
Introduction
RSMs and Computer Experiments
Robert B. Gramacy (rbg@vt.edu (mailto:rbg@vt.edu) : http://bobby.gramacy.com
(http://bobby.gramacy.com))
Department of Statistics, Virginia Tech

Plan
“Classical” RSMs, but only as a jumping-off point.
The interplay between mathematical models, numerical approximation, simulation, computer experiments, and (field)
data.

Gaussian process (GP) spatial models, emphasizing
surrogate computer modeling,
sequential design, Bayesian optimization,
calibration,
variable selection and sensitivity analysis, and more.

Uncertainty quantification, where statistics ought to monopolize but sometimes doesn’t.
Machine learning methods:

“big- ” GP solutions (sparsity), non-stationary GP modeling, the frontier …

“Classical” RSM overview
RSM
Response surface methodology (RSM) is a collection of statistical and mathematical techniques for developing, improving,
and optimizing processes.

Applications historically come from industry and manufacturing, focused on

design, development, and formulation of new products,
and the improvement of existing products,

but also from (national) laboratory research, and with obvious military application.

The over-arching theme is a study of how

input variables controlling a product or process potentially influence a
response measuring performance or quality characteristics.

Terminology
Consider the relationship between the

response variable yield () in a chemical process
and the two process variables reaction time () and reaction temperature ()

n

y

ξ1 ξ2

mailto:rbg@vt.edu
http://bobby.gramacy.com/

yield <- function(xi1, xi2)

 {

 xi1 <- 3*xi1 - 15

 xi2 <- xi2/50 - 13

 xi1 <- cos(0.5)*xi1 - sin(0.5)*xi2

 xi2 <- sin(0.5)*xi1 + cos(0.5)*xi2

 y <- exp(-xi1^2/80 - 0.5*(xi2 + 0.03*xi1^2 - 40*0.03)^2)

 return(100*y)

 }

This toy example is really a variation on the infamous “banana function”.

Here, the yield response is plotted as a surface above the time/temperature plane.

xi1 <- seq(1, 8, length=100); xi2 <- seq(100, 1000, length=100)

g <- expand.grid(xi1, xi2); y <- yield(g[,1], g[,2])

persp(xi1, xi2, matrix(y, ncol=length(xi2)), theta=45, phi=45, lwd=0.5,

 xlab="xi1 : time", ylab="xi2 : temperature", zlab="yield", expand=0.4)

By inspection, the yield response is optimized near

image(xi1, xi2, matrix(y, ncol=length(xi2)), col=heat.colors(128))

contour(xi1, xi2, matrix(y, ncol=length(xi2)), nlevels=4, add=TRUE)

(,) = (5 hr, C)ξ1 ξ2 750∘

Easier said than done
Unfortunately, in practice, the true response surface is unknown.

It is too expensive to evaluate yield over a dense grid, because

re-configuring the inputs may involve restarting an intricate (manufacturing) process,
or might require an upgrade of equipment,
or be otherwise inconvenient.

Measuring yield may be a noisy/inexact process.

That’s where stats comes in
RSMs consist of the experimental strategies for

statistically modeling the relationship between the response (yield) and process variables;
paired with optimization/sequential design methods for finding the levels or values of the process variables that produce
desirable values of the responses

(e.g., that maximize yield or explain variation).

The setup:

Fit an empirical model (usually first or second-order linear) to observed data from the process or system nearby the
current regime using a carefully designed experiment.

Gradients and Hessians of the predictive equations yield the method of steepest ascent and ridge analysis.

Laborious process
It is a very “careful” enterprise.

It requires statistical and design expertise, making automation difficult.
And is at best informal about how to leverage domain specific (physical) knowledge.

These days folks rarely study industrial or physical processes solely via “on-the-bench”/field experiments.

They are getting more more out of their statistical models, designs and optimizations, by coupling with mathematical
models of the system(s) they are studying.

Often mathematical models are all there is.

It can be too expensive or even unethical to gather data on certain phenomena.

Mathematical models
Simple equations seldom make for adequate descriptions of real-world systems.

Physicists figured that out fifty years ago; industrial engineers followed suit.
Biologists, social scientists, climate scientists, are coming on board.

Systems of equations are required, perhaps solved over meshes

e.g., a so-called finite-element analysis.

