
Introduction
RSMs and Computer Experiments

Robert B. Gramacy (rbg@vt.edu : http://bobby.gramacy.com)
Department of Statistics, Virginia Tech

mailto:rbg@vt.edu
http://bobby.gramacy.com/

Plan

"Classical" RSMs, but only as a jumping-off point.

The interplay between mathematical models, numerical approximation,
simulation, computer experiments, and (field) data.

Gaussian process (GP) spatial models, emphasizing

Uncertainty quantification, where statistics ought to monopolize but sometimes
doesn't.

Machine learning methods:

·

·

·

surrogate computer modeling,

sequential design, Bayesian optimization,

calibration,

variable selection and sensitivity analysis, and more.

-

-

-

-

·

·

"big- " GP solutions (sparsity), non-stationary GP modeling, the frontier …- n

2/65

"Classical" RSM overview

RSM

Response surface methodology (RSM) is a collection of statistical and mathematical
techniques for developing, improving, and optimizing processes.

Applications historically come from industry and manufacturing, focused on

but also from (national) laboratory research, and with obvious military application.

The over-arching theme is a study of how

design, development, and formulation of new products,

and the improvement of existing products,

·

·

input variables controlling a product or process potentially influence a

response measuring performance or quality characteristics.

·

·

4/65

Terminology

Consider the relationship between the

response variable yield () in a chemical process

and the two process variables reaction time () and reaction temperature ()

· y

· ξ1 ξ2

yield <- function(xi1, xi2)

 {

 xi1 <- 3*xi1 - 15

 xi2 <- xi2/50 - 13

 xi1 <- cos(0.5)*xi1 - sin(0.5)*xi2

 xi2 <- sin(0.5)*xi1 + cos(0.5)*xi2

 y <- exp(-xi1^2/80 - 0.5*(xi2 + 0.03*xi1^2 - 40*0.03)^2)

 return(100*y)

 }

This toy example is really a variation on the infamous "banana function".·

5/65

Here, the yield response is plotted as a surface above the time/temperature plane.

xi1 <- seq(1, 8, length=100); xi2 <- seq(100, 1000, length=100)

g <- expand.grid(xi1, xi2); y <- yield(g[,1], g[,2])

persp(xi1, xi2, matrix(y, ncol=length(xi2)), theta=45, phi=45, lwd=0.5,

 xlab="xi1 : time", ylab="xi2 : temperature", zlab="yield", expand=0.4)

6/65

By inspection, the yield response is optimized near (,) = (5 hr, C)ξ1 ξ2 750∘

image(xi1, xi2, matrix(y, ncol=length(xi2)), col=heat.colors(128))

contour(xi1, xi2, matrix(y, ncol=length(xi2)), nlevels=4, add=TRUE)

7/65

Easier said than done

Unfortunately, in practice, the true response surface is unknown.

It is too expensive to evaluate yield over a dense grid, because

Measuring yield may be a noisy/inexact process.

re-configuring the inputs may involve restarting an intricate (manufacturing)
process,

or might require an upgrade of equipment,

or be otherwise inconvenient.

·

·

·

8/65

That's where stats comes in

RSMs consist of the experimental strategies for

The setup:

statistically modeling the relationship between the response (yield) and process
variables;

paired with optimization/sequential design methods for finding the levels or
values of the process variables that produce desirable values of the responses

·

·

(e.g., that maximize yield or explain variation).-

Fit an empirical model (usually first or second-order linear) to observed data from
the process or system nearby the current regime using a carefully designed
experiment.

Gradients and Hessians of the predictive equations yield the method of steepest
ascent and ridge analysis.

·

·

9/65

Laborious process

It is a very "careful" enterprise.

These days folks rarely study industrial or physical processes solely via "on-the-
bench"/field experiments.

Often mathematical models are all there is.

It requires statistical and design expertise, making automation difficult.

And is at best informal about how to leverage domain specific (physical)
knowledge.

·

·

They are getting more more out of their statistical models, designs and
optimizations, by coupling with mathematical models of the system(s) they are
studying.

·

It can be too expensive or even unethical to gather data on certain phenomena.·

10/65

Mathematical models

Simple equations seldom make for adequate descriptions of real-world systems.

Systems of equations are required, perhaps solved over meshes

Or you might have a big agent/individual-based model that governs how

Physicists figured that out fifty years ago; industrial engineers followed suit.

Biologists, social scientists, climate scientists, are coming on board.

