
Part 7: 
Hierarchical Modeling 
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Nested data

• patients within several hospitals

• genes within a group of animals, or

• people within counties within regions within 
countries

It is common for data to be nested: i.e., observations 
on subjects are organized by a hierarchy

Such data are often called hierarchical or multilevel

For example,
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Two groups
The simplest type of multilevel data has 2 levels, in 
which

• one level consists of groups

• and the other consists of units within groups

In this case, we denote       as the data on the      unit 
within group

yi,j ith

j
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Hierarchical model
The sampling model should reflect/acknowledge the 
hierarchy so that we may distinguish between

• within-group variability, and

• between-group variability

(within-group sampling variability)

(between-group sampling variability)

(prior distribution)

One typically uses the following hierarchical model, for 
                     , with      observations in each groupj = 1, . . . ,m nj

{Y1,j , . . . , Ynj ,j |✓j}
iid⇠ p(Y |✓j)

{✓1, . . . , ✓m|�} iid⇠ p(✓j |�)
� ⇠ p(�)
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Variability accounting
It is important to recognize that the distributions        
           and            both represent sampling variability 
among populations of objects:
p(y|✓) p(✓|�)

•            represents variability among measurements 
within a group 

•            represents variability across groups

p(y|✓)

p(✓|�)

In contrast,         represents information about a single 
fixed but unknown quantity

p(�)

These are both sampling distributions; the data are 
used to estimate    and   ; but         is not estimated✓ � p(�)
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Hierarchical normal model
A popular model for describing the heterogeneity of 
means across several populations is the hierarchical 
normal model, in which the within- and between-group 
sampling models are both normal:

Note that             only describes heterogeneity across 
group means, and not any heterogeneity in group-
specific variances

p(✓|�)

The within-group sampling variability     is assumed to 
be constant across groups

�2

(within-group model)

(between-group model)

✓j = (µj ,�
2), p(y|✓j) = N (µj ,�

2)

� = ( , ⌧2), p(✓j |�) = N ( , ⌧2)
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Hierarchical diagram
( , ⌧2)

µ1 µ2 µm�1 µm

Y1 Y2 Ym�1 Ym

�2

· · ·

· · ·
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The priors
The fixed but unknown parameters in the models are  
          and , ⌧2 �2

For convenience we will use the standard semi-
conjugate normal and IG prior for these parameters

�2 ⇠ IG(⌫0/2, ⌫0�
2
0/2)

⌧2 ⇠ IG(⌘0/2, ⌘0⌧
2
0 /2)

 ⇠ N ( 0, �
2
0)
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Posterior inference
The full set of unknown quantities in our system 
include the group-specific means                     , the 
within-group sampling variability      and the mean and 
variance            of the population group-specific means

�2

( , ⌧2)

{µ1, . . . , µm}

GS proceeds by iteratively sampling each parameter 
from its full conditional distribution

Posterior inference for these parameters can be made 
by GS which approximates the joint posterior 
distribution

p(µ1, . . . , µm, , ⌧2,�2|y1, . . . , ym)
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Full conditionals

• Deriving the full conditional distributions in this 
highly parameterized system may seem like a 
daunting task 

• But it turns out that we have already worked out 
all of the necessary technical details 

• All that is required is that we recognize certain 
analogies between the current model and the 
univariate normal model
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Posterior essence
The following factorization of the posterior 
distribution will be useful

This term is the result of an important conditional 
independence feature of our model

This relates back to our diagram ...

p(µ1, . . . , µm, , ⌧2,�2|y1, . . . , ym)

/ p(y1, . . . , ym|µ1, . . . , µn,�2, , ⌧2)⇥ p(µ1, . . . , µm| , ⌧2)⇥ p( , ⌧2,�2)

=

8
<

:

mY

j=1

njY

i=1

p(yi,j |µj ,�
2)

9
=

;⇥

8
<

:

mY

j=1

p(µj | , ⌧2)