Or you might have a big agent/individual-based model that governs how

predictor and prey (randomly) interact with each other and their habitat;
an epidemic spreads through a population, person by person;
citizens make choices about health care and insurance.

Cheaper experimentation
Mathematical/computer models allow a cheaper means of

exploring a system before embarking on a field experiment, or before the next one;
screening variables and assessing main effects/sensitivity;
optimizing (maximizing yield, say) or otherwise searching the input space in an automated way (with a wrapper around
the simulation code).

And they can be studied in isolation, or coupled with field data experiments:

tuning or calibrating the computer model, and/or
leveraging the computer model to predict what would be observed in the field.

An aircraft wing weight example
The following equation has been used to help understand the weight of an unpainted light aircraft wing as a function of design
and operational parameters.

It is not really a computer simulation, but it will stand in for one in this example.
It was derived by “calibrating” known physical relationships to curves obtained from existing aircraft data.

The next slide shows

reasonable ranges for these natural variables (),
and a baseline setting coming from a Sessna C172 Skyhawk aircraft.

Symbol Parameter Baseline Minimum Maximum

W = 0.0365 (S0.758
w W 0.0035

fw ()
A

Λcos2

0.6

q0.006λ0.04()
100Rtc

cosΛ

−0.3

NzWdg)
0.49

ξ

Symbol Parameter Baseline Minimum Maximum

Wing area (ft) 174 150 200

Weight of fuel in wing (lb) 252 220 300

Aspect ratios 7.52 6 10

Quarter-chord sweep (deg) 0 -10 10

Dynamic pressure at cruise (lb/ft) 34 16 45

Taper ratio 0.672 0.5 1

Aerofoil thickness to chord ratio 0.12 0.08 0.18

Ultimate load factor 3.8 2.5 6

Flight design gross weight (lb) 2000 1700 2500

Computer code
In coded variables (), with baseline as the default.

wingwt <- function(Sw=0.48, Wfw=0.28, A=0.38, L=0.5, q=0.62, l=0.344, Rtc=0.4,

 Nz=0.37, Wdg=0.38)

 {

 ## put coded inputs back on natural scale

 Sw <- Sw*(200 - 150) + 150

 Wfw <- Wfw*(300 - 220) + 220

 A <- A*(10 - 6) + 6

 L <- (L*(10 - (-10)) - 10) * pi/180

 q <- q*(45 - 16) + 16

 l <- l*(1 - 0.5) + 0.5

 Rtc <- Rtc*(0.18 - 0.08) + 0.08

 Nz <- Nz*(6-2.5) + 2.5

 Wdg <- Wdg*(2500 - 1700) + 1700

 ## calculation on natural scale

 W <- 0.036*Sw^0.758 * Wfw^0.0035 * (A/cos(L)^2)^0.6 * q^0.006

 W <- W * l^0.04 * (100*Rtc/cos(L))^(-0.3) * (Nz*Wdg)^(0.49)

 return(W)

 }

Sensitivity analysis
Now, if computing is cheap we can explore which variables matter and which work together.

Lets make a 2d grid for exploring pairs of inputs.

x <- seq(0,1,length=100)

g <- expand.grid(x,x)

Now we can use the grid to, say, vary and , with the others fixed at their baseline values.

W.A.Nz <- wingwt(A=g[,1], Nz=g[,2])

(Some auxiliary code for plotting images with smooth colors.)

Sw
2

Wfw

A

Λ

q 2

λ

Rtc

Nz

Wdg

x ∈ [0, 1]9

Nz A

cs <- heat.colors(128)

bs <- seq(min(W.A.Nz), max(W.A.Nz), length=129)

image(x,x, matrix(W.A.Nz, ncol=length(x)), col=cs,breaks=bs,xlab="A",ylab="Nz")

contour(x,x, matrix(W.A.Nz, ncol=length(x)), add=TRUE)

Indicates a heavy wing for high aspect ratios () and large -forces (large).

W.l.Wfw <- wingwt(l=g[,1], Wfw=g[,2])

image(x,x, matrix(W.l.Wfw,ncol=length(x)), col=cs,breaks=bs,xlab="l",ylab="Wfw")

contour(x,x, matrix(W.l.Wfw,ncol=length(x)), add=TRUE)

no interaction and very small effect compared to and

A g Nz

A Nz

Sensible but expensive
Well that’s all fine and good. We’ve learned about two pairs of inputs (out of 36 pairs)

and for each pair we evaluated wingwt 10,000 times.
So to do all pairs would require 360K evaluations — not a reasonable number with a real computer simulation that takes
any non-trivial amount of time to evaluate.