·

·

e.g., a so-called finite-element analysis.·

predictor and prey (randomly) interact with each other and their habitat;

an epidemic spreads through a population, person by person;

citizens make choices about health care and insurance.

·

·

·

11/65

Cheaper experimentation

Mathematical/computer models allow a cheaper means of

And they can be studied in isolation, or coupled with field data experiments:

exploring a system before embarking on a field experiment, or before the next
one;

screening variables and assessing main effects/sensitivity;

optimizing (maximizing yield, say) or otherwise searching the input space in an
automated way (with a wrapper around the simulation code).

·

·

·

tuning or calibrating the computer model, and/or

leveraging the computer model to predict what would be observed in the field.

·

·

12/65

An aircraft wing weight example

The following equation has been used to help understand the weight of an
unpainted light aircraft wing as a function of design and operational parameters.

The next slide shows

W = 0.0365 (S0.758
w W 0.0035

fw ()
A

Λcos2

0.6

q0.006λ0.04()
100Rtc

cosΛ

−0.3

NzWdg)
0.49

It is not really a computer simulation, but it will stand in for one in this example.

It was derived by "calibrating" known physical relationships to curves obtained
from existing aircraft data.

·

·

reasonable ranges for these natural variables (),

and a baseline setting coming from a Sessna C172 Skyhawk aircraft.

· ξ

·

13/65

Symbol Parameter Baseline Minimum Maximum

Wing area (ft) 174 150 200

Weight of fuel in wing (lb) 252 220 300

Aspect ratios 7.52 6 10

Quarter-chord sweep (deg) 0 -10 10

Dynamic pressure at cruise (lb/ft) 34 16 45

Taper ratio 0.672 0.5 1

Aerofoil thickness to chord ratio 0.12 0.08 0.18

Ultimate load factor 3.8 2.5 6

Flight design gross weight (lb) 2000 1700 2500

Sw
2

Wfw

A

Λ

q 2

λ

Rtc

Nz

Wdg

14/65

Computer code

In coded variables (), with baseline as the default.x ∈ [0, 1]9

wingwt <- function(Sw=0.48, Wfw=0.28, A=0.38, L=0.5, q=0.62, l=0.344, Rtc=0.4,

 Nz=0.37, Wdg=0.38)

 {

 ## put coded inputs back on natural scale

 Sw <- Sw*(200 - 150) + 150

 Wfw <- Wfw*(300 - 220) + 220

 A <- A*(10 - 6) + 6

 L <- (L*(10 - (-10)) - 10) * pi/180

 q <- q*(45 - 16) + 16

 l <- l*(1 - 0.5) + 0.5

 Rtc <- Rtc*(0.18 - 0.08) + 0.08

 Nz <- Nz*(6-2.5) + 2.5

 Wdg <- Wdg*(2500 - 1700) + 1700

 ## calculation on natural scale

 W <- 0.036*Sw^0.758 * Wfw^0.0035 * (A/cos(L)^2)^0.6 * q^0.006

 W <- W * l^0.04 * (100*Rtc/cos(L))^(-0.3) * (Nz*Wdg)^(0.49)

 return(W)

 }

15/65

Sensitivity analysis

Now, if computing is cheap we can explore which variables matter and which work
together.

Lets make a 2d grid for exploring pairs of inputs.

Now we can use the grid to, say, vary and , with the others fixed at their baseline
values.

(Some auxiliary code for plotting images with smooth colors.)

x <- seq(0,1,length=100)

g <- expand.grid(x,x)

Nz A

W.A.Nz <- wingwt(A=g[,1], Nz=g[,2])

cs <- heat.colors(128)

bs <- seq(min(W.A.Nz), max(W.A.Nz), length=129)

16/65

image(x,x, matrix(W.A.Nz, ncol=length(x)), col=cs,breaks=bs,xlab="A",ylab="Nz")

contour(x,x, matrix(W.A.Nz, ncol=length(x)), add=TRUE)

Indicates a heavy wing for high aspect ratios () and large -forces (large).· A g Nz

17/65

W.l.Wfw <- wingwt(l=g[,1], Wfw=g[,2])

image(x,x, matrix(W.l.Wfw,ncol=length(x)), col=cs,breaks=bs,xlab="l",ylab="Wfw")

contour(x,x, matrix(W.l.Wfw,ncol=length(x)), add=TRUE)

no interaction and very small effect compared to and · A Nz

18/65

Sensible but expensive

Well that's all fine and good. We've learned about two pairs of inputs (out of 36 pairs)

We need a different strategy.

and for each pair we evaluated wingwt 10,000 times.

