
Part 8: 
GLMs and Hierarchical 

LMs and GLMs
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Example: Song sparrow reproductive success

Arcese et al., (1992) provide data on a sample from a 
population of 52 female song sparrows studied over 
the course of a summer, during which their 
reproductive activities were recorded
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2-year-old birds had the highest median reproductive  
success, declining thereafter
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Example: Poisson model

Since the number of offspring for each bird is a non-
negative integer                    , a simple probability 
model for

Y = the number of o↵spring
x = ageconditional on

would be a Poisson model

{Y |x} ⇠ Pois(✓x)

One possibility would be to estimate      separately for 
each age group

✓x

{0, 1, 2, . . . }

 3



Example: Adding stability

However, the number of birds of each age is small and 
so the estimates of      would be imprecise✓x

To add stability to the estimation we will assume that 
the mean number of offspring is a smooth function of 
age

We will want to allow this function to be quadratic so 
that we can represent

• the increase in mean offspring while birds mature
• and the decline they experience thereafter
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Example: A linear model?

One possibility would be to express     as✓x

✓x = �1 + �2x + �3x
2

However, this might allow some values of     to be 
negative, which is not physically possible

✓x

As an alternative, we will model the log-mean of      in 
terms of this regression so that 

Y

log E{Y |x} = log ✓x = �1 + �2x + �3x
2

which means that, for all    and 

E{Y |x} = exp{�1 + �2x + �3x
2} > 0

x �
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Poisson regression
The resulting model

{Y |x} ⇠ Pois(exp{x>�})

is called a Poisson regression model, or log-linear 
model

The term          is called the linear predictorx>�

In the regression model the linear predictor is linked 
to               via the       function, and so we say that 
this model has a       link

E{Y |x} log
log
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Generalized linear model
The Poisson regression/log-linear model is a type of 
generalized linear model (GLM), a model which

• allows more general response distributions for     
than the normal distribution  

• relates a function of the expectation  
to a linear predictor                 through the link  

Y

µ = E{Y }
⌘ = x>�

g(µ) = ⌘

These two choices define the GLM
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Priors
As in the case of ordinary regression, a natural class of 
prior distributions for     is MVN�

However, it is not the case that, when combined with 
the GLM likelihood (e.g., Poisson sampling model and 
log link), the resulting posterior distribution would be 
MVN

• a notable exception is when the Normal 
sampling model is used with the identity 
link, recovering the standard Bayesian LM

Conjugate priors for a GLM are not generally available, 
except in the above special case
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Inference by MCMC
Therefore, our only recourse will be to proceed by the 
MH algorithm in the general case of the GLM 

E.g., for our motivating Poisson regression example

So we have that log E{Yi|xi} = �1 + �2xi + �3x
2
i

where      is the age of sparrow xi i

We will abuse notation slightly by writing      
                          so that we may use the simplified 
expression
xi ⌘ (1, xi, x

2
i )

log E{Yi|xi} = x>i �
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MH acceptance ratio
Suppose we take the prior

Given the current value of        and a value of      
generated from a symmetric proposal                  , the 
acceptance probably for the Metropolis algorithm is 
                 where

�(s) �⇤

q(�(s), �⇤)

min{1, A}

A =
p(�⇤|X, y)
p(�(s)|X, y)

=
Qn

i=1 Pois(yi;x>i �⇤)Qn
i=1 Pois(yi;x>i �(s))

⇥
Q3

j=1 N (�⇤j ; 0, 10)
Q3

j=1 N (�(s)
j ; 0, 10)

� ⇠ N3(0, 10I3)
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Choosing a proposal
All that remains is to specify the proposal distribution
q(�(s), �⇤)

A convenient choice is a MVN with mean �(s)

In many problems, the posterior variance can be an 
efficient choice of a proposal variance

Although we do not know the posterior variance 
before running the MH algorithm, it is often sufficient 
just to use a rough approximation
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Proposal variance
In a Bayesian LM, the posterior variance of     will be 
close to                     , where      is the variance of      

�
�2(X>X)�1 �2 Y

In our Poisson regression, the model is that the log of         
    has expectation equal to        , so it is sensible to try 
a proposal variance of                      where      is the 
sample variance of

Y x>�
�̂2(X>X)�1 �̂2

{log(yi + 1/2), . . . , log(yn + 1/2)}

If this results in an acceptance rate that is too high or 
too low, we can always adjust the proposal variance 
accordingly
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Example: MCMC for Sparrows log-linear model