Even at just 1s per evaluation we’re talking > 100 hours.
Many computer experiments take minutes/hours/days to execute a single run.

And even then, we’d only really know about pairs.
How about main effects, or three-way interactions?

We need a different strategy.

Computer model emulation
How about (meta-) modeling the computer model?

The setting is as follows.

The computer model is expensive to evaluate.
So we evaluate it at a “small”, well-chosen design of locations , obtaining pairs , where

 for .
If is deterministic then .

The data pairs are used to train a statistical (regression) model, producing an emulator .
A good emulator does about what would do.

Surrogate model
More precisely, a good emulator can be used in any way could have been used, qualified with appropriate uncertainty
quantification.

Provides a predictive distribution
whose mean can be used as a surrogate for at new -locations
and whose variance provides uncertainty estimates — intervals for that have good coverage properties;

Possibly interpolating when the computer model is deterministic.

Perhaps most importantly, fitting and making predictions should be much faster than working directly with .

Space-filling design
Choosing the design is crucial to good performance.

It might be tempting to work on a grid.

But that won’t work in our 9-dimensional exercise.
Even just having a modest ten grid elements per dimension would balloon into 1-billion runs of the computer code!

So-called space-filling designs were created to mimic the spread of grids, while sacrificing their regularity in order to
dramatically reduce their size.

Latin hypercubes
One easy such space-filling design is called a Latin hypercube sample or LHS.

f (x) : → ℜℜp

= { ,… , }Xn x1 xn n (,)xi yi
∼ f ()yi xi i = 1,… , n

f = f ()yi xi

n = (,)Dn Xn Yn f ̂ n
f

f

(x)f ̂ n
f (x) x

f (x)

f

f ̂ n (x)f ̂ n f

Xn

≡109

It is better than a (uniform) random sample (say via runif in R) because it is less clumpy, guaranteeing uniformity in
marginal samples.
But it is not as spread out as a so-called maxmin design

which maximizes the minimum distance between design elements .

Lets generate a 9d LHS …

library(lhs)

n <- 1000

X <- data.frame(randomLHS(n, 9))

names(X) <- names(formals(wingwt))

… then evaluate wingwt at those locations.

Y <- wingwt(X[,1], X[,2], X[,3], X[,4], X[,5], X[,6], X[,7], X[,8], X[,9])

Gaussian process emulation
Ok now, what do we do with that?

An emulator could be useful for visualization.
You could try a linear model, but I think you’ll be disappointed.

Gaussian processes (GPs) make good emulators

but you’ll have to suspend disbelief for now.

library(laGP)

fit.gp <- newGPsep(X, Y, 2, 1e-6, dK=TRUE)

mle <- mleGPsep(fit.gp)

baseline <- matrix(rep(as.numeric(formals(wingwt)), nrow(g)), ncol=9, byrow=TRUE)

XX <- data.frame(baseline)

names(XX) <- names(X)

XX$A <- g[,1]

XX$Nz <- g[,2]

p <- predGPsep(fit.gp, XX, lite=TRUE)

image(x, x, matrix(p$mean, ncol=length(x)), col=cs, breaks=bs, xlab="A", ylab="Nz")

contour(x, x, matrix(p$mean, ncol=length(x)), add=TRUE)

xi

Kind of amazing that 1K evaluations in 9d can do the work of 10K in 2d!

What else?
We can use the emulator, via predGPsep in this case, to do whatever wingwt could do!

How about main effects?

meq1 <- meq2 <- me <- matrix(NA, nrow=length(x), ncol=ncol(X))

for(i in 1:ncol(me)) {

 XX <- data.frame(baseline)[1:length(x),]

 XX[,i] <- x

 p <- predGPsep(fit.gp, XX, lite=TRUE)

 me[,i] <- p$mean

 meq1[,i] <- qt(0.05, p$df)*sqrt(p$s2) + p$mean

 meq2[,i] <- qt(0.95, p$df)*sqrt(p$s2) + p$mean

}

matplot(me, type="l", lwd=2, lty=1, col=1:9, xlab="coded input")

matlines(meq1, type="l", lwd=2, lty=2, col=1:9)

matlines(meq2, type="l", lwd=2, lty=2, col=1:9)

legend("topleft", names(X), lty=1, col=1:9, horiz=TRUE, bty="n", cex=0.43)

, , , and barely matter!

