c(y, ynew)

 updateGPsep(gpi, xnew, y[length(y)])

 mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

}

Calculating progress …

prog.ei <- y

for(i in 2:length(y))

 if(prog.ei[i] > prog.ei[i-1]) prog.ei[i] <- prog.ei[i-1]

Two measures of progress
par(mfrow=c(1,2))

plot(prog.ei, type="l", ylab="fmin progress", xlab="its")

plot(maxei, type="l", xlab="its", ylab="max EI")

y

Encapsulating function
optim.EI <- function(f, ninit, stop)

 {

 X <- randomLHS(ninit, 2); y <- f(X)

 gpi <- newGPsep(X, y, d=0.1, g=1e-7, dK=TRUE)

 da <- darg(list(mle=TRUE, min=eps, max=0.5), X)

 mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

 maxei <- c()

 for(i in (ninit+1):stop) {

 solns <- EI.search(X, y, gpi)

 m <- which.max(solns$val)

 maxei <- c(maxei, solns$val[m])

 xnew <- as.matrix(solns[m,3:4])

 ynew <- f(xnew)

 updateGPsep(gpi, matrix(xnew, nrow=1), ynew)

 mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

 X <- rbind(X, xnew); y <- c(y, ynew)

 }

 deleteGPsep(gpi)

 return(list(X=X, y=y, maxei=maxei))

 }

Average progress under random init
Lets repeatedly solve the problem in this way with 100 random initializations.

reps <- 100

prog.ei <- matrix(NA, nrow=reps, ncol=50)

for(r in 1:reps) {

 os <- optim.EI(f, 12, 50)

 prog.ei[r,1:length(os$y)] <- os$y

 for(i in 2:length(os$y)) {

 if(is.na(prog.ei[r,i]) || prog.ei[r,i] > prog.ei[r,i-1])

 prog.ei[r,i] <- prog.ei[r,i-1]

 }

}

The next slide shows the average progress of our three methods so far.

Its getting to messy to look at all the paths.

Average progress
plot(colMeans(prog.ei), col=1, lwd=2, ylab="fmin progress", type="l")

lines(colMeans(prog), col="gray",lwd=2)

lines(colMeans(prog.optim, na.rm=TRUE), col=2,lwd=2)

legend("topright", c("optim", "surr", "ei"), col=c(2, "gray", 1), lty=1)

Final solution
Once or twice out of 100 repeats did EI not find the global min after 50 iterations.

boxplot(prog.ei[,50], prog[,50], prog.optim[,50], names=c("ei", "surr", "optim"))

What can you say about it?
Under certain regularity conditions,

like that the hyperparameters are known,

the EGO algorithm (i.e., EI searches) will converge to a global optima.

But only really in the sense that “eventually it will explore everywhere”.

In practice, it does really well

but there are pathologies which can usually be mitigated with strong-ish priors.

You can show that each sequential EI-based decision is optimal

for the situation where that sample is the last one you’ll ever take.

How do you handle noise?

Just estimate a nugget, and define to be your estimated minimum.

Constrained optimization
Known constraints
First, lets keep it simple and assume the constraints are known.

That means there is a function returning
zero (or a negative number) if the constraint is satisfied,
one (or a positive number) if the constraint is violated

and we can evaluate it willy-nilly (as much as we want).

The problem is

One simple method is to extend EI to what is called expected feasible improvement (EFI) (Schonlau, Jones & Welch, 1998)
(https://www.jstor.org/stable/4356058?seq=1#page_scan_tab_contents)

fmin

c(x)

= f (x) subject to c(x) ≤ 0.x∗ argminx∈

https://www.jstor.org/stable/4356058?seq=1#page_scan_tab_contents

precluding choosing any point outside the valid set.

Blackbox constraints
The problem is unchanged

but now we can’t evaluate the constraint function willy-nilly.

We’ll need a model for , and the appropriate model will depend on the nature of the function:

a classification model for or
a regression model for or ,

If is the predicted probability that input satisfies the constraint,

EFI for blackbox constraints is

Multiple real-valued constraints
Usually the are real-valued and exist in multitude, .

Real-valued constraints simplifies matters somewhat, because there are generally more modeling choices for real-valued
simulations (e.g., GPs).
Evaluations of provide extra information (compared to) comprising of the distance to feasibility.

EFI adapts nicely to this setting, suffice it that

satisfaction probabilities can be backed out of the fitted surfaces for each constraint
. Assuming independence:

For GPs, arise naturally via , i.e., pnorm given and .