9
=

;⇥ p( )p(⌧2)p(�2)
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Conditional independence

Conditional on                                       the random 
variables                        are independent with a 
distribution that depends only on      and 

{µ1, . . . , µm, , ⌧2,�2}
Y1,j , . . . , Ynj ,j

µj �2

but only indirectly 
through µj

( , ⌧2)

µ1 µ2 µm�1 µm

Y1 Y2 Ym�1 Ym

�2

· · ·

· · ·

The existence of a 
path from            to 
each      indicates that 
these parameters 
provide information 
about    

( , ⌧2)
Yj

Yj
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Full conditional for 
As a function of     and    , the posterior distribution is 
proportional to

( , ⌧2)

 ⌧2

mY

j=1

p(µj |⇥, �2)p(⇥)p(�2)

And so the full conditional distributions of     and     
are also proportional to this quantity

 ⌧2

p( |µ1, . . . , µm, ⌧2,�2, y1, . . . , ym) =
Y

p(µj | , ⌧2)p( )

p(⌧2|µ1, . . . , µm, ,�2, y1, . . . , ym) =
Y

p(µj | , ⌧2)p(⌧2)
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Full conditional for 

These conditionals are exactly the full conditional 
distributions from the one-sample normal problem

( , ⌧2)

Therefore, by analogy:

{ |µ1, . . . , µm, ⌧2} ⇠ N
✓

mµ̄/⌧2 +  0/�2
0

m/⌧2 + 1/�2
0

, [m/⌧2 + 1/�2
0 ]�1

◆

{⌧2|µ1, . . . , µm, } ⇠ IG
✓
⌘0 + m

2
,
⌘0⌧2

0 +
P

(µj �  )2

2

◆
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Full conditional for 
Likewise, the full conditional distribution of      must be 
proportional to  

µj
µj

     is conditionally independent of               forµj {µk, yk} k 6= j
( , ⌧2)

µ1 µ2 µm�1 µm

Y1 Y2 Ym�1 Ym

�2

· · ·

· · ·

While there is a path from 
each     to every other     , 
the paths go through          
or

µj µk

( , ⌧2)
�2

p(µj | , ⌧2,�2, µ(�j), y1, . . . , yn)

/
njY

i=1

p(yi,j |µj ,�
2)⇥ p(µj | , ⌧2)

 15



Full conditional for 
We can think of this as meaning that the   ’s contribute 
no information about each other beyond that 
contained in          and

µj

µ

 , ⌧2 �2

njY

i=1

p(yi,j |µj ,�
2)⇥ p(µj | , ⌧2)

The terms in our conditional are

(product of normals) (normal)

Mathematically, this is the same setup as our normal 
model.  So by analogy, the full conditional distribution is

{µj |�2, , ⌧2, y1,j , . . . , ynj ,j} ⇠ N
✓

nj ȳj/�2 +  /⌧2

nj/�2 + 1/⌧2
, [nj/�

2 + 1/⌧2]�1

◆
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Full conditional for 
By similar arguments,      is conditionally independent 
of             given

�2

�2

{y1, . . . , ym, µ1, . . . , µm}

The derivation of the full conditional of     is similar to 
that in the one-sample normal model, except that now 
we have information about     from     separate groups

�2

�2 m

p(�2|µ1, . . . , µm, y1, . . . , ym)

/
mY

j=1

njY

i=1

p(yi,j |µj , �
2)⇥ p(�2)

/ (�2)
P

nj/2e�
P P

(yi,j�µj)2

2�2 ⇥ (�2)�⌫0/2+1e�
⌫0�2

0
2�2

{ , ⌧2}
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Full conditional for 
Adding powers of     and collecting terms in the 
exponent, we recognize that this is an IG:

�2

�2

So the conditional distribution concentrates probability 
around a pooled-sample estimate of the variance

Note that                             is the sum of squared 
residuals across all groups, conditional on the within-
group means