GP emulation is super powerful
Lots more to come.

GPs have revolutionized machine learning, geostatistics (“kriging”), and computer simulation experiments.

But they are no panacea.

They can be slow because they involve big matrix decompositions.
They can over-smooth things,
and even though they are super flexible they can sometimes be too rigid.

The rest of this slide deck sets the stage by introducing four motivating examples where

there is limited (or no) field data on complicated physical processes,
and we have computationally expensive computer model simulations.

Rocket Booster Dynamics
Langley glide-back booster (LGBB)
NASA proposed a re-usable rocket booster. They developed a CDF solver, Cart3D, to simulate dynamics as the rocket re-
enters the atmosphere.

3 inputs describe configuration at re-entry:
6 outputs delivered in 5+ hours.

Wfw Λ q λ

LGBB data
There are several historical versions of the data.

The first, oldest, version of the data involves
a less reliable code implementing the solver
evaluated on hand-designed input grids.

lgbb1 <- read.table("lgbb/lgbb_original.txt", header=TRUE)

names(lgbb1)

[1] "mach" "alpha" "beta" "lift" "drag" "pitch" "side" "yaw" "roll"

nrow(lgbb1)

[1] 3167

The grids double up effort in interesting regions, e.g., near the sound barrier.

Lift response indicates some numerical instabilities.

library(akima)

g <- interp(lgbb1$mach, lgbb1$alpha, lgbb1$lift, dupl="mean")

image(g, col=heat.colors(128), xlab="mach", ylab="alpha")

points(lgbb1$mach, lgbb1$alpha, cex=0.25, pch=18)

Grids have drawbacks. The data has 3167 rows, but there are only 37 and 33 unique mach and alpha values, respectively.

a1 <- which(lgbb1$alpha == 1); a1 <- a1[order(lgbb1$mach[a1])]

plot(lgbb1$mach[a1], lgbb1$lift[a1], type="l", xlab="mach", ylab="lift", lwd=2)

text(4, 0.4, paste("length(a1) =", length(a1)))

Cart3D.v2 was more stable; and run on an fully automated adaptive grid of just 780 points.

lgbb2 <- read.table("lgbb/lgbb_as.txt", header=TRUE)

plot(lgbb2$mach, lgbb2$alpha, xlab="mach", ylab="alpha", pch=18, cex=0.5)

Slices have lower resolution, …

a2 <- which(lgbb2$alpha == 1); a2 <- a2[order(lgbb2$mach[a2])]

plot(lgbb2$mach[a2], lgbb2$lift[a2], type="l", xlab="mach", ylab="lift", lwd=2)

text(4, 0.15, paste("length(a2) =", length(a2)))

… but GP emulators can fill in the gaps.

load("lgbb/lgbb_fill.RData")

lgbb.b1 <- lgbb.fill[lgbb.fill$beta == 1,]

g <- interp(lgbb.b1$mach, lgbb.b1$alpha, lgbb.b1$lift)

image(g, col=heat.colors(128), xlab="mach [beta=1]", ylab="alpha [beta=1]")

plot(lgbb.b1$mach, lgbb.b1$lift, type="n", xlab="mach", ylab="lift")

for(ub in unique(lgbb.b1$alpha)) {

 a <- which(lgbb.b1$alpha == ub)

 a <- a[order(lgbb.b1$mach[a])]

 lines(lgbb.b1$mach[a], lgbb.b1$lift[a], type="l", lwd=2)

}

Radiative Shock Hydrodynamics
CRASH
Radiative shocks arise from astrophysical phenomena (e.g., super-novae) and other high temperature systems.

These are shocks where radiation from the shocked matter dominates the energy transport, and results in a complex
evolutionary structure.

The University of Michigan’s Center for Radiative Shock Hydrodynamics (CRASH) is tasked with modeling a particular high-
energy laser radiative shock system.

They have

collected a small amount data from a limited field experiment
and developed a mathematical model (and computer implementation) that simulates the field apparatus.

Radiative shock experiment
A high-energy laser irradiates a Be disk at the front of a Xe-filled tube, launching a shock.

