
Gaussian Process
Regression
RSMs and Computer Experiments

Robert B. Gramacy (rbg@vt.edu : http://bobby.gramacy.com)
Department of Statistics, Virginia Tech

mailto:rbg@vt.edu
http://bobby.gramacy.com/

Goals

To understand the Gaussian Process

We'll see that, almost in spite of a technical (over) analysis of its properties, and
sometimes strange vocabulary used to describe its features,

as a prior over random functions,

a posterior over functions given observed data,

as a tool for spatial data modeling and computer experiments,

and simply as a flexible "nonparametric" regression tool.

·

·

·

·

it is a simple extension to the linear (regression) model.

Knowing that is all it takes to make use of it as a nearly unbeatable regression tool
when input–output relationships are relatively smooth.

And even sometimes when they are not.

·

·

·

2/71

Gaussian process prior

Multivariate normal modeling

Gaussian process (GP) is a very generic term.

All it means is that any finite collection of realizations (or observations) have a
multivariate normal (MVN) distribution.

That, in turn, means that the characteristics of those realizations are completely
described by their

You'll hear people talk about function spaces, and reproducing kernel Hilbert spaces,
and so on,

mean vector, , or mean function

and covariance matrix , or covariance function .

· μ μ(x)

· Σ Σ(x,)x′

and sometimes that is important, depending on the context.·

4/71

Covariance structure

But mostly that makes things seem fancier than they really are.

Consider a covariance function defined by Euclidean distance:

Finally, note that if we define a covariance matrix , based evaluating) on
pairs of -values , it must be positive definite

It is all in the covariance.·

ℂov(Y(x),Y()) = Σ(x,) = exp{−||x − | }x′ x′ x′ |2

i.e., covariance between and decays exponentially fast as and
become farther apart in the input, or -space.

In this specification, observe that and for .

· Y(x) Y()x′ x x′

x

· Σ(x, x) = 1 Σ(x,) < 1x′ ≠ xx′

Σn Σ(,xi xj

n x ,… ,x1 xn

x > 0 for all x > 0,x⊤Σn

to be a valid covariance matrix for a MVN.·

5/71

Data generating mechanism

To see how GPs can be used to perform regression, lets first see how they can be
used to generate random data following a smooth functional relationship.

Suppose we

Note that

take a bunch of -values: ;

define via , for .

draw an -variate realization ,

and plot the result in the - plane.

· x ,… ,x1 xn

· Σn = Σ(,)Σ
ij
n xi xj i, j = 1,… ,n

· n Y ∼ (0,)n Σn

· x y

The mean of this MVN is zero; it need not be but it is quite surprising how well
things work even in this special case.

We'll talk about generalizing this later.

·

·

6/71

Generating data in R

Here is a version of that with -values on a 1d grid.

That's it!

x

n <- 100

X <- matrix(seq(0, 10, length=n), ncol=1)

library(plgp)

D <- distance(X)

eps <- sqrt(.Machine$double.eps) ## defining a small number

Sigma <- exp(-D + diag(eps, n)) ## for numerical stability

library(mvtnorm)

Y <- rmvnorm(1, sigma=Sigma)

We've generated a finite realization of a random function under a GP prior

with a particular covariance structure.

Now all that's left is to visualize it on the - plane.

·

·

· x y

7/71

Visualizing

plot(X, Y, type="l")

Nice looking random function!·

8/71

Properties?

What are the properties of this function?

Several are super easy to deduce from the form of the covariance structure.

We'll get a range of about with 95% probability, because the scale of the
covariance is 1.

We'll get lots of bumps in the -range of because short distances are highly
correlated and long distances are essentially uncorrelated:

· [−2, 2]

· x [0, 10]

c(exp(-1^2), exp(-4^2))

[1] 3.678794e-01 1.125352e-07

The surface is going to be extremely smooth because the covariance function is
infinitely differentiable,

·

a discussion for another time.-

9/71

Multiple draws

But we can't anticipate much else about the nature of a particular realization.

Y <- rmvnorm(3, sigma=Sigma)

matplot(X, t(Y), type="l", ylab="Y")

10/71

Posterior

Of course, we're not in the business of generating random functions.

Instead, we want to ask

I.e., we want to know about the conditional distribution of .

I'm not sure what that would be useful for.

Who cares what 's you can produce from GP prior: ?

·

· Y(x) Y(x) ∼ 

Given examples of a function via pairs , comprising of data
,

what random function realizations could explain those values?

· (,),… , (,)x1 y1 xn yn
= (,)Dn Xn Yn

·

Y(x) ∣ Dn

If we call the prior, then must be the posterior.· Y(x) ∼  Y(x) ∣ Dn

11/71

Nonparametric regression

But we don't need to get all Bayesian about it,

That conditional distribution, the predictive distribution, is the cornerstone of
regression analysis.

Forget, for the moment, that

The curious, and most noteworthy, thing is that so far there are no parameters in
the current setup!

