
Part 6: 
Multivariate Normal 
and Linear Models 
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Multiple measurements

• Up until now all of our statistical models have been 
univariate models

‣ models for a single measurement on each member 
of a sample of individuals, or each run of a repeated 
experiment

• However, datasets are frequently multivariate, having 
multiple measurements for each individual or 
experiment
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Multivariate model

• The most useful (commonly used) model for 
multivariate data is the multivariate normal model

• For a collection of variables, it allows us to jointly 
estimate population

‣ means

‣ variances

‣ and correlations

 3



Example: reading comprehension

A sample of 22 children are given reading 
comprehension tests before and after receiving a 
particular instructional method

Each student   will have two scores,        and       
denoting the pre- and post-instructional scores 
respectively

i Yi,1 Yi,2

We denote each student’s pair of scores as a           
vector     , so thatYi

Yi =
✓

Yi,1

Yi,2

◆
=

✓
score on first test

score on second test

◆
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Example: quantities of interest

The things we might be interested in include the 
population mean   , particularlyµ

E{Y} =
✓

E{Yi,1}
E{Yi,2}

◆
=

✓
µ1

µ2

◆

and the population covariance matrix ⌃

⌃ = Cov[Y]

=
✓

E{Y 2
1 }� E{Y1}2 E{Y1Y2}� E{Y1}E{Y2}

E{Y1Y2}� E{Y1}E{Y2} E{Y 2
2 }� E{Y2}2

◆

=
✓

�2
1 �1,2

�1,2 �2
2

◆
�1,2 = ⇢�1�2where
⇢ 2 [0, 1]for

µ2 � µ1

[   measures the consistency of the intervention]⇢
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Multivariate normal
One model for describing first- and second-order 
moments of multivariate data is the multivariate 
normal model

We say that a   -dimensional data vector     has a 
multivariate normal (MVN) distribution if its sampling 
density is

p Y

where

y =

0

B@
y1
...

yp

1

CA µ =

0

B@
µ1
...

µp

1

CA ⌃ =

0

B@
�2

1 · · · �1,p
...

. . .
...

�1,p · · · �2
p

1

CA

p(y|µ,�) = 1

(2�)p/2|�|1/2
exp

⇢
�1

2
(y � µ)>��1(y � µ)

�
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Example: bivariate normals

µ = (50, 50)
(�2

1 , �2
2) = (64, 144)

�1,2 = 0 [⇢ = 0]

�1,2 = 48 [⇢ = 0.5]

�1,2 = �48 [⇢ = �0.5]
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Notation & marginals

An interesting feature of the MVN distribution is that 
the marginal distribution of each variable is a univariate 
normal:

Yj ⇠ N (µj , �
2
j )

We shall write

Y ⇠ Np(µ,⌃)

when     has a   -dimensional MVN distributionY p
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Semiconjugate prior
Recall that if                    are IID (univariate) normal, 
then a convenient conjugate prior distribution for the 
population mean is also (univariate) normal

Y1, . . . , Yn

Similarly, a convenient prior distribution for the 
multivariate mean    is a MVN distribution, which we 
will parameterize as 

µ

p(µ) = Np(µ;µ0,⇤0)

where      and      are the prior mean and variance of   , 
respectively

µ0 ⇤0 µ
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The essence of the prior
We have that if                          , then

where                 and b0 = ⇤�1
0 µ0

p(µ) / exp
⇢
�1

2
µ>A0µ + µ>b0

�

A0 = ⇤�1
0

Conversely, this result says that if a random vector     
has a density in       that is proportional to

µ
Rp

exp
⇢
�1

2
µ>Aµ + µ>b

�

for some matrix     and vector   , then    must have a 
MVN distribution with covariance        and mean

A b µ
A�1 A�1b

µ ⇠ Np(µ0,⇤0)
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The essence of likelihood
If the sampling model is 

{Y1, . . . ,Yn|µ,⌃} iid⇠ Np(µ,⌃)
then similar calculations show that the joint sampling 
density of the observed vectors                   is y1, . . . ,yn

p(y1, . . . ,yn|µ,⌃) / exp
⇢
�1

2
µ>A1µ + µ>b1

�

where                                           andA1 = n⌃�1, b1 = n⌃�1ȳ

ȳ = ( 1
n

P
yi,1, . . . ,

1
n

P
yi,n)
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The essence of posterior
Combining the prior and likelihood gives the posterior