Experiments involve:

9 design variables: describing energy, disk, tube
response: distance the wave travels in a certain time

Design Parameter CE1 CE2 Field Design

Be thick (microns) [18,22] 21 21

Xe fill press (atm) [1.100,1.2032] [0.852,1.46] [1.032,1.311]

Time (nano-secs) [5,27] [5.5,27] 6-values in [13, 28]

Tube diam (microns) 575 [575,1150] {575, 1150}

Taper len (microns) 500 [460,540] 500

Nozzle len (microns) 500 [400,600] 500

Aspect ratio (microns) 1 [1,2] 1

Laser energy (J) [3600,3990] [3750.0 3889.6]

Eff laser energy (J) [2156.4,4060]

In addition, there are two parameters which pertain only to the computer model

so-called calibration or tuning parameters.

Calibration parameter CE1 CE2 Field Design

Electron flux limiter [0.04, 0.10] 0.06

Energy scale-factor [0.40,1.10] [0.60,1.00]

The relationship between design variables and output was explored via

a field experiment with 20 observations
and two computer experiments, 2618 and 2384 runs respectively.

Interest lies in combining the two data sources to learn about radiative shock hydrodynamics.

This requires calibrating the computer model to the field data.

In the 20 field data “runs”, only four variables (besides ShockLocation) are varied.

crash <- read.csv("crash/CRASHExpt_clean.csv")

crash$BeThinkness <- 21 ## Not recorded in field data

print(u <- apply(crash, 2, function(x) { length(unique(x)) }))

LaserEnergy GasPressure AspectRatio NozzleLength TaperLength

13 11 1 1 1

TubeDiameter Time ShockLocation BeThinkness

2 6 20 1

A linear model indicates that only time has a substantial main effect.

fit <- lm(ShockLocation ~., data=crash[,u > 1])

summary(fit)$coefficients[-1,]

Estimate Std. Error t value Pr(>|t|)

LaserEnergy -3.968075e-01 1.491184e+00 -0.26610235 7.937833e-01

GasPressure -1.970699e+02 8.476603e+02 -0.23248692 8.193021e-01

TubeDiameter -3.423611e-02 4.068208e-01 -0.08415528 9.340459e-01

Time 1.040318e+11 1.566597e+10 6.64062240 7.866793e-06

fit.time <- lm(ShockLocation ~ Time, data=crash)

plot(crash$Time, crash$ShockLocation, xlab="time", ylab="location")

abline(fit.time)

Time mops up all of the variability in this data with 0.972.

Computer model data
Experiment CE1 varied all but four of the parameters.

ce1 <- read.csv("crash/RS12_SLwithUnnormalizedInputs.csv")

ce1 <- ce1[,-1] ## first col is FileNumber

u.ce1 <- apply(ce1, 2, function(x) { length(unique(x)) })

fit.ce1 <- lm(ShockLocation ~., data=ce1[,u.ce1 > 1])

summary(fit.ce1)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.601356e+02 1.320949e+02 -3.483372 5.032847e-04

BeThickness -7.594590e+01 2.103686e+00 -36.101350 7.283200e-232

LaserEnergy 3.152568e-01 2.148655e-02 14.672282 6.782470e-47

GasPressure -3.829176e+02 8.129088e+01 -4.710461 2.600980e-06

Time 1.343696e+11 4.998054e+08 268.843861 0.000000e+00

ElectronFluxLimiter 4.125576e+02 1.399752e+02 2.947363 3.233373e-03

EnergyScaleFactor 1.775947e+03 1.214335e+01 146.248499 0.000000e+00

CE1 linear model fit indicates more nuanced relationship (CE2 is similar).

Energy and time work together
x <- ce1$Time; y <- ce1$LaserEnergy * ce1$EnergyScaleFactor

g <- interp(x/max(x), y/max(y), ce1$ShockLocation, dupl="mean")

image(g, col=heat.colors(128), xlab="scaled time", ylab="scaled energy")

=R2

Computer model calibration
However, there is likely predictability left on the table.

Physical phenomena rarely covary linearly.

We will see how to combine computer model and field data of this sort

via computer model calibration:
(non-linearly) emulating the computer model with GPs;
estimating the bias between the computer model and the field data;
finding the best setting of the calibration parameters relative to that bias;
finally, building a predictor that combines (emulated) computer model predictions with bias predictions.