So to do all pairs would require 360K evaluations — not a reasonable number with
a real computer simulation that takes any non-trivial amount of time to evaluate.

And even then, we'd only really know about pairs.

How about main effects, or three-way interactions?

·

·

Even at just 1s per evaluation we're talking > 100 hours.

Many computer experiments take minutes/hours/days to execute a single
run.

-

-

·

·

19/65

Computer model emulation

How about (meta-) modeling the computer model?

The setting is as follows.

The computer model is expensive to evaluate.

So we evaluate it at a "small", well-chosen design of locations ,
obtaining pairs , where for .

The data pairs are used to train a statistical (regression) model,
producing an emulator .

A good emulator does about what would do.

· f (x) : → ℜℜp

· = { ,… , }Xn x1 xn
n (,)xi yi ∼ f ()yi xi i = 1,… ,n

If is deterministic then .- f = f ()yi xi

· n = (,)Dn Xn Yn

f ̂ n

· f

20/65

Surrogate model

More precisely, a good emulator can be used in any way could have been used,
qualified with appropriate uncertainty quantification.

Perhaps most importantly, fitting and making predictions should be much
faster than working directly with .

f

Provides a predictive distribution

Possibly interpolating when the computer model is deterministic.

· (x)f ̂ n

whose mean can be used as a surrogate for at new -locations

and whose variance provides uncertainty estimates — intervals for that
have good coverage properties;

- f (x) x

- f (x)

· f

f ̂ n (x)f ̂ n
f

21/65

Space-filling design

Choosing the design is crucial to good performance.

It might be tempting to work on a grid.

So-called space-filling designs were created to mimic the spread of grids, while
sacrificing their regularity in order to dramatically reduce their size.

Xn

But that won't work in our 9-dimensional exercise.

Even just having a modest ten grid elements per dimension would balloon into
 1-billion runs of the computer code!

·

·
≡109

22/65

Latin hypercubes

One easy such space-filling design is called a Latin hypercube sample or LHS.

Lets generate a 9d LHS …

… then evaluate wingwt at those locations.

It is better than a (uniform) random sample (say via runif in R) because it is less
clumpy, guaranteeing uniformity in marginal samples.

But it is not as spread out as a so-called maxmin design

·

·

which maximizes the minimum distance between design elements .- xi

library(lhs)

n <- 1000

X <- data.frame(randomLHS(n, 9))

names(X) <- names(formals(wingwt))

Y <- wingwt(X[,1], X[,2], X[,3], X[,4], X[,5], X[,6], X[,7], X[,8], X[,9])

23/65

Gaussian process emulation

Ok now, what do we do with that?

Gaussian processes (GPs) make good emulators

An emulator could be useful for visualization.

You could try a linear model, but I think you'll be disappointed.

·

·

but you'll have to suspend disbelief for now.·

library(laGP)

fit.gp <- newGPsep(X, Y, 2, 1e-6, dK=TRUE)

mle <- mleGPsep(fit.gp)

baseline <- matrix(rep(as.numeric(formals(wingwt)), nrow(g)), ncol=9, byrow=TRUE)

XX <- data.frame(baseline)

names(XX) <- names(X)

XX$A <- g[,1]

XX$Nz <- g[,2]

p <- predGPsep(fit.gp, XX, lite=TRUE)

24/65

image(x, x, matrix(p$mean, ncol=length(x)), col=cs, breaks=bs, xlab="A", ylab="Nz")

contour(x, x, matrix(p$mean, ncol=length(x)), add=TRUE)

Kind of amazing that 1K evaluations in 9d can do the work of 10K in 2d!·

25/65

What else?

We can use the emulator, via predGPsep in this case, to do whatever wingwt could
do!