An = A0 + A1 = ⇤�1
0 + n⌃�1

bn = b0 + b1 = ⇤�1
0 µ0 + n⌃�1ȳ

where

p(µ|y1, . . . ,yn,⌃) / exp
⇢

1
2
µ>A1µ + µ>b1

�

⇥ exp
⇢

1
2
µ>A0µ + µ>b0

�

= exp
⇢

1
2
µ>Anµ + µ>bn

�
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The posterior
This implies that the posterior conditional distribution 
of     must therefore be MVN with covariance        and 
mean           , so

µ A�1
n

A�1
n bn

giving

Just like in the univariate case:

• the posterior precision (inverse covariance) is the 
sum of the prior precision and data precision

• the posterior expectation is the average of the prior 
expectation and the sample mean

Cov[µ|y1, . . . ,yn,⌃] = ⇤n = (⇤�1
0 + n⌃�1)�1

E{µ|y1, . . . ,yn,⌃} = µn = ⇤n(⇤�1
0 µ0 + n⌃�1ȳ)

{µ|y1, . . . ,yn,⇥} � Np(µn,�n)
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Prior covariance elements
Just as the variance     must be positive, the covariance 
matrix     must be positive definite, i.e., 

�2

⌃

x>⌃x > 0, for all vectors x

Positive definiteness guarantees that             for all    
and that all correlations are between      and    

�2
j > 0 j
�1 1

Another requirement is that the covariance matrix 
must be symmetric, i.e., �j,k = �k,j

Any valid prior distribution for     must put all of its 
probability mass on this complicated set of symmetric, 
positive definite matrices

⌃
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Wishart distribution
A convenient family of distributions with just these 
properties is the Wishart

• the multivariate analogue of the gamma family

Recall that, in the univariate normal model, the gamma 
distribution is conjugate for the precision          1/�2

• the conjugate prior for      is IG�2

Similarly, it turns out that the Wishart distribution is a 
semi-conjugate prior for the precision matrix     ⌃�1

• and so the conjugate prior for     is inverse-  
   Wishart

⌃
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Inverse-Wishart
To obtain                               where      is a  
positive-definite matrix and      is a positive integer

p⇥ pS0

⌫0

Z>Z =
⌫0X

i=1

ziz>i2. Calculate

⌃ = (Z>Z)�13. Set

Accordingly, the precision matrix         has a      
distribution

⌃�1 W (⌫0, S
�1
0 )

⌃ ⇠ IW(⌫0, S
�1
0 )

1. Sample z1, . . . , z⌫0

iid⇠ Np(0, S�1
0 )
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Expected covariance
The expected covariances under an inverse-Wishart 
are

E{⌃�1} = ⌫0S
�1
0

E{⌃} =
1

⌫ � p� 1
S0

As a prior for a MVN covariance, if we are confident 
that the true     is near      , then we might choose     
large and set                                   so that the 
distribution is tightly centered around

⌃ ⌃0 ⌫0

S0 = (⌫0 � p� 1)⌃0

⌃0

If not, we may choose                   and              , so 
that the distribution is loosely centered around

⌫0 = p + 2 S0 = ⌃0

⌃0
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IW (prior) density
The density for                      is given byIW(⌫0, S

�1
0 )

p(⌃) / |⌃|�(⌫0+p+1)/2 ⇥ exp
⇢
�1

2
tr(S0⌃�1)

�

where         is the trace, or sum of the diagonal 
elements, of a matrix

tr(·)

An interesting result from linear algebra is that

where     is a matrix whose       row isB kth b>k

KX

k=1

b>k Abk = tr(BAB>) = tr(B>BA)
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Convenient likelihood
To combine the IW prior distribution with the 
sampling distribution for                     we take 
advantage of the above result for traces:

Y1, . . . ,Yn

p(y1, . . . ,yn|µ,⌃)

/ |⌃|�n/2 exp

(
�1

2

nX

i=1

(yi � µ>)⌃�1(yi � µ)

)

= |⌃|�n/2 exp
⇢
�1

2
tr(Sµ⌃�1)

�

where                                                  is the residual 
sum of squares matrix for the vectors                   if  
the population mean is presumed to be

Sµ =
Pn

i=1(yi � µ)(yi � µ)>
y1, . . . ,yn

µ
 19



Posterior
We are now in a convenient position to combine the 
prior with the likelihood as follows

p(⌃|y1, . . . ,yn, µ)
/ p(y1, . . . ,yn|µ,⌃)⇥ p(⌃)