Lets shelve interpretation (Bayesian updating or a twist on simple regression) for a
moment and just focus on conditional distributions.

as much as I love all things Bayesian.·

when regressing one is often interested in other aspects (relevance of predictors,
etc.), via estimates of parameters,

and that so far our random functions look like they have no noise!

·

·

12/71

MVN partition

Deriving that predictive distribution is a simple application of deducing conditional
distributions from a (joint) MVN.

From Wikipedia, if an dimensional random vector is partitioned as

and accordingly and are partitioned as,

and

N x

x = () with sizes () ,
x1

x2

q × 1

(N − q) × 1

μ Σ

μ = () with sizes ()
μ1

μ2

q × 1

(N − q) × 1

Σ = () with sizes () ,
Σ11

Σ21

Σ12

Σ22

q × q

(N − q) × q

q × (N − q)

(N − q) × (N − q)

13/71

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions

MVN conditional

… then, the distribution of conditional on is MVN , where

An interesting feature of this result is that conditioning upon alters (decreases) the
variance of compared to its marginal variance ,

x1 x2 ∣ ∼ (,)x1 x2 q μ̄ Σ̄

μ̄

and Σ̄

= + (−)μ1 Σ12Σ
−1

22
x2 μ2

= − .Σ11 Σ12Σ
−1
22 Σ21

x2

x1 Σ11

but the amount by which it is decreased does not depend on the value of .

Whereas the mean is also altered, by an amount that does depend upon .

Also note that .

· x2

· x2

· =Σ12 Σ⊤
21

14/71

Joint GP modeling

How do we deploy that to derive ?

Consider an observation . Now, let and have a joint MVN
distribution with mean zero and covariance function .

That is, stack

and if is the matrix comprised of , its covariance
structure can be partitioned as follows.

Y(x) ∣ Dn

n + 1st Y(x) Y(x) Yn
Σ(x,)x′

() with sizes () ,
Y(x)

Yn

1 × 1

n × 1

Σ(, x)Xn n × 1 Σ(, x),… ,Σ(, x)x1 xn

() with sizes ()Σ(x, x)

Σ(, x)Xn

Σ(x,)Xn

Σn

1 × 1

n × 1

1 × n

n × n

Recall that with our choice of covariance structure.

Note that .

· Σ(x, x) = 1

· Σ(x,) = Σ(, xXn Xn)⊤

15/71

GP prediction

Our conditional results for the MVN give us the following predictive distribution

with

 is linear in the observations .

 is lower than the marginal variance .

Y(x) ∣ ∼ (μ(x), (x))Dn σ2

mean μ(x)

and variance (x)σ2

= Σ(x,)Xn Σ
−1
n Yn

= 1 − Σ(x,) Σ(x, .Xn Σ
−1
n Xn)⊤

μ(x) Yn

We have a linear predictor! In fact it is the best linear unbiased predictor (BLUP).·

(x)σ2 Σ(x, x) = 1

So we learn something from the data ; in fact the amount it goes down is a
function of the distance between and .

But it doesn't depend on the values.

· Yn
x Xn

· Yn

16/71

Multiple prediction

Those were "pointwise" predictive calculations.

However, that's easily fixed by considering a bunch of locations, in a predictive
design of rows, say, all at once:

with

We can apply them, separately, for many locations,

but that would ignore the obvious correlation they would experience in a big MVN
analysis.

· x

·

x

 n′

Y() ∣ ∼ (μ(),Σ())Dn n′

mean μ()

and variance Σ()

= Σ(,)Xn Σ
−1
n Yn

= Σ(,) − Σ(,) Σ(, .Xn Σ
−1
n Xn)⊤

where is an matrix.· Σ(,)Xn × nn′

17/71

For example …

Consider some super simple data in 1d.

Here are the relevant data quantities.

Here are the relevant predictive quantities.

n <- 8

X <- matrix(seq(0,2*pi,length=n), ncol=1)

y <- sin(X)

D <- distance(X)

Sigma <- exp(-D)

XX <- matrix(seq(-0.5, 2*pi+0.5, length=100), ncol=1)

DXX <- distance(XX)

SXX <- exp(-DXX) + diag(eps, ncol(DXX))

DX <- distance(XX, X)

SX <- exp(-DX)

18/71

Predictive equations in R

Now we just follow the formulas.

Joint draws are obtained from the predictive distribution as follows.

We can plot those YY samples as a function of the input XX locations.

Si <- solve(Sigma)

mup <- SX %*% Si %*% y

Sigmap <- SXX - SX %*% Si %*% t(SX)

YY <- rmvnorm(100, mup, Sigmap)

Y() =  =

Maybe along with some pointwise quantile-based error bars.·

q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap)))

q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap)))

You ready?·

19/71

Visualizing

matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y")

points(X, y, pch=20, cex=2)

lines(XX, mup, lwd=2); lines(XX, sin(XX), col="blue")

lines(XX, q1, lwd=2, lty=2, col=2); lines(XX, q2, lwd=2, lty=2, col=2)

20/71

Commentary

What do we observe?