How about main effects?

meq1 <- meq2 <- me <- matrix(NA, nrow=length(x), ncol=ncol(X))

for(i in 1:ncol(me)) {

 XX <- data.frame(baseline)[1:length(x),]

 XX[,i] <- x

 p <- predGPsep(fit.gp, XX, lite=TRUE)

 me[,i] <- p$mean

 meq1[,i] <- qt(0.05, p$df)*sqrt(p$s2) + p$mean

 meq2[,i] <- qt(0.95, p$df)*sqrt(p$s2) + p$mean

}

26/65

matplot(me, type="l", lwd=2, lty=1, col=1:9, xlab="coded input")

matlines(meq1, type="l", lwd=2, lty=2, col=1:9)

matlines(meq2, type="l", lwd=2, lty=2, col=1:9)

legend("topleft", names(X), lty=1, col=1:9, horiz=TRUE, bty="n", cex=0.43)

, , , and barely matter!· Wfw Λ q λ

27/65

GP emulation is super powerful

Lots more to come.

But they are no panacea.

The rest of this slide deck sets the stage by introducing four motivating examples
where

GPs have revolutionized machine learning, geostatistics ("kriging"), and computer
simulation experiments.

·

They can be slow because they involve big matrix decompositions.

They can over-smooth things,

and even though they are super flexible they can sometimes be too rigid.

·

·

·

there is limited (or no) field data on complicated physical processes,

and we have computationally expensive computer model simulations.

·

·

28/65

Rocket Booster Dynamics

Langley glide-back booster (LGBB)

NASA proposed a re-usable rocket booster. They developed a CDF solver, Cart3D, to
simulate dynamics as the rocket re-enters the atmosphere.

3 inputs describe configuration at re-entry:

6 outputs delivered in 5+ hours.

·

·

30/65

LGBB data

There are several historical versions of the data.

The first, oldest, version of the data involves·

a less reliable code implementing the solver

evaluated on hand-designed input grids.

-

-

lgbb1 <- read.table("lgbb/lgbb_original.txt", header=TRUE)

names(lgbb1)

[1] "mach" "alpha" "beta" "lift" "drag" "pitch" "side" "yaw" "roll"

nrow(lgbb1)

[1] 3167

The grids double up effort in interesting regions, e.g., near the sound barrier.·

31/65

Lift response indicates some numerical instabilities.

library(akima)

g <- interp(lgbb1$mach, lgbb1$alpha, lgbb1$lift, dupl="mean")

image(g, col=heat.colors(128), xlab="mach", ylab="alpha")

points(lgbb1$mach, lgbb1$alpha, cex=0.25, pch=18)

32/65

Grids have drawbacks. The data has 3167 rows, but there are only 37 and 33 unique
mach and alpha values, respectively.

a1 <- which(lgbb1$alpha == 1); a1 <- a1[order(lgbb1$mach[a1])]

plot(lgbb1$mach[a1], lgbb1$lift[a1], type="l", xlab="mach", ylab="lift", lwd=2)

text(4, 0.4, paste("length(a1) =", length(a1)))

33/65

Cart3D.v2 was more stable; and run on an fully automated adaptive grid of just 780
points.

lgbb2 <- read.table("lgbb/lgbb_as.txt", header=TRUE)

plot(lgbb2$mach, lgbb2$alpha, xlab="mach", ylab="alpha", pch=18, cex=0.5)

34/65

Slices have lower resolution, …

a2 <- which(lgbb2$alpha == 1); a2 <- a2[order(lgbb2$mach[a2])]

plot(lgbb2$mach[a2], lgbb2$lift[a2], type="l", xlab="mach", ylab="lift", lwd=2)

text(4, 0.15, paste("length(a2) =", length(a2)))

35/65

… but GP emulators can fill in the gaps.

load("lgbb/lgbb_fill.RData")

lgbb.b1 <- lgbb.fill[lgbb.fill$beta == 1,]

g <- interp(lgbb.b1$mach, lgbb.b1$alpha, lgbb.b1$lift)

image(g, col=heat.colors(128), xlab="mach [beta=1]", ylab="alpha [beta=1]")

36/65

plot(lgbb.b1$mach, lgbb.b1$lift, type="n", xlab="mach", ylab="lift")

for(ub in unique(lgbb.b1$alpha)) {

 a <- which(lgbb.b1$alpha == ub)

 a <- a[order(lgbb.b1$mach[a])]

 lines(lgbb.b1$mach[a], lgbb.b1$lift[a], type="l", lwd=2)

}

37/65

Radiative Shock
Hydrodynamics

CRASH

Radiative shocks arise from astrophysical phenomena (e.g., super-novae) and other
high temperature systems.

The University of Michigan's Center for Radiative Shock Hydrodynamics (CRASH) is
tasked with modeling a particular high-energy laser radiative shock system.

They have

These are shocks where radiation from the shocked matter dominates the energy
transport, and results in a complex evolutionary structure.