ESS
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Example: Posterior marginals and predictive
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Hierarchical regression
Here we shall extend the concept of hierarchical 
modeling to regression problems

• the regression model shall be used to 
describe within-group variation  

• and a MVN model will be used to 
describe heterogeneity between groups 

• first with LMs, then with GLMs
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Example: Math score data

Let us return to the math score data which included 
scores of 10th grade children from 100 different large 
urban public high schools

• we estimated school-specific expected math 
scores, as well as how these expected values 
varied from school to school

Now suppose that we are interested in examining the 
relationship between math score and another variable, 
socioeconomic status (SES), which was calculated from 
parental income and education levels for each student 
in the dataset
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Example: Math score data

With our hierarchical normal model we quantified the 
between-school heterogeneity in expected math score

Given the amount of variation we observed it seems 
possible that the relationship between math score and 
SES might vary from school to school as well

A quick and easy way to assess this possibility is to fit a 
linear regression model of math score as a function of 
SES for each of the 100 schools in the dataset
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Example: Math score data

To make the parameters more interpretable we center 
the SES scores within each school separately, so the 
sample average SES score within each school is zero

• as a result, the intercept of the regression line 
can be interpreted as the school-level average
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Example: Math score data
It is also informative to plot the OLS slope and 
intercept as a function of the sample size
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Schools with the highest sample sizes have regression 
coefficients that are generally close to the average

• extreme coefficients correspond to low sample sizes
 19



Example: Pooling data

The smaller the sample size for the group, the more 
probable that unrepresentative data are sampled and 
an extreme OLS estimate is produced

Our remedy to this problem will be to stabilize the 
estimates for small sample size schools by sharing 
information across groups

• using a hierarchical model
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Hierarchical LM
The hierarchical model in the linear regression setting 
is a conceptually straightforward generalization of the 
normal hierarchical model

• we use an ordinary regression model to 
describe the within-group heterogeneity  

• then we describe the between-group 
heterogeneity using a sampling model for 
the group-specific regression parameters
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Within-group model
Symbolically, our within-group sampling model is

where        is a          vector of covariates for 
observation    in group

xi,j p⇥ 1
i j

The group-specific data vectors                   are 
conditionally independent given                    and 

Y1, . . . , Ym

�1, . . . ,�m �2

Expressing                         as a vector      and 
combining                        into an           matrix,  
the within-group sampling model can be expressed 
equivalently as

Y1,j , . . . , Ynj ,j Yj

x1,j , . . . , xnj ,j n⇥ p

Yj ⇠ Nnj (Xj�j , �
2Inj )

Yi,j = x>i,j�j + "i,j , {"i,j}
iid⇠ N (0, �2)
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Between-group model
The heterogeneity among the regression coefficients 
                  will be described with a between-group 
sampling model
�1, . . . ,�m

The normal hierarchical regression model describes 
the across-group heterogeneity with a multivariate 
normal distribution, so that

�1, . . . ,�m
iid⇠ Np(�0,⌃0)
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Hierarchical diagram

Y1 Y2 Ym�1 Ym

�2

· · ·

· · ·

�1 �2 �m�1 �m

(�0,⌃0)

The values of      and      are fixed but unknown 
parameters to be estimated

�0 ⌃0

This hierarchical regression model is sometimes called 
a linear mixed effects model
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Full conditionals
While computing the posterior distribution for so 
many parameters may seem daunting, the calculations 
involved in computing the full conditional distributions 
have the same mathematical structure as many 
examples we have come across before

Once we have the full conditional distributions we can 
iteratively sample from them to approximate the joint 
posterior distribution by GS
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Full conditional of �1, . . . ,�m

The hierarchical LM shares information across groups 
via the parameters            and�0,⌃0 �2

As a result, conditional on                , the regression 
coefficients                   are independent

�0,⌃0, �
2

�1, . . . ,�m

Therefore,                                     is MVN with

Var[�j |yj , Xj , �
2, �0,⌃0] = (⌃�1

0 + X>
j Xj/�2)�1

E{�j |yj , Xj , �
2, �0,⌃0} = (⌃�1

0 + X>
j Xj/�2)�1(⌃�1

0 �0 + X>
j yj/�2)

{�j |yj , Xj , �
2, �0,⌃0}
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Full conditionals of
Our sampling model for the    ’s is that they are IID 
samples from a MVN with mean     and covariance

(�0,⌃0)

�j

�0 ⌃0

Therefore, if                             then our previous 
result for MVN posterior conditionals gives that      

�0 ⇠ Np(µ0,⇤0)

{�0|�1, . . . ,�m,⌃0} ⇠ Np(µm,⇤m)

⇤m = (⇤0 + m⌃�1
0 )�1

µm = ⇤m(⇤0µ0 + m⌃�1
0 �̄)

where

�̄ = 1
m

P
�jand
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... continued ...