Focus on constraints
These constrained optimizations are hard even when the objective is “easy”,

and for that reason we will focus exclusively on the constraints for the next bit.

Here is a toy problem to fix ideas.

A linear objective in two variables

where two non-linear constraints are given by

EFI(x) = 𝔼{I(x)}𝕀(c(x) ≤ 0),

= f (x) subject to c(x) ≤ 0,x∗ argminx∈

c(x)

c(x)

c(x) ∈ {0, 1} c(x) ∈ {0, 1}m

c(x) ∈ ℝ c(x) ∈ ℝm

(x)pn x

EFI(x) = 𝔼{I(x)} (x)pn

c(x) { }, j = 1… , mc(j)

(x) ∈ ℝc
(j)
n {0, 1}

(x) = ℙ((x) ≤ 0)p
(j)
n c

(j)
n (x)c

(j)
n

j = 1,… , m

EFI(x) = 𝔼{I(x)} (x)∏
j=1

m

p
(j)
n

(x)p
(j)
n Φ (x)μ

(j)
n (x)σ

(j)2
n

{ + : (x) ≤ 0, (x) ≤ 0, x ∈ [0, 1 }min
x

x1 x2 c1 c2]2

(x)c1

(x)c2

= − − 2 − sin(2π(− 2))
3

2
x1 x2

1

2
x2

1 x2

= + −x2
1 x2

2

3

2

Even when is known, this is hard when is a blackbox.

Visualizing the toy problem

 may seem uninteresting, but it reminds us that solutions may not exist on every boundary.

Hybridization
Math programming has efficient algorithms for non-linear (blackbox) optimization (under constraints) with

provable local convergence properties,
lots of polished open-source software.

Whereas statistical approaches

enjoy global convergence properties,
excel when simulation is expensive, noisy, non-convex,

they offer limited support for constraints.

Augmented Lagrangian
One such framework involves the so-called the augmented Lagrangian (AL):

 is a penalty parameter
 serves as a Lagrange multiplier

AL-based methods thereby

transform a constrained problem into a sequence of simply constrained ones.

Without the Lagrangian term ,

one obtains (an example of) a so-called additive penalty method (APM).
The full AL advantage is automatic updates of the parameters .

f (x) = +x1 x2 c(x)

(x)c2

(x; λ, ρ) = f (x) + c(x) + max , whereLA λ⊤
1

2ρ ∑
j=1

m

(0, (x))cj
2

ρ > 0

λ ∈ ℝm
+

c(x)λ⊤

(λ, ρ)

AL sequence
Given ,

1. approximately solve the subproblem

2. update:

, .

If , set ; otherwise, set
3. … then repeat, incrementing .

Functions and are only evaluated when solving the subproblem(s), comprising an “inner loop”.

Interactive AL demo

See wildprob.R with the course material.

Convergence
AL methods are not designed for global optimization, however the convergence results have a certain robustness.

Even if the “inner” sub-problem

cannot be solved exactly,

“outer” iterations will converge so long as the “inner” problem makes “progress”.
(Similar to EM or weak learner results.)

How is “outer” convergence determined?

In our setting, we’ll have a maximal computational budget.
But you could stop when all constraints are satisfied, and the gradient of the Lagrangian is sufficiently small.

Statistical inner solver
The “inner” solver can be anything. Our interactive demo used Nelder–Mead (optim default), but approximating the derivative
is expensive.

Derivative-free solvers are an option.
Of course, we’ll focus on methods based on statistical surrogates, and hope for a more global searching flavor.

The idea is to train the “inner” solver with all evaluations

collected over all “inner” and “outer” loops (Gramacy, et al., 2016)
(http://amstat.tandfonline.com/doi/full/10.1080/00401706.2015.1014065).

Whereas in a more conventional approach, each “inner” solver would be independent of the next one.

(,)ρk−1 λk−1

= arg { (x; ,) : x ∈ }xk min
x

LA λk−1 ρk−1

= max (0, + ())λkj λk−1
j

1

ρk−1
cj xk j = 1,… , m

c() ≤ 0xk =ρk ρk−1 =ρk 1

2
ρk−1

k

f c

= arg { (x; ,) : x ∈ }xk min
x

LA λk−1 ρk−1

(, f (), c()),… , (, f (), c())x1 x1 x1 xn xn xn

http://amstat.tandfonline.com/doi/full/10.1080/00401706.2015.1014065

Separated modeling
Consider a separate/independent GP model each component of the AL.

 emitting
 emitting

The distribution of the composite random variable

can serve as a surrogate for .