These features, but especially the football shape, is what makes GPs popular for
computer experiments.

Notice how the predictive surface interpolates the data.

That's because and as .

The error-bars have a "football" shape, being widest at locations that are farthest
from the values in the data.

The error-bars get really big outside the range of the data,

but look at how the predictive mean is mean-reverting (to zero).

The predictive variance, we know, will level off to 1.

That means we can't trust the extrapolations too far outside the data range, but at
least they're behavior is not unpredictable.

·

· Σ(x, x) = 1 Σ(x,) →x′ 1− → xx′

·
xi

·

·

·

·

Oh, and they're really accurate out-of sample!·

21/71

Higher dimension?

Nothing special here, except visualization is lots simpler in 1d or 2d.

Consider a random function in 2d sampled from the GP prior.

First lets create a grid·

nx <- 20

x <- seq(0,2,length=nx)

X <- expand.grid(x, x)

Then calculate distances and evaluate the covariance on that grid.·

D <- distance(X)

Sigma <- exp(-D) + diag(eps, nrow(X))

Now we can make random draws and stretch them over a mesh.·

22/71

Two realizations:

Y <- rmvnorm(2, sigma=Sigma)

par(mfrow=c(1,2), mar=c(1,0.5,0.5,0.5))

persp(x,x, matrix(Y[1,], ncol=nx), theta=-30,phi=30,xlab="x1",ylab="x2",zlab="y")

persp(x,x, matrix(Y[2,], ncol=nx), theta=-30,phi=30,xlab="x1",ylab="x2",zlab="y")

23/71

Prediction in 2d?

Consider some 2d synthetic data and a 2d predictive grid.

Here are the relevant data quantities, essentially cut-and-paste from above.

Here are the relevant predictive quantities.

library(lhs)

X <- randomLHS(40, 2)

X[,1] <- (X[,1] - 0.5)*6 + 1

X[,2] <- (X[,2] - 0.5)*6 + 1

y <- X[,1] * exp(-X[,1]^2 - X[,2]^2)

xx <- seq(-2,4, length=40); XX <- expand.grid(xx, xx)

D <- distance(X)

Sigma <- exp(-D)

DXX <- distance(XX)

SXX <- exp(-DXX) + diag(eps, ncol(DXX))

DX <- distance(XX, X)

SX <- exp(-DX)

24/71

MVN Conditionals

Now we just follow the formulas: these are identical.

It is hard to visualize a multitude of sample paths in 2d,

Instead, we'll focus on plotting pointwise summaries, namely

Si <- solve(Sigma)

mup <- SX %*% Si %*% y

Sigmap <- SXX - SX %*% Si %*% t(SX)

but we can obtain them with the same rmvnorm command if we'd like.·

the predictive mean, mup above, and

the predictive standard deviation:

·

·

sdp <- sqrt(diag(Sigmap))

25/71

Beautiful:

par(mfrow=c(1,2)); cols <- heat.colors(128)

image(xx,xx, matrix(mup, ncol=length(xx)), xlab="x1",ylab="x2", col=cols)

points(X[,1], X[,2])

image(xx,xx, matrix(sdp, ncol=length(xx)), xlab="x1",ylab="x2", col=cols)

points(X[,1], X[,2])

26/71

What do we observe? Pretty much the same thing as in the 1d case.

Here is another look at what we predicted.

We can't see it, but the predictive surface interpolates.

The predictive standard deviation is highest away from the values in the data.

·

· xi

par(mar=c(1,0.5,0,0.5))

persp(xx,xx, matrix(mup, ncol=40), theta=-30,phi=30,xlab="x1",ylab="x2",zlab="y")

27/71

Where do we go from here?

Hopefully you're starting to be convinced that GPs represent a powerful
nonparametric regression tool.

Its kinda-cool that they do so well without really having to learn anything.

But when you think about it a little bit, there are lots of (hidden) assumptions which
are going to be violated by most real-data contexts.

It is just a simple application of MVN conditionals

paired with a distance-based notion of covariance.

·

·

Data can be noisy.

The amplitude of the function is not 2 (i.e., we don't know it in advance).

Correlation doesn't decay uniformly in all directions (i.e., radially).

Even the most ideally smooth physical relationships are rarely infinitely smooth.

·

·

·

·

28/71

GP hyperparameters

Scale

Lets suppose you wanted your prior to generate random functions which had an
amplitude larger than two.

Here, is basically the same as our before: a correlation function for which
 and for , and positive definite. E.g.,

Now our MVN generator looks like

You could introduce a scale parameter, lets call it ,

and then take .

· τ2

· =Σn τ2Cn

C Σ

C(x, x) = 1 C(x,) < 1x′ x ≠ x′

C(x,) = exp{||x − | }x′ x′ |2

But now we need a more nuanced notion of covariance, to accommodate scale, so
we're re-parameterizing a bit.