Likewise, if                                then ⌃0 ⇠ IW(⌫0, S
�1
0 )

{⌃0|�0, �1, . . . ,�m} ⇠ IW(⌫0 + m, [S0 + S� ]�1)

S� =
mX

j=1

(�j � �0)(�j � �0)>where
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Full conditional of
The parameter     represents the error variance, 
assumed to be common across all groups

�2

�2

As such, conditional on                  , the data provide 
information about     via the sum of squared residuals 
from each group

�1, . . . ,�m

�2

With prior                                      we have

{�2|�1, . . . ,�m, . . . } ⇠ IG
✓

⌫0 +
P

nj

2
,
⌫0�2

0 + SSR
2

◆

SSR =
mX

j=1

njX

i=1

(yi,j � x>i,j�j)2

�2 ⇠ IG(⌫0/2, ⌫0�
2
0/2)
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Example: Analysis of math score data

        is extremely 
unlikely to be 
negative, but a
new                   
may indeed  
be negative

�new|�0, y

�0|y

• therefore the population average slope is 
positive: higher SES yields higher score

• but it is not unlikely for a particular 
school to observe a reverse trend 
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p(�new < 0|y) ⇡ 0.0861
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Example: Analysis of math score data
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• compared to the plot of OLS lines that we saw 
before, these are more homogeneous

• this indicates how the hierarchical model is able to 
share information across groups, shrinking extreme 
regression lines towards the average

hardly any
slopes are
negative
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Hierarchical GLMs
The same Bayesian hierarchical modeling techniques 
extend to GLMs

• sometimes called a generalized linear mixed 
effects model

Such models are useful when we have a hierarchical 
data structure but the normal model for the within-
group variation is not appropriate

For example, if the variable     were binary or a count, 
then more appropriate models for within-group 
variation would be logistic or log-linear models, 
respectively

Y

 32



Basic model
A basic hierarchical GLM is

�1, . . . ,�m
iid⇠ Np(�0,⌃0)

p(yj |Xj , �j , �) =
njY

i=1

p(yi,j |x>i,j�j , �)

with observations from different groups also being 
conditionally independent 

In this formulation                     is a density whose 
mean depends on        , and    is an additional 
parameter often representing variance or scale

x>� �
p(y|x>�, �)
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For example

In the normal model  
where     represents the variance

p(y|x>�, �) = N (y;x>�, �)
�

In the Poisson model  
 
 
and there is no     parameter �

p(y|x>�, �) = Pois(y; exp{x>�})

Likewise, in the Binomial model  
 
 
 
and there is no     parameter �

p(y|x>�, �) = Bin
✓

y;n,
exp{x>�}

1 + exp{x>�}

◆
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Inference
Estimation for the Hierarchical LM was straightforward 
because the full conditional distribution of each 
parameter was standard, allowing for GS

In contrast, for non-normal GLMs, typically only      and   
      have standard full conditional distributions

�0

⌃0

This suggests using the Metropolis-within-Gibbs 
algorithm to approximate the posterior distribution of 
the parameters

• using GS for updating              , and
• MH for each

(�0,⌃0)
�j

In what follows we assume there is no     parameter�
 35



GS for 
Just as in the hierarchical GLM, the full conditional 
distributions of      and      depend only on

(�0,�0)

⌃0�0

This means that the form of                  has no effect 
on the posterior conditional distributions of  
and 

p(y|x>�)
�0

⌃0

�1, . . . ,�m

Therefore, the full conditionals are MVN and IW, 
respectively
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MH for 
Updating      in a Markov chain can proceed by 
proposing a new value of       based on the current 
parameter values and then accepting or rejecting with 
the appropriate probability

�1, . . . ,�m

�j
�⇤

j

A standard proposal distribution in this situation would 
be a MVN with mean equal to the current value of     
and some proposal variance