Simplifications when is known.

Tractable surrogate for optim
The composite posterior mean is available in closed form, e.g., under GP priors.

A result from generalized EI (Schonlau, Jones & Welch, 1998) (https://www.jstor.org/stable/4356058?
seq=1#page_scan_tab_contents) helps us work out the expectation inside that sum above.

Expected improvement for AL
The simplest way to evaluate the EI is via Monte Carlo:

take 100 samples and

then

The “max” in the AL makes analytic calculation intractable.

But you can remove the “max” and obtain an analytic EI with slack variables.

Introduce , for , i.e., one for each ,
convert inequality into equality constraints:
augment with constraints , for .

In practice these are subsumed into .

Slacks also facilitate the only EI-based method for handing mixed (equality and inequality) constraints (Picheny, et al., 2016)
(https://arxiv.org/abs/1605.09466).

On our toy data
It is too much to code all this up by ourselves for a real-time run in lecture.

So we’ll borrow the optim.auglag implementation in laGP .

Here is an implementation of the toy problem in R, using the format required for optim.auglag .

f n (x)Yf n

= (,… ,)cn cn1 cnm (x) = ((x),… , (x))Y n
c Y n

c1
Y n
cm

Y(x) = (x) + (x) + max(0, (x)Yf λ⊤Yc
1

2ρ ∑
j=1

m

Ycj)2

(x; λ, ρ)LA

f

𝔼{Y(x)} = (x) + (x) + 𝔼{max(0, (x) }μn
f λ⊤μn

c
1

2ρ ∑
j=1

m

Ycj)2

𝔼{max(0, (x) } = 𝔼{ (x) + 𝕍ar[(x)]Ycj)2 I−Ycj
}2 I−Ycj

= (x)[(1 +)Φ() + ϕ()] .σ2n
cj ()

(x)μn
cj

(x)σn
cj

2 (x)μn
cj

(x)σn
cj

(x)μn
cj

(x)σn
cj

(x)μn
cj

(x)σn
cj

(x)Y
(i)
f (x)Y

(i)
c

EI(x) ≈ max{0, − (x)}1

100
∑100

i=1 ynmin Y (i)

sj j = 1,… , m (x)cj

(x) − = 0cj sj

≥ 0sj j = 1,… , m



https://www.jstor.org/stable/4356058?seq=1#page_scan_tab_contents
https://arxiv.org/abs/1605.09466

aimprob <- function(X, known.only=FALSE)

 {

 if(is.null(nrow(X))) X <- matrix(X, nrow=1)

 f <- rowSums(X)

 if(known.only) return(list(obj=f))

 c1 <- 1.5-X[,1]-2*X[,2]-0.5*sin(2*pi*(X[,1]^2-2*X[,2]))

 c2 <- rowSums(X^2)-1.5

 return(list(obj=f, c=cbind(c1,c2)))

 }

And we’ll work in the following bounding box.

B <- matrix(c(rep(0,2),rep(1,2)),ncol=2)

Several versions
One non-AL version (EFI) is also provided by laGP .

efi <- optim.efi(aimprob, B, end=50, verb=0)

One AL version guided by the posterior mean surface of the AL comprised of separated surrogate models.

ey <- optim.auglag(aimprob, B, end=50, ey.tol=1, verb=0)

Three variations with EI on the AL composite.

ei.mc <- optim.auglag(aimprob, B, end=50, verb=0)

ei.sl <- optim.auglag(aimprob, B, end=50, slack=TRUE, verb=0)

ei.slopt <- optim.auglag(aimprob, B, end=50, slack=2, verb=0)

Visualizing progress
plot(efi$prog, type="l", ylim=c(0.6, 1.6), ylab="progress", xlab="evaluations")

lines(ey$prog, col=2, lty=2); lines(ei.mc$prog, col=3, lty=3)

lines(ei.sl$prog, col=4, lty=4); lines(ei.slopt$prog, col=5, lty=5)

legend("topright", c("EFI", "EY", "EI.mc", "EI.sl", "EI.slopt"), col=1:5, lty=1:5)

Typical behavior

Average results after 100 restarts.

Pretty speedy.
Recall that our optim -AL required 100+ evaluations for local convergence.