P P
(yi,j � µj)2

{�2|µ, y} ⇠ IG

0

@1
2

2

4⌫0 +
mX

j=1

nj

3

5 ,
1
2

2

4⌫0�
2
0 +

mX

j=1

njX

i=1

(yi,j � µj)2
3

5

1

A
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Example: Math scores in US public schools

Consider data that is part of the 2002 Educational 
Longitudinal Study (ELS), a survey of students from a 
large sample of schools in the United States

The data consist of math scores of 10th grade students 
at 100 different urban public high schools with a (10th 
grade) enrollment of 400+

The scores are based on a national exam, standardized 
to produce a nationwide mean of 50 and standard 
deviation of 10
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Example: the data

Scores for students within the same school plotted 
along a common vertical bar:
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Example: the data

The range of average scores (36, 65) is quite large

Extreme sample averages occur for schools with small 
sample sizes

This is a common relationship in hierarchical datasets
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Example: priors

The prior parameters that we need to specify are

The exam was designed to give a variance of 100, both 
within and between schools

• so the within-school variance should be at most 
100, which we take as

• this is likely an overestimate, so we take a weak 
prior concentration around this value with

�2
0

⌫0 = 1

(⌫0,�2
0) for p(�2)

(⌘0, ⌧2
0 ) for p(⌧2), and

( 0, �
2
0) for p( )
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Example: priors, ctd.

Similarly, the between-school variance should not be 
more than 100, so we likewise take (⌘0, ⌧

2
0 ) = (1, 100)

Finally, the nationwide mean over all schools is 50

Although the mean for large urban public schools may 
be different than the nationwide average, it should not 
differ by too much

We shall take               and              , so that the prior 
probability that                     is about 95%

 0 = 50 �2
0 = 25

 2 (40, 60)
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Example: Gibbs sampling

Posterior approximation may now proceed by GS

Given a current state of the unknowns 

{µ(s)
1 , . . . , µ(s)

m , (s), ⌧2(s),�2(s)}
a new state may be generated as follows

 (s+1) ⇠ p( |µ(s)
1 , . . . , µ(s)

m , ⌧2(s))1. sample

⌧2(s+1) ⇠ p(⌧2|µ(s)
1 , . . . , µ(s)

m , (s+1))2. sample

�2(s+1) ⇠ p(�2|µ(s)
1 , . . . , µ(s)

m , y1, . . . ym)3. sample

4. sample for each                          samplej 2 {1, . . . ,m}

µ(s+1)
j ⇠ p(µj | (s+1), ⌧2(s+1),�2(s+1), yj)
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Example: Posterior summaries
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 ̄ = 47.78 �̄ = 9.21 ⌧̄ = 4.97

• 95% of the scores within a school are within     
                        points of each other

• whereas, 95% of the average school scores are 
within                        points of each other

4⇥ 9.21 ⇡ 37

4⇥ 4.97 ⇡ 20
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Example: Shrinkage

One of the motivations behind hierarchical modeling is 
that information can be shared across groups

This effect is called shrinkage

As a result, the expected value of      is pulled a bit 
from      towards     by an amount depending upon

µj

ȳj nj 

Recall that, conditional on                and the data, the 
expected value of       is a weighted average of         
and

 , ⌧2,�2

µj ȳj

 

E{µj |yj , , ⌧2,�2} =
ȳjnj/�2 +  /⌧2
nj/�2 + 1/⌧2
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Example: Shrinkage

Consider the relationship between      andȳj

for                      obtained in via our MCMC methodj = 1, . . . ,m
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µ̄j = E{µj |yj , ⇤, ⇥2, �2}

Notice that the relationship 
follows a line with a slope 
that is less than one, 
indicating that high values 
of      correspond to 
slightly less high values of    
and vice-versa for low 
values

ȳj
µ̄j
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Example: Shrinkage
It is also interesting to observe the shrinkage as a 
function of the group-specific sample size
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)[o
] Groups with low sample 
sizes get shrunk the 
most, where as groups 
with large sample sizes 
hardly get shrunk at all