·

collected a small amount data from a limited field experiment

and developed a mathematical model (and computer implementation) that
simulates the field apparatus.

·

·

39/65

Radiative shock experiment

A high-energy laser irradiates a Be disk at the front of a Xe-filled tube, launching a
shock.

Experiments involve:

9 design variables: describing energy, disk, tube

response: distance the wave travels in a certain time

·

·

40/65

Design Parameter CE1 CE2 Field Design

Be thick (microns) [18,22] 21 21

Xe fill press (atm) [1.100,1.2032] [0.852,1.46] [1.032,1.311]

Time (nano-secs) [5,27] [5.5,27] 6-values in [13, 28]

Tube diam (microns) 575 [575,1150] {575, 1150}

Taper len (microns) 500 [460,540] 500

Nozzle len (microns) 500 [400,600] 500

Aspect ratio (microns) 1 [1,2] 1

Laser energy (J) [3600,3990] [3750.0 3889.6]

Eff laser energy (J) [2156.4,4060]

41/65

In addition, there are two parameters which pertain only to the computer model

Calibration parameter CE1 CE2 Field Design

Electron flux limiter [0.04, 0.10] 0.06

Energy scale-factor [0.40,1.10] [0.60,1.00]

The relationship between design variables and output was explored via

Interest lies in combining the two data sources to learn about radiative shock
hydrodynamics.

so-called calibration or tuning parameters.·

a field experiment with 20 observations

and two computer experiments, 2618 and 2384 runs respectively.

·

·

This requires calibrating the computer model to the field data.·

42/65

In the 20 field data "runs", only four variables (besides ShockLocation) are varied.

A linear model indicates that only time has a substantial main effect.

crash <- read.csv("crash/CRASHExpt_clean.csv")

crash$BeThinkness <- 21 ## Not recorded in field data

print(u <- apply(crash, 2, function(x) { length(unique(x)) }))

LaserEnergy GasPressure AspectRatio NozzleLength TaperLength

13 11 1 1 1

TubeDiameter Time ShockLocation BeThinkness

2 6 20 1

fit <- lm(ShockLocation ~., data=crash[,u > 1])

summary(fit)$coefficients[-1,]

Estimate Std. Error t value Pr(>|t|)

LaserEnergy -3.968075e-01 1.491184e+00 -0.26610235 7.937833e-01

GasPressure -1.970699e+02 8.476603e+02 -0.23248692 8.193021e-01

TubeDiameter -3.423611e-02 4.068208e-01 -0.08415528 9.340459e-01

Time 1.040318e+11 1.566597e+10 6.64062240 7.866793e-06

43/65

fit.time <- lm(ShockLocation ~ Time, data=crash)

plot(crash$Time, crash$ShockLocation, xlab="time", ylab="location")

abline(fit.time)

Time mops up all of the variability in this data with 0.97.· =R2

44/65

Computer model data

Experiment CE1 varied all but four of the parameters.

ce1 <- read.csv("crash/RS12_SLwithUnnormalizedInputs.csv")

ce1 <- ce1[,-1] ## first col is FileNumber

u.ce1 <- apply(ce1, 2, function(x) { length(unique(x)) })

fit.ce1 <- lm(ShockLocation ~., data=ce1[,u.ce1 > 1])

summary(fit.ce1)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.601356e+02 1.320949e+02 -3.483372 5.032847e-04

BeThickness -7.594590e+01 2.103686e+00 -36.101350 7.283200e-232

LaserEnergy 3.152568e-01 2.148655e-02 14.672282 6.782470e-47

GasPressure -3.829176e+02 8.129088e+01 -4.710461 2.600980e-06

Time 1.343696e+11 4.998054e+08 268.843861 0.000000e+00

ElectronFluxLimiter 4.125576e+02 1.399752e+02 2.947363 3.233373e-03

EnergyScaleFactor 1.775947e+03 1.214335e+01 146.248499 0.000000e+00

CE1 linear model fit indicates more nuanced relationship (CE2 is similar).·

45/65

Energy and time work together

x <- ce1$Time; y <- ce1$LaserEnergy * ce1$EnergyScaleFactor

g <- interp(x/max(x), y/max(y), ce1$ShockLocation, dupl="mean")

image(g, col=heat.colors(128), xlab="scaled time", ylab="scaled energy")

46/65

Computer model calibration

However, there is likely predictability left on the table.