Unknown objective?
Sure, no problem. How about this crazy one?

f2d <- function(x, y=NULL)

 {

 if(is.null(y)) {

 if(!is.matrix(x)) x <- matrix(x, ncol=2)

 y <- x[,2]; x <- x[,1]

 }

 g <- function(z)

 return(exp(-(z-1)^2) + exp(-0.8*(z+1)^2) - 0.05*sin(8*(z+0.1)))

 return(-g(x)*g(y))

 }

aimprob2 <- function(X, known.only = FALSE)

{

 if(is.null(nrow(X))) X <- matrix(X, nrow=1)

 if(known.only) stop("no outputs are treated as known")

 f <- f2d(4*(X-0.5))

 c1 <- 1.5 - X[,1] - 2*X[,2] - 0.5*sin(2*pi*(X[,1]^2 - 2*X[,2]))

 c2 <- rowSums(X^2)-1.5

 return(list(obj=f, c=cbind(c1,c2)))

}

Visualizing sub-routine
Here is a little function to re-draw the surface on-demand.

plot.aimprob2 <- function()

 {

 x <- seq(0,1, length=200)

 X <- expand.grid(x, x)

 out <- aimprob2(as.matrix(X))

 fv <- out$obj

 fv[out$c[,1] > 0 | out$c[,2] > 0] <- NA

 fi <- out$obj

 fi[!(out$c[,1] > 0 | out$c[,2] > 0)] <- NA

 plot(0, 0, type="n", xlim=B[1,], ylim=B[2,], xlab="x1", ylab="x2")

 contour(x, x, matrix(out$c[,1], ncol=length(x)), nlevels=1, levels=0,

 drawlabels=FALSE, add=TRUE, lwd=2)

 contour(x, x, matrix(out$c[,2], ncol=length(x)), nlevels=1, levels=0,

 drawlabels=FALSE, add=TRUE, lwd=2)

 contour(x, x, matrix(fv, ncol=length(x)), nlevels=10, add=TRUE,

 col="forestgreen")

 contour(x, x, matrix(fi, ncol=length(x)), nlevels=13, add=TRUE, col=2, lty=2)

 }

Visualizing
plot.aimprob2()

Optimizing via EI with AL
Pretty fast progress.

out2 <- optim.auglag(aimprob2, B, fhat=TRUE, start=20, end=50, verb=0)

plot(out2$prog, type="l", ylab="best valid value", xlab="blackbox evaluations")

plot.aimprob2()

v <- apply(out2$C, 1, function(x) { all(x <= 0) })

X <- out2$X[v,]; obj <- out2$obj[v]; xbest <- X[which.min(obj),]

points(xbest[1], xbest[2], pch=10, col="blue", cex=1.5)

How about initializing an optim search from that point to see if we can “drill down” any further?

aimprob2.AL <- function(x, B, lambda, rho)

{

 if(any(x < B[,1]) | any(x > B[,2])) return(Inf)

 fc <- aimprob2(x)

 al <- fc$obj + lambda%*%drop(fc$c) + rep(1/(2*rho),2)%*%pmax(0,drop(fc$c))^2

 return(al)

}

loop over AL updates until a valid solution is found

lambda <- out2$lambda[nrow(out2$lambda),]; rho <- out2$rho[length(out2$rho)]

while(1) {

 o <- optim(xbest, aimprob2.AL, control=list(maxit=15),

 B=B, lambda=lambda, rho=rho)

 fc <- aimprob2(o$par)

 if(all(fc$c <= 0)) { break

 } else {

 lambda <- pmax(0, lambda + (1/rho)*fc$c)

 rho <- rho/2; xbest <- o$par

 }

 }

plot.aimprob2()

points(o$par[1], o$par[2], pch=18, col="blue")

segments(xbest[1], xbest[2], o$par[1], o$par[2])

Other demos
For further comparison with optim directly on the AL,

see demo("ALfhat") in the laGP package.

Two other demos show a mixed constraints setup

A 2d problem ("GSBP") involving
a Goldstein–Price objective
the toy sinusoidal inequality constraint
and two equality constraints that together trace out four ribbons of valid region

A 4d problem ("LAH") with
a known linear objective
an inequality constraint derived from the “Ackley” function (https://www.sfu.ca/~ssurjano/ackley.html)
an equality constraint derived from the “Hartman” function (https://www.sfu.ca/~ssurjano/hart4.html)

demo("GSBP") – such a crazy surface!

https://www.sfu.ca/~ssurjano/ackley.html
https://www.sfu.ca/~ssurjano/hart4.html