Predicting Satellite Drag
Satellite Orbit prediction
Researchers at Los Alamos National Laboratory (LANL) are tasked with predicting orbits for dozens of research satellites, e.g.:

HST (Hubble space telescope)
ISS (International space station)
GRACE (Gravity Recovery and Climate Experiment)

a NASA & German Aerospace Center collaboration
CHAMP (Challenging Minisatellite Payload)

German satellite for atmospheric and ionospheric research

Why?

To plan experiments: what can we see when?
Adjust course if necessary, for experimental reasons or to avoid collisions!

Drag
An important input into their prediction models is atmospheric drag.

Drag depends on

satellite geometry, orientation, temperature,
atmospheric chemical composition: concentrations of (O, O , N, N , He, H);
which depend on position (latitude and longitude) and altitude.

Numerical simulations

produce accurate drag coefficient estimates up to uncertainties in atmospheric and gas–surface interaction (GSI) models,
but are too slow for real-time applications.

Geometry
Geometry is specified in a so-called “mesh file”, an ASCII representation of a picture like this, for the Hubble space telescope.

Position and environmental variables
Symbol [ascii] Parameter [units] Range

 [Umag] velocity [m/s] [5500, 9500]

 [Ts] surface temperature [K] [100, 500]

 [Ta] atmospheric temperature [K] [200, 2000]

 [theta] yaw [radians] [,]

 [phi] pitch [radians] [,]

 [alphan] normal energy accommodation
coefficient [unitless]

[0, 1]

 [sigmat] tangential momentum accommodation
coefficient [unitless]

[0, 1]

Emulation goal

2 2

vrel

Ts

Ta

θ −π π

ϕ −π/2 π/2

αn

σt

Researchers at LANL wanted GP drag emulation

such that predictions were within 1% of the “true” outputs based on root mean-squared percentage error (RMSPE).

But they realized that they would need M runs to accomplish that goal.

GPs don’t scale well to data that big.
So as proof-of-concept, they limited the range of angles so they could work with a much smaller data set (Metha et al.,
2014) (http://bobby.gramacy.com/teaching/rsm/metha_etal_2014.pdf).

Symbol [ascii] Ideal Range Reduced Range Percentage

 [yaw] [-0.052313, 0.052342] 1.7%

 [pitch] [1.059e-05, 5.232e-02] 1.7%

On the GRACE satellite
Lets look at the GRACE runs (for the He species) that LANL did,

training on their -sized design and
calculating out-of-sample RMSE on a testing set of size 100

train <- read.csv("lanl/GRACE/CD_GRACE_1000_He.dat", sep=" ", header=FALSE)

test <- read.csv("lanl/GRACE/CD_GRACE_100_He.dat", sep=" ", header=FALSE)

nms <- c("Umag", "Ts", "Ta", "alphan", "sigmat", "theta", "phi", "drag")

names(train) <- names(test) <- nms

print(r <- apply(rbind(train, test)[,-8], 2, range))

Umag Ts Ta alphan sigmat theta

[1,] 5501.933 100.0163 201.2232 0.0008822413 0.0007614135 1.270032e-05

[2,] 9497.882 499.8410 1999.9990 0.9999078000 0.9997902000 6.978310e-02

phi

[1,] -0.06978125

[2,] 0.06971254

Convert to coded inputs.

X <- train[,1:7]; XX <- test[,1:7]

for(j in 1:ncol(X)) {

 X[,j] <- X[,j] - r[1,j]; XX[,j] <- XX[,j] - r[1,j];

 X[,j] <- X[,j]/(r[2,j]-r[1,j]); XX[,j] <- XX[,j]/(r[2,j]-r[1,j])

}

Fit a GP and make predictions

library(laGP)

fit.gp <- newGPsep(X, train[,8], 2, 1e-6, dK=TRUE)

mle <- mleGPsep(fit.gp)

p <- predGPsep(fit.gp, XX, lite=TRUE)

rmspe <- sqrt(mean((100*(p$mean - test[,8])/test[,8])^2))

rmspe

[1] 0.7401338

Better than 1%.

N ≫ 4

θ [−π, π]

ϕ [−π/2, π/2]

N = 1000

http://bobby.gramacy.com/teaching/rsm/metha_etal_2014.pdf

Big runs
Beating 1% on the whole input space will, for starters, require more runs.