·

Y ∼ (0,).n τ2Cn

30/71

Checking

That ought to do the trick. E.g., for an amplitude of 10, choose .= = 25τ2 52

n <- 100; X <- matrix(seq(0, 10, length=n), ncol=1)

D <- distance(X); C <- exp(-D + diag(eps, n))

tau2 <- 25; Y <- rmvnorm(1, sigma=tau2 * C)

plot(X, Y, type="l")

31/71

Inference

Again, who cares about generating data?

What would happen if we had some data with an amplitude of 5, but we used a GP
with a built-in scale of 1 [amplitude of 2].

We want to be able to learn about a function on any scale.·

n <- 8

X <- matrix(seq(0,2*pi,length=n), ncol=1)

y <- 5*sin(X) ## this is the only difference

D <- distance(X)

Sigma <- exp(-D)

XX <- matrix(seq(-0.5, 2*pi+0.5, length=100), ncol=1)

DXX <- distance(XX)

SXX <- exp(-DXX) + diag(eps, ncol(DXX))

DX <- distance(XX, X)

SX <- exp(-DX)

Si <- solve(Sigma);

mup <- SX %*% Si %*% y

Sigmap <- SXX - SX %*% Si %*% t(SX)

32/71

YY <- rmvnorm(100, mup, Sigmap)

q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap)))

q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap)))

matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y")

points(X, y, pch=20, cex=2)

lines(XX, mup, lwd=2); lines(XX, 5*sin(XX), col="blue")

lines(XX, q1, lwd=2, lty=2, col=2); lines(XX, q2, lwd=2, lty=2, col=2)

33/71

What happened?

Actually, the "scale 1" GP was pretty robust.

But it is over confident.

So we are under-estimating the predictive uncertainty,

And if we look closely, we can see that the true function goes well outside our
predictive interval at the edges of the input space.

It gets the predictive mean almost perfectly, despite using the "wrong prior"
relative to the actual data generating mechanism.

·

Besides a change of scale, the data exhibit no change in relative error,

nor any other changes for that matter, compared to the example we did above
where the scale was actually 1.

·

·

which is obvious by visually comparing the error-bars.·

That didn't happen before.·

34/71

Estimating the scale

How do we estimate the scale?

As with any "parameter", we have many choices when it comes to estimation.

I have a strong preference for likelihood-based methods (MLE/Bayes) because they
are relatively hands-off, and nicely generalize to higher dimensional parameter
spaces.

… which in this context is called a hyperparameter, because its impact on the
overall estimation procedure is really more of a "fine tuning";

The real flexibility in the predictive surface often materializes, as we have seen, in
spite of such parameter settings.

·

·

method of moments

likelihood (maximum likelihood, Bayesian inference)

cross validation

the "eyeball" method

·

·

·

·

35/71

Likelihood

(Strange that we've been talking priors and posteriors without likelihoods.)

Our data-generating process is , so

To maximize that likelihood with respect to , say, just differentiate and solve.

Y ∼ (0,)n τ2Cn

L ≡ L(,C) = (2π | exp{− }.τ2 τ2)−
n

2 Cn |−
1

2
1

2τ2
Y ⊤
n C

−1
n Yn

And the log of that is·

ℓ = logL = − log 2π − log − log | | − .
n

2

n

2
τ2 1

2
Cn

1

2τ2
Y ⊤
n C

−1
n Yn

τ2

0 =
set

ℓ′

so τ ̂
2

= − + .
n

2τ2

1

2(τ2)2
Y ⊤
n C

−1
n Yn

= .
Y ⊤
n C

−1
n Yn

n

36/71

Predictive equations

Now when we plug into the predictive equations, we're technically turning a
(multivariate) normal into a (multivariate) Student- with degrees of freedom.

We have

τ ̂
2

t n

but lets presume, for now, that is large enough so that doesn't matter.

We'll see that, as we generalize to more hyperparameters, it could indeed matter.

· n

·

Y() ∣ Dn

with mean μ()

and variance Σ()

∼ (μ(),Σ())n′

= C(,)Xn C
−1
n Yn

= [C(,) − C(,) C(,].τ ̂
2

Xn C
−1
n Xn)⊤

Notice how does not factor into the predictive mean

but it does figure into the predictive variance

· τ ̂
2

·

and that means the -values are finally involved!- Yn

37/71

Back to our example

First estimate .

Now estimate the predictive mean vector and covariance matrix …

… and visualize …

τ2

CX <- SX; Ci <- Si; CXX <- SXX

tau2hat <- drop(t(y) %*% Ci %*% y / length(y))

2*sqrt(tau2hat)

[1] 5.486648

Close to what we know is the truth.·

mup2 <- CX %*% Ci %*% y

Sigmap2 <- tau2hat * (CXX - CX %*% Ci %*% t(CX))

YY <- rmvnorm(100, mup2, Sigmap2)

q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap2)))

q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap2)))

38/71

Much better.

matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y")

points(X, y, pch=20, cex=2)

lines(XX, mup, lwd=2); lines(XX, 5*sin(XX), col="blue")

lines(XX, q1, lwd=2, lty=2, col=2); lines(XX, q2, lwd=2, lty=2, col=2)

39/71

Noise and nuggets

To "break" interpolation, we need to "break" the continuity of the correlation
structure on the diagonal.