We will see how to combine computer model and field data of this sort

Physical phenomena rarely covary linearly.·

via computer model calibration:·

(non-linearly) emulating the computer model with GPs;

estimating the bias between the computer model and the field data;

finding the best setting of the calibration parameters relative to that bias;

finally, building a predictor that combines (emulated) computer model
predictions with bias predictions.

-

-

-

-

47/65

Predicting Satellite Drag

Satellite Orbit prediction

Researchers at Los Alamos National Laboratory (LANL) are tasked with predicting
orbits for dozens of research satellites, e.g.:

Why?

HST (Hubble space telescope)

ISS (International space station)

GRACE (Gravity Recovery and Climate Experiment)

CHAMP (Challenging Minisatellite Payload)

·

·

·

a NASA & German Aerospace Center collaboration-

·

German satellite for atmospheric and ionospheric research-

To plan experiments: what can we see when?

Adjust course if necessary, for experimental reasons or to avoid collisions!

·

·

49/65

Drag

An important input into their prediction models is atmospheric drag.

Drag depends on

Numerical simulations

satellite geometry, orientation, temperature,

atmospheric chemical composition: concentrations of (O, O , N, N , He, H);

which depend on position (latitude and longitude) and altitude.

·

· 2 2

·

produce accurate drag coefficient estimates up to uncertainties in atmospheric
and gas–surface interaction (GSI) models,

but are too slow for real-time applications.

·

·

50/65

Geometry

Geometry is specified in a so-called "mesh file", an ASCII representation of a picture
like this, for the Hubble space telescope.

51/65

Position and environmental variables

Symbol [ascii] Parameter [units] Range

 [Umag] velocity [m/s] [5500, 9500]

 [Ts] surface temperature [K] [100, 500]

 [Ta] atmospheric temperature [K] [200, 2000]

 [theta] yaw [radians] [,]

 [phi] pitch [radians] [,]

 [alphan] normal energy accommodation coefficient [unitless] [0, 1]

 [sigmat] tangential momentum accommodation coefficient [unitless] [0, 1]

vrel

Ts

Ta

θ −π π

ϕ −π/2 π/2

αn

σt

52/65

Emulation goal

Researchers at LANL wanted GP drag emulation

But they realized that they would need M runs to accomplish that goal.

Symbol [ascii] Ideal Range Reduced Range Percentage

 [yaw] [-0.052313, 0.052342] 1.7%

 [pitch] [1.059e-05, 5.232e-02] 1.7%

such that predictions were within 1% of the "true" outputs based on root mean-
squared percentage error (RMSPE).

·

N ≫ 4

GPs don't scale well to data that big.

So as proof-of-concept, they limited the range of angles so they could work with a
much smaller data set (Metha et al., 2014).

·

·

θ [−π,π]

ϕ [−π/2,π/2]

53/65

http://bobby.gramacy.com/teaching/rsm/metha_etal_2014.pdf

On the GRACE satellite

Lets look at the GRACE runs (for the He species) that LANL did,

training on their -sized design and

calculating out-of-sample RMSE on a testing set of size 100

· N = 1000

·

train <- read.csv("lanl/GRACE/CD_GRACE_1000_He.dat", sep=" ", header=FALSE)

test <- read.csv("lanl/GRACE/CD_GRACE_100_He.dat", sep=" ", header=FALSE)

nms <- c("Umag", "Ts", "Ta", "alphan", "sigmat", "theta", "phi", "drag")

names(train) <- names(test) <- nms

print(r <- apply(rbind(train, test)[,-8], 2, range))

Umag Ts Ta alphan sigmat theta

[1,] 5501.933 100.0163 201.2232 0.0008822413 0.0007614135 1.270032e-05

[2,] 9497.882 499.8410 1999.9990 0.9999078000 0.9997902000 6.978310e-02

phi

[1,] -0.06978125

[2,] 0.06971254

54/65

Convert to coded inputs.

Fit a GP and make predictions

X <- train[,1:7]; XX <- test[,1:7]

for(j in 1:ncol(X)) {

 X[,j] <- X[,j] - r[1,j]; XX[,j] <- XX[,j] - r[1,j];

 X[,j] <- X[,j]/(r[2,j]-r[1,j]); XX[,j] <- XX[,j]/(r[2,j]-r[1,j])

}

library(laGP)

fit.gp <- newGPsep(X, train[,8], 2, 1e-6, dK=TRUE)

mle <- mleGPsep(fit.gp)

p <- predGPsep(fit.gp, XX, lite=TRUE)

rmspe <- sqrt(mean((100*(p$mean - test[,8])/test[,8])^2))

rmspe

[1] 0.7401338

Better than 1%.·

55/65

Big runs

Beating 1% on the whole input space will, for starters, require more runs.