I compiled a new suite of computer model runs for

HST (2M) for each species, divided equally between panel angles;
and GRACE (1M) – a smaller design is sufficient, but GRACE is slower,

separately for each chemical species.

Together, these took about 70K CPU core hours.

But if GPs struggle with 1K how are we going to deal with 2M?

We’ll have to cut corners somehow.

Promising results
A soft divide-and-conquer technique called “local approximate GPs” works.

We’ll learn about laGP and some other big data GP alternatives.

Groundwater remediation
Dirty water
Worldwide, there are more than 10,000 contaminated land sites (Meer et al., 2008)
(http://pubs.rsc.org/en/content/chapter/bk9780854042944-00403/978-0-85404-294-4#!divabstract).

Environmental cleanup at these sites has received increased attention over the past 20-30 years.

Preventing the migration of contaminant plumes is vital to protecting water supplies and preventing disease.

One approach is pump-and-treat remediation, in which wells are strategically placed to

pump out contaminated water,
purify it,
and inject the treated water back into the system to prevent contaminant spread.

N =

N =

N ≈ N =

http://pubs.rsc.org/en/content/chapter/bk9780854042944-00403/978-0-85404-294-4#!divabstract

A case study
Consider the 580-acre Lockwood Solvent Groundwater Plume Site, an EPA Superfund site located near Billings Montana.

As a result of industrial practices, the groundwater at this site is contaminated with volatile organic compounds that are
hazardous to human health.
To prevent further expansion of these plumes, six pump and treat wells have been proposed.

Computer model and optimization
The amount of contaminant exiting the boundaries of the system (in particular the river) depends on

the placement of the wells and their pumping rates.

An analytic element method groundwater model was developed

to simulate the amount of contaminant exiting the (2) boundaries under different pumping regimes (Matott, et al., 2006)
(http://www.sciencedirect.com/science/article/pii/S0309170805001922).

Mayer, et al., (2002) (http://www.sciencedirect.com/science/article/pii/S0309170802000544) first posed the pump-and-treat
setting, generically, as a constrained “blackbox” optimization problem.

Fixing the well locations, let denote pumping rates for six wells, consider

Matott, et al., (2011) (http://amstat.tandfonline.com/servlet/linkout?
suffix=cit0018&dbid=128&doi=10.1080%2F00401706.2015.1014065&key=000299139800019) compared MATLAB and Python
optimizers, treating constraints via the additive penalty method, initialized at the known-valid input .

,… ,x1 x6

{f (x) = : (x) ≤ 0, (x) ≤ 0, x ∈ [0, 2 ⋅ } .min
x ∑

j=1

6

xj c1 c2 104]6

=x0j 104

http://www.sciencedirect.com/science/article/pii/S0309170805001922
http://www.sciencedirect.com/science/article/pii/S0309170802000544
http://amstat.tandfonline.com/servlet/linkout?suffix=cit0018&dbid=128&doi=10.1080%2F00401706.2015.1014065&key=000299139800019

Objective improving comparator
It is interesting to ask …

What makes the good methods good?
Why do the bad methods (in some cases) fail so spectacularly?
And by the way, how are statistics and RSMs involved?

Consider the following random search method that I call objective improving candidates.

Given the current best valid input , i.e.,

, and
 for all other (tried so far) such that ,

draw uniformly from , for example via rejection.

Here I’ve extracted the first 500 iterations from Matott, et al., (2011),

which are in runlock/pato_results.csv ,
and added average progress (best valid value) from 30 repeated runs of OICs.

x∗

c() ≤ 0x∗

f () = < f (x)x∗ ∑j x
∗
j x c(x) ≤ 0

{x : f (x) < f ()}x∗

Sequential design
Half of the MATLAB/Python methods are not doing better (on average) than a slightly modified “random search”.

They are getting stuck in a local minima, and failing to explore other opportunities.

Fitting a surrogate model to blackbox evaluations can allow statistical decision criteria to judge trade-offs between reward and
uncertainty;

in this case, balancing exploration and exploitation.

Sequential design is the process of using (surrogate) model fits to drive future data collection, in order to maximize information
or reduce variance, say.

One popular application of this idea to optimization is called expected improvement (EI).
The machine learning community calls this Bayesian optimization owing to the Bayesian interpretation of GP learning.