The simplest way to "break it" is to take

Right now we have as

which says that the closer is to the higher the correlation,

· C(x,) →x′ 1− x → x′

· x x′

until the correlation is perfect, which is what "connects the dots".-

K(x,) = C(x,) + gx′ x′ δx,x′

where is a hyperparameter, sometimes called the nugget, which determines
the size of the discontinuity as .

 is the Kroneker delta function, although the way it is written above makes it look
like the Dirac delta.

· g > 0

→ xx′

· δ

40/71

https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Dirac_delta_function

Covariance

What does that mean?

We only add in when indices of are the same, not simply for identical values.

So the previous slide abused notation a little.

This leads to the following representation of the data-generating mechanism.

I.e., the covariance matrix is comprised of entries

g x

 when , even if ;

only .

· K(,) = C(,)xi xj xi xj i ≠ j =xi xj

· K(,) = C(,) + gxi xi xi xi

Y ∼ (0,)n τ2Kn

Σn

= (C(,) + g)Σ
ij
n τ2 xi xj δij

or in other words .· = = (+ g)Σn τ2Kn τ2 Cn 𝕀n

41/71

Inference

How, then, do we estimate the hyperparameter ?

The MLE , given (the only other hyperparameter) is

So lets plug that back into our log likelihood, to get a concentrated log likelihood (or
profile likelihood) involving just the remaining parameter .

g

Again we have all the usual suspects, but I like the likelihood the best.·

τ ̂
2

g

= = .τ ̂
2 Y ⊤

n K
−1
n Yn

n

(+Yn Cn 𝕀g)−1Yn

n

g

ℓ(g) = − log 2π − log −
n

2

n

2
τ ̂

2 1

2τ ̂
2
Y ⊤
n K

−1
n Yn

= c − log − log | |
n

2
YnK

−1
n Yn

1

2
Kn

42/71

Numerical methods

Unfortunately, maximizing requires numerical methods.

The simplest thing to do is to throw it into optimize.

ℓ(g)

So lets code up in R.· −ℓ(g)

counter <- 0

nlg <- function(g, D, Y)

 {

 n <- length(Y)

 K <- exp(-D) + diag(g, n)

 Ki <- solve(K)

 ldetK <- determinant(K, logarithm=TRUE)$modulus

 ll <- - (n/2) * log(t(Y) %*% Ki %*% Y) - (1/2) * ldetK

 counter <<- counter + 1

 return(-ll)

 }

Now that's our objective function.

A sensible search range for is between eps and var(y).

·

· g

43/71

For example

Defining some noisy data quantities.

Optimizing to estimate the nugget.

And that gives …

X <- rbind(X, X); n <- nrow(X); D <- distance(X)

y <- 5*sin(X) + rnorm(n, sd=1)

print(g <- optimize(nlg, interval=c(eps, var(y)), D=D, Y=y)$minimum)

[1] 0.1329716

K <- exp(-D) + diag(g, n)

Ki <- solve(K)

print(tau2hat <- drop(t(y) %*% Ki %*% y / n))

[1] 8.350842

44/71

Now prediction using the estimated hyperparameters …

Derive the predictive mean vector and covariance matrix.

If we want to show sample predictive realizations, and want them to look pretty, we
should "subtract" out the extrinsic noise,

DX <- distance(XX, X); KX <- exp(-DX)

KXX <- exp(-DXX) + diag(g, nrow(DXX))

mup <- KX %*% Ki %*% y

Sigmap <- tau2hat * (KXX - KX %*% Ki %*% t(KX))

q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap)))

q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap)))

i.e., the part due to the nugget .

Otherwise our sample paths will be all "jaggety".

· g

·

Sigma.int <- tau2hat * (exp(-DXX) + diag(eps, nrow(DXX)) - KX %*% Ki %*% t(KX))

YY <- rmvnorm(100, mup, Sigma.int)

45/71

matplot(XX, t(YY), type="l", lty=1, col="gray", xlab="x", ylab="y")

points(X, y, pch=20, cex=2)

lines(XX, mup, lwd=2); lines(XX, 5*sin(XX), col="blue")

lines(XX, q1, lwd=2, lty=2, col=2); lines(XX, q2, lwd=2, lty=2, col=2)

The error-bars, containing extrinsic noise, are mostly outside the gray lines.·

46/71

Derivative-based optimization

It can be unsatisfying to "brute-force" an optimization for a hyperparameter like ,

How about using derivative information? For that, the following is useful.

g

even though 1-d solving via optimize is often superior to cleverer methods. Can
we improve on the number of evaluations?