I compiled a new suite of computer model runs for

separately for each chemical species.

But if GPs struggle with 1K how are we going to deal with 2M?

HST (2M) for each species, divided equally between panel angles;

and GRACE (1M) – a smaller design is sufficient, but GRACE is slower,

· N =

· N =

Together, these took about 70K CPU core hours.·

N ≈ N =

We'll have to cut corners somehow.·

56/65

Promising results

A soft divide-and-conquer technique called "local approximate GPs" works.

We'll learn about laGP and some other big data GP alternatives.·

57/65

Groundwater remediation

Dirty water

Worldwide, there are more than 10,000 contaminated land sites (Meer et al., 2008).

Preventing the migration of contaminant plumes is vital to protecting water supplies
and preventing disease.

One approach is pump-and-treat remediation, in which wells are strategically placed
to

Environmental cleanup at these sites has received increased attention over the
past 20-30 years.

·

pump out contaminated water,

purify it,

and inject the treated water back into the system to prevent contaminant spread.

·

·

·

59/65

http://pubs.rsc.org/en/content/chapter/bk9780854042944-00403/978-0-85404-294-4#!divabstract

A case study

Consider the 580-acre Lockwood Solvent Groundwater Plume Site, an EPA Superfund
site located near Billings Montana.

As a result of industrial practices, the groundwater at this site is contaminated
with volatile organic compounds that are hazardous to human health.

To prevent further expansion of these plumes, six pump and treat wells have been
proposed.

·

·

60/65

Computer model and optimization

The amount of contaminant exiting the boundaries of the system (in particular the
river) depends on

An analytic element method groundwater model was developed

Mayer, et al., (2002) first posed the pump-and-treat setting, generically, as a
constrained "blackbox" optimization problem.

the placement of the wells and their pumping rates.·

to simulate the amount of contaminant exiting the (2) boundaries under different
pumping regimes (Matott, et al., 2006).

·

Fixing the well locations, let denote pumping rates for six wells, consider· ,… ,x1 x6

{f (x) = : (x) ≤ 0, (x) ≤ 0, x ∈ [0, 2 ⋅ } .min
x ∑

j=1

6

xj c1 c2 104]6

61/65

http://www.sciencedirect.com/science/article/pii/S0309170802000544
http://www.sciencedirect.com/science/article/pii/S0309170805001922

Matott, et al., (2011) compared MATLAB and Python optimizers, treating constraints
via the additive penalty method, initialized at the known-valid input .

=x0j 104

62/65

http://amstat.tandfonline.com/servlet/linkout?suffix=cit0018&dbid=128&doi=10.1080%2F00401706.2015.1014065&key=000299139800019

Objective improving comparator

It is interesting to ask …

Consider the following random search method that I call objective improving
candidates.

Given the current best valid input , i.e.,

draw uniformly from , for example via rejection.

What makes the good methods good?

Why do the bad methods (in some cases) fail so spectacularly?

And by the way, how are statistics and RSMs involved?

·

·

·

x∗

, and

 for all other (tried so far) such that ,

· c() ≤ 0x∗

· f () = < f (x)x∗ ∑j x
∗
j x c(x) ≤ 0

{x : f (x) < f ()}x∗

63/65

Here I've extracted the first 500 iterations from Matott, et al., (2011),

which are in runlock/pato_results.csv,

and added average progress (best valid value) from 30 repeated runs of OICs.

·

·

64/65

Sequential design

Half of the MATLAB/Python methods are not doing better (on average) than a slightly
modified "random search".

Fitting a surrogate model to blackbox evaluations can allow statistical decision
criteria to judge trade-offs between reward and uncertainty;

Sequential design is the process of using (surrogate) model fits to drive future data
collection, in order to maximize information or reduce variance, say.

They are getting stuck in a local minima, and failing to explore other opportunities.·

in this case, balancing exploration and exploitation.·

One popular application of this idea to optimization is called expected
improvement (EI).

The machine learning community calls this Bayesian optimization owing to the
Bayesian interpretation of GP learning.

·

·

65/65