�(s)
j

V (s)
j

In many cases, setting         equal to a scaled version of         
        produces a well-mixing Markov chain, although 
the task of finding the right scale might have to 
proceed by trial and error

V (s)
j

⌃(s)
0
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The MCMC method
Putting these steps together results in the following 
MH algorithm for approximating

p(�1, . . . ,�m, �0,⌃0|X1, . . . ,Xm, y1, . . . , ym)

Given the current values at scan    of the Markov chain, 
we obtain new values as follows

s

1. Sample            from its full conditional distribution
2. Sample            from its full conditional distribution
3. For each

�(s+1)
0

⌃(s+1)
0
j 2 {1, . . . ,m}

a) propose a new value of
b) set            equal to      or        with the  
    appropriate probability

�⇤
j

�(s+1)
j

�⇤
j �(s)

j
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Example: Analysis of tumor location data

Haigis et al. (2004) report on a certain population of 
laboratory mice that experiences a high rate of 
intestinal tumor growth

One item of interest to researchers is how the rate of 
tumor growth varies along the length of the intestine

To study this, the intestine of each of 21 sample mice 
was divided into 20 sections and the number of tumors 
occurring in each section was recorded
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Example:  Visualizing the data
Each line represents the observed tumor counts of a 
mouse versus the segment of the intestine

(Although it is hard to tell ...) the lines from some mice 
are consistently below/above the average
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Example: Hierarchical modeling

Therefore, tumor counts may be more similar within a 
mouse than between mice, and a hierarchical model 
with mouse-specific effects may be appropriate

A natural model for count data such as these is a 
Poisson distribution with a log-link

Letting        be mouse  ’s tumor count at location    
of their intestine, we shall use the model

Yx,j j

Yx,j ⇠ Pois(exp{fj(x)})

where     is a smoothly varying function of   fj x 2 [0, 1]

x
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Example: Polynomial covariates

A simple way to parameterize     is as a polynomial, so 
that

fj

fj(x) = �1,j + �2,jx + �3,jx
2 + · · · + �p,jx

p�1

for some maximum degree p� 1

Such a parameterization allows us to represent each     
as a regression on 

fj

(1, x, x2, . . . , xp�1)

For simplicity, we will model each     as a fourth-degree 
polynomial, i.e.,          

fj
p = 5
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Example: Between-group sampling model

Our between-group sampling model for the    ’s will be 
as in the previous section, so that 

�j

�1, . . . ,�m
iid⇠ Np(�0,⌃0)

Unconditional on    , the observations coming from a 
given mouse are statistically dependent as determined 
by 

�j

⌃0

Estimating      in this hierarchical model allows us to 
account for and describe potential within-mouse 
dependencies in the data

⌃0
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Example: Between-group sampling model

The unknown parameters in this model are     and 
for which we need to specify prior distributions

⌃0�0

Using conjugate normal and IW priors will allow us to 
proceed as usual for these parameters

A unit information prior can be constructed using OLS 
estimators with small sample sizes

e.g., by regressing 

on                       where                                      for {x1, . . . , x20} x>i = (1, xi, x
2
i , x

3
i , x

4
i )

{log(y1,j + 1/20), . . . , log(yn,j + 1/20)}

xi 2 (0.05, 0.10, . . . , 0.95, 2)
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Example: MH-within Gibbs MCMC

The proposal we use for     is

�0
j ⇠ Np(�

(s)
j ,⌃(s)/2)

�0
j

Since the mixing is likely to be worse than the “fully 
Gibbs” sampler from the hierarchical LM, we will need 
to obtain many more samples, and check the 
acceptance rates, autocorrelations, and effective sample 
sizes carefully
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Example: Checking for good mixing

The ESSs obtained for the components of      were�0

intercept linear quadratic cubic quartic

880 1310 1499 1616 1696

A trace obtained for        was�4,5
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Example: Predictive distribution(s)
Sources of uncertainty in the posterior 
predictive:
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Example: Understanding uncertainty

Understanding these different sources of uncertainty 
can be very relevant to inference and decision making

For example, if we want to predict the observed tumor 
count distribution of a new mouse, we should use the 
confidence bands for {Y |x}

Whereas the bands for      would be appropriate if we 
just wanted to describe the uncertainty in the 
underlying tumor rate for the population

�0
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