This makes sense:

The larger the sample size the more information we 
have for that group, and the less information we need 
to borrow from the rest of the population
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Example: Ranking schools

Suppose our task is to rank the schools according to 
what we think their performances would be if every 
student in each school took the math exam

In this case, it makes sense to rank the schools 
according to the school-specific posterior expectations
{µ̄1, . . . , µ̄m}
Alternatively, we could ignore the results of the 
hierarchical model and just use the school-specific 
averages {ȳ1, . . . , ȳm}

The two methods will give similar, but not identical 
rankings
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Example: Ranking schools

Consider the posterior distributions of       andµ46 µ82

Both schools have exceptionally low sample means, in 
the bottom 10% of all schools
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(data averages)
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Example: Ranking schools

So school 82 is ranked lower than 46 by the data 
averages, but higher by the posterior group-means

Does this make sense?

The posterior density for school 46 is more peaked 
because it was derived from a much larger sample size  

Therefore our degree of certainty about       is much 
higher than that for     

µ46

µ82

How does this translate into lack of faith in the data 
averages if we are going to justify using the posterior 
means instead?
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Example: Hypothetical absence

Suppose that on the day of the exam the student who 
got the lowest exam score in school 82 did not come 
to class

Then the sample mean for school 82 would have been 
41.99 rather than 38.76, a change of more than three 
points (and a change in ranking)

In contrast, if the lowest performing student in school 
46 had not shown up, then       would have been 40.9 
as opposed to 40.18, a change of only 3/4

ȳ46
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Example: Hypothetical absence

... or just the possibility that a few of the 5 sampled 
students were among the poorer performing students 
in the school

In other words, the low value of the sample mean for 
school 82 can be explained by either        being very 
low

µ82

In contrast for school 46, this latter possibility cannot 
explain the low value of the sample mean, because of 
the large sample size

Therefore it makes sense to shrink the expectation of 
school 82 towards the population expectation     by a 
greater amount than for 46

 ̄
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Example: Is it fair?

To some people this reversal of rankings may seem 
strange or “unfair”

There are many other real-life situations where 
differing amounts of evidence results in a switch of 
ranking

While “fairness” may be debated, the hierarchical 
model reflects the objective fact that there is more 
evidence that       is exceptionally low than there is 
evidence that       is exceptionally low

µ46

µ82
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Hierarchical binomial model
Another commonly used hierarchical model is the 
Beta-binomial model, where

Yj ⇠ Bin(nj , ✓j)
✓j ⇠ Beta(↵,�)

(↵,�) ⇠ p(↵,�)

Conditional on     and     the posterior conditional for  
     is the familiar Beta distribution

↵ �
✓j

✓j |Yj , ↵, � ⇠ Beta(↵ + yj , � + nj � yj)
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Hierarchical diagram

Y1 Y2 Ym�1 Ym

· · ·

· · ·

(↵,�)

✓1 ✓2 ✓m�1 ✓m

As usual, we treat                    as knownn1, . . . , nm
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Hyperprior
Unfortunately, there is no (semi-) conjugate prior for      
    and ↵ �

However, it is possible to set up a non-informative 
hyperprior that is dominated by the likelihood and 
yields a proper posterior distribution which leads to a 
convenient Metropolis-within-Gibbs sampling method

 37



A hyperprior choice
A reasonable choice of diffuse hyperprior for the Beta-
binomial hierarchical model is uniform on 

✓
↵

↵ + �
, (↵ + �)�1/2

◆

A “change of variables” shows that this implies the 
following prior on the original scale

p(↵,�) / (↵ + �)�5/2

Is proper as long as                     for at least one 
experiment

0 < yj < nj

j
 38



p(�,⇥|y) =
p(�,⇥, ⇤|y)
p(⇤|�,⇥, y)

⇤ p(y|�,⇥, ⇤)p(�,⇥, ⇤)
p(⇤|�,⇥, y)

=
p(y|⇤)p(⇤|�,⇥)p(�,⇥)

p(⇤|�,⇥, y)

=
Qm

j=1 Bin(yj ;nj , ⇤j)⇥
Qm

j=1 Beta(⇤j ;�,⇥)⇥ p(�,⇥)
Qm

j=1 Beta(⇤j ;� + yj , ⇥ + nj � yj)

⇤ p(�,⇥)


�(� + ⇥)
�(�)�(⇥)

�m mY

j=1

�(� + yj)�(⇥ + nj � yj)
�(� + ⇥ + nj)

(...)