·

print(nlg.count <- counter)

[1] 18

= − and = tr{ }
∂K

−1
n

∂ϕ
K

−1
n

∂Kn

∂ϕ
K

−1
n

∂ log | |Kn

∂ϕ
K

−1
n

∂Kn

∂ϕ

These are framed in terms of a generic parameter involved in building .· ϕ Kn

47/71

Derivative of the log likelihood

By the chain rule,

Therefore, we have

(g)ℓ′ = − −
n

2

Yn
∂K −1

n

∂g
Yn

YnK
−1
n Yn

1

2

∂ log | |Kn

∂g

= − tr{ }
n

2

YnK
−1
n

∂Kn

∂g
K

−1
n Yn

YnK
−1
n Yn

1

2
K

−1
n

∂Kn

∂g

The off diagonal elements of have no in them,

and the diagonal is simply ,

so is simply an -dimensional identity matrix.

· Kn g

· 1 + g

· ∂K
−1
n

∂g
n

(g) = − tr{ } .ℓ′ n

2

(Yn K
−1
n)2Yn

YnK
−1
n Yn

1

2
K

−1
n

48/71

Coded in R

Here is an implementation of the gradient of our (negative) log likelihood in R.

Lets throw that into optim and see what happens.

gnlg <- function(g, D, Y)

 {

 n <- length(Y)

 K <- exp(-D) + diag(g, n)

 Ki <- solve(K)

 KiY <- Ki %*% Y

 dll <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2) * sum(diag(Ki))

 return(-dll)

 }

I like method="L-BFGS-B" because it supports derivatives, and bounds.·

49/71

Solution

How many iterations?

out <- optim(0.1*var(y), nlg, gnlg, method="L-BFGS-B",

 lower=eps, upper=var(y), D=D, Y=y)

c(g, out$par)

[1] 0.1329716 0.1329737

Very similar to the optimize output.·

out$counts

function gradient

14 14

14 iterations to optimize something is pretty excellent!

But possibly not noteworthy compared to optimize's 18.

·

·

50/71

What else?

How about the rate of decay of correlation in terms of distance.

Consider the following generalization of the covariance function.

This (hyper-) parameterized family of correlation functions,

is called the isotropic Gaussian family.

Surely unadulterated Euclidean distance is not equally suited to all data.·

(x,) = exp{− }.Cθ x′ ||x − |x′ |2

θ

indexed by the scalar hyperparameter , called the characteristic lengthscale,· θ

Isotropic because correlation decays radially;

Gaussian because squared distance is used.

·

·

51/71

Inference for ?

This is no different than our inference for ,

Lets first go the brute-force route for maximizing the likelihood.

θ

g

except now we have two unknown parameters.·

counter <- 0

nl <- function(par, D, Y)

 {

 theta <- par[1] ## change 1

 g <- par[2]

 n <- length(Y)

 K <- exp(-D/theta) + diag(g, n) ## change 2

 Ki <- solve(K)

 ldetK <- determinant(K, logarithm=TRUE)$modulus

 ll <- - (n/2) * log(t(Y) %*% Ki %*% Y) - (1/2) * ldetK

 counter <<- counter + 1

 return(-ll)

 }

And shove it into optim.·

52/71

Back to the 2d example

For fun, lets switch back to our 2d example.

Estimating a lengthscale and the nugget is an attempt at resolving a tension
between signal and noise.

library(lhs)

X <- randomLHS(40, 2)

X <- rbind(X,X)

X[,1] <- (X[,1] - 0.5)*6 + 1

X[,2] <- (X[,2] - 0.5)*6 + 1

y <- X[,1] * exp(-X[,1]^2 - X[,2]^2) + rnorm(nrow(X), sd=0.01)

(That's one reason why I have re-generated the data here to contain replications.)

(And in the 1d sinusoidal example too.)

·

·

53/71

Joint optimization

It helps to think a little about starting values and search ranges.

Since "L-BFGS-B" is calculating a gradient numerically, the reported count of
evaluations in the output doesn't match the number of actual evaluations:

D <- distance(X)

out <- optim(c(0.1, 0.1*var(y)), nl, method="L-BFGS-B",

 lower=eps, upper=c(10, var(y)), D=D, Y=y)

out$par

[1] 1.250961400 0.007816775

Actually, pretty close to our initial version with implied .· θ = 1

print(brute <- c(out$counts, actual=counter))

function gradient actual

28 28 140

54/71

Predictive surface

Re-building the data quantities

And then the predictive quantities.

K <- exp(- D/out$par[1]) + diag(out$par[2], nrow(X))

Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / nrow(X))

xx <- seq(-2,4, length=40)

XX <- expand.grid(xx, xx)

DXX <- distance(XX)

KXX <- exp(-DXX/out$par[1]) + diag(out$par[2], ncol(DXX))

DX <- distance(XX, X)

KX <- exp(-DX/out$par[1])

55/71

Pretty much the same as before.

mup <- KX %*% Ki %*% y; Sigmap <- tau2hat * (KXX - KX %*% Ki %*% t(KX))

par(mfrow=c(1,2))

image(xx,xx, matrix(mup, ncol=length(xx)), xlab="x1",ylab="x2", col=cols)

points(X[,1], X[,2])

image(xx,xx, matrix(sdp, ncol=length(xx)), xlab="x1",ylab="x2", col=cols)

points(X[,1], X[,2])

56/71

Can we do better?

What if we take derivatives with respect to , and combine with those for and form
a gradient?

We'll need .

So actually we have where the product is component-wise
(Hadamard), and contains a matrix of Euclidean distances.

θ g

≡K˙ n
∂Kn

∂θ

The diagonal is zero.

The off diagonal entries of are calculated as follows.

·

· K˙ n

Since

we have

(,)Kθ xi xj

∂ (,)Kθ xi xj

∂θ

= exp{− }
||x − |x′ |2

θ

= (,) .Kθ xi xj
||x − |x′ |2

θ2

= ⋅ /K˙ n Kn Distn θ2

Distn

57/71

The full derivative

(θ) = − tr{ }ℓ′ n

2

YnK
−1
n K˙ nK

−1
n Yn

YnK
−1
n Yn

1

2
K

−1
n K˙ n

gradnl <- function(par, D, Y)

 {

 theta <- par[1]; g <- par[2]

 n <- length(Y)

 K <- exp(-D/theta) + diag(g, n)

 Ki <- solve(K)

 dotK <- K * D / theta^2

 KiY <- Ki %*% Y

 ## for theta then g

 dlltheta <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -

 (1/2) * sum(diag(Ki %*% dotK))

 dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2) * sum(diag(Ki))

 return(-c(dlltheta, dllg))

 }

58/71

How does it work?

What about number of evaluations?

counter <- 0

outg <- optim(c(0.1, 0.1*var(y)), nl, gradnl, method="L-BFGS-B",

 lower=eps, upper=c(10, var(y)), D=D, Y=y)

rbind(grad=outg$par, brute=out$par)

[,1] [,2]

grad 1.253856 0.007736151

brute 1.250961 0.007816775

Nearly identical result.·

rbind(grad=c(outg$counts, actual=counter), brute)

function gradient actual

grad 11 11 11

brute 28 28 140

Woah, way better!·

59/71

Alright, what else?

Lets expand the dimension a bit, and get ambitious. Visualization will be hard, but
we have other (relative) progress metrics.

Consider the so-called Friedman function from the MARS paper.

Lets generate training and testing sets.

fried <- function (n=50, p=6)

{

 if(p < 5) stop("must have at least 5 cols")

 X <- matrix(runif(n * p), nrow = n)

 Ytrue <- 10*sin(pi*X[,1]*X[,2]) + 20*(X[,3]-0.5)^2 + 10*X[,4] + 5*X[,5]

 Y <- Ytrue + rnorm(n, 0, 1)

 return(data.frame(X, Y, Ytrue))

}

n <- 200; p <- 7

train <- fried(n, p); test <- fried(1000, p)

X <- as.matrix(train[,1:p]); XX <- as.matrix(test[,1:p])

y <- drop(train$Y); yy <- drop(test$Y); yytrue <- drop(test$Ytrue)

60/71

https://www.sfu.ca/~ssurjano/fried.html
https://projecteuclid.org/euclid.aos/1176347963

Fitting the GP hyperparameters

Lets learn the isotropic Gaussian lengthscale , and the nugget .θ g

D <- distance(X)

print(out <- optim(c(0.1, 0.1*var(y)), nl, gradnl, method="L-BFGS-B",

 lower=eps, upper=c(10, var(y)), D=D, Y=y))

$par

[1] 3.088968842 0.006238756

$value

[1] 656.0302

$counts

function gradient

28 28

$convergence

[1] 0

$message

[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

61/71

Completing the fit

Re-building the data quantities.

And then the predictive quantities.

Predicting

K <- exp(- D/out$par[1]) + diag(out$par[2], nrow(D))

Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / nrow(D))

DXX <- distance(XX)

KXX <- exp(-DXX/out$par[1]) + diag(out$par[2], ncol(DXX))

DX <- distance(XX, X)

KX <- exp(-DX/out$par[1])

mup <- KX %*% Ki %*% y

Sigmap <- tau2hat * (KXX - KX %*% Ki %*% t(KX))

Before looking at raw results, what are we going to compare them to?·

62/71

A comparator

How about MARS?

Which wins on RMSE to the truth?

library(mda)

fit.mars <- mars(X, y)

p.mars <- predict(fit.mars, XX)

rmse <- c(gp=sqrt(mean((yytrue-mup)^2)),mars=sqrt(mean((yytrue-p.mars)^2)))

rmse

gp mars

1.304017 1.683273

Usually the GP; and MARS doesn't come with a notion of predictive variance.·

63/71

Even better?

How can we improve upon our GP results?

Is it reasonable for correlation to decay uniformly in each input direction?

How about the following generalization?

This correlation function is called the separable or anisotropic Gaussian.

I.e., to decay radially, modulated by a scalar ?· θ

(x,) = exp{− }Cθ x′

∑
k=1

m (−xk x′
k)

2

θk

Here we are using a vectorized lengthscale parameter .· θ = (,… ,)θ1 θm

Separable because the sum is a product when taken outside the exponent,
implying independence in each coordinate direction.