The posterior marginal
How can we calculate the posterior marginal 
distribution?

(cond prob.) (Bayes’ rule)

(cond indep. & cond prob.)
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Metropolis-within-Gibbs
We may sample from the marginal                by 
generating                           from                    via

p(↵,�|y)
(↵(s+1), �(s+1)) (↵(s), �(s))

2. if

then                     , else ↵(s+1)  ↵0 ↵(s+1)  ↵(s)

for u ⇠ Unif(0, 1)u <
p(�0, ⇥(s)|y)

p(�(s), ⇥(s)|y)
� �(s)

�0

4. if

then                     , else 

for u ⇠ Unif(0, 1)

�(s+1)  �(s)�(s+1)  �0

u <
p(↵(s+1), �0|y)

p(↵(s+1), �(s)|y)
⇥ �(s)

�0

3. propose �0 ⇠ Unif(�(s)/2, 2�(s))

1. propose ↵0 ⇠ Unif(↵(s)/2, 2↵(s))
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Completing the MC
Conditional on samples                   we may complete 
the MC method for sampling from the joint posterior 
distribution by sampling from the conditional(s)

(↵(s), �(s))

✓(s)
j ⇠ Beta(↵(s) + yj , �

(s) + nj � yj)

for j = 1, . . . ,m

We may also obtain samples from the posterior 
predictive                                                        as

ỹ(s)
j ⇠ Bin(nj , ✓

(s)
j )

for j = 1, . . . ,m

p(ỹ|y) = p(ỹ1, . . . , ỹm|y1, . . . , ym)
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Example: risk of tumors in a group of rats

In the evaluation of drugs for possible clinical 
application, studies are routinely performed on rodents

In a particular study, the aim is to estimate the 
probability of a tumor in a population of female rats 
“F344” that receive a zero-dose of the drug (control 
group)

The data show that 4/14 rats developed endometrial 
stromal polyps (a kind of tumor)

Typically, the mean and standard deviation of underlying 
tumor risks are not available to form a prior 
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Example: prior data

Rather, historical data are available on previous 
experiments on similar groups of rats
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Tarone (1982) provides data on the observations of 
tumor incidence in 70 groups of rats
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Example: Bayesian analysis

We shall model the              rat tumor data with a 
hierarchical Beta-binomial sampling model with 
MC(MC) inference, as just described

m = 71

ESS = 340

ESS = 347

0 200 400 600 800 1000

0
5

10
15

20

s

al
ph
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0 200 400 600 800 1000

0
20

60
10
0

s

be
ta

First we 
must obtain 
samples from 
the marginal 
posterior of 
(↵,�)
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Example: The posterior marginal

Once we have determined that the mixing is good, and 
we think the chain has achieved stationarity we can 
inspect the marginal posterior in a number of ways
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Example: Mean Shrinkage

As in the normal hierarchical model, we can assess the 
amount of shrinkage in the group-specific means, which 
may be obtained by direct MC, in a number of ways
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Example: Rat group F344

We can now present the posterior distribution for    
for our 71st rat group, and compare it to the 
population mean of tumor rates in the 70 “prior” rat 
groups
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In summary

• model data which are nested or have a natural 
hierarchy

• pool information about groups of similar 
populations so that smaller groups may borrow 
information from larger ones (i.e., shrinkage)

• provide an efficient way of using “prior data” in 
an appropriate way

We have seen how hierarchical models may be used to 
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