·

64/71

Inference?

How would we do inference for such a vectorized parameter?

Simple; just expand the log likelihood and derivative functions to work with a
vectorized .

Each coordinate has a different , so pre-computing a distance matrix isn't helpful.

θ

In particular, a for in the gradient function can iterate over coordinates.

For that we'll need to plug

into our formula for each , which is otherwise unchanged.

·

·

= .
∂K

ij
n

∂θk
K

ij
n

(−xik xjk)
2

θ2
k

()ℓ′ θk

θk

Instead we'll use the covar.sep function from the plgp package which takes d
and g arguments.

· = θ

65/71

Separable log likelihood

Before going derivative crazy, lets focus on the likelihood.

nlsep <- function(par, X, Y)

 {

 theta <- par[1:ncol(X)]

 g <- par[ncol(X)+1]

 n <- length(Y)

 K <- covar.sep(X, d=theta, g=g)

 Ki <- solve(K)

 ldetK <- determinant(K, logarithm=TRUE)$modulus

 ll <- - (n/2) * log(t(Y) %*% Ki %*% Y) - (1/2) * ldetK

 counter <<- counter + 1

 return(-ll)

 }

As simple as that.·

66/71

Optimizing separable lengthscale

Here we go.

And how about the number of evaluations?

tic <- proc.time()[3]; counter <- 0

out <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, method="L-BFGS-B", X=X, Y=y,

 lower=eps, upper=c(rep(10, ncol(X)), var(y)))

out$par

[1] 1.025313038 1.120941945 1.488923585 8.695954184 10.000000000

[6] 9.904733738 9.626304609 0.009453324

brute <- c(out$counts, actual=counter, time=proc.time()[3]-tic)

brute

function gradient actual time.elapsed

146.000 146.000 2482.000 21.047

Lots!·

67/71

Gradient calculation

gradnlsep <- function(par, X, Y)

 {

 theta <- par[1:ncol(X)]

 g <- par[ncol(X)+1]

 n <- length(Y)

 K <- covar.sep(X, d=theta, g=g)

 Ki <- solve(K)

 KiY <- Ki %*% Y

 ## loop over theta components

 dlltheta <- rep(NA, length(theta))

 for(k in 1:length(dlltheta)) {

 dotK <- K * distance(X[,k])/(theta[k]^2)

 dlltheta[k] <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -

 (1/2) * sum(diag(Ki %*% dotK))

 }

 ## for g

 dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2) * sum(diag(Ki))

 return(-c(dlltheta, dllg))

 }

68/71

Now with closed form gradients.

What about number of evaluations?

tic <- proc.time()[3]; counter <- 0

outg <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, gradnlsep,

 method="L-BFGS-B", lower=eps, upper=c(rep(10, ncol(X)), var(y)), X=X, Y=y)

round(rbind(grad=outg$par, brute=out$par), 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

grad 1.07068 1.02566 1.40324 7.50793 10 10.00000 9.99798 0.00992

brute 1.02531 1.12094 1.48892 8.69595 10 9.90473 9.62630 0.00945

Nearly identical result.·

rbind(grad=c(outg$counts, actual=counter, time=proc.time()[3]-tic), brute)

function gradient actual time.elapsed

grad 141 141 141 6.935

brute 146 146 2482 21.047

Far fewer!·

69/71

Predictive accuracy

How does the separable GP compare against the isotropic one and MARS?

Evaluating by RMSE.

K <- covar.sep(X, d=out$par[1:ncol(X)], g=out$par[ncol(X)+1]); Ki <- solve(K)

tau2hat <- drop(t(y) %*% Ki %*% y / nrow(X))

KXX <- covar.sep(XX, d=out$par[1:ncol(X)], g=out$par[ncol(X)+1])

KX <- covar.sep(XX, X, d=out$par[1:ncol(X)], g=0)

mup <- KX %*% Ki %*% y

Sigmap <- tau2hat * (KXX - KX %*% Ki %*% t(KX))

rmse <- c(rmse, gpsep=sqrt(mean((yytrue - mup)^2)))

rmse

gp mars gpsep

1.3040174 1.6832728 0.8225321

Woot! But all this cutting and pasting …·

70/71

… isn't there a library for that?

library(laGP)

tic <- proc.time()[3]

gpi <- newGPsep(X, y, d=0.1, g=0.1*var(y), dK=TRUE)

the MLE calculation is (Bayes) integrated rather than concentrated

mle <- mleGPsep(gpi, param="both", tmin=c(eps, eps), tmax=c(10, var(y)))

elapsed <- as.numeric(proc.time()[3] - tic)

p <- predGPsep(gpi, XX)

deleteGPsep(gpi)

rmse <- c(rmse, bobby=sqrt(mean((yytrue - p$mean)^2)))

rmse

gp mars gpsep bobby

1.3040174 1.6832728 0.8225321 0.8412929

There are several libraries, but laGP's optimized C backend is the fastest.·

elapsed

[1] 1.052

71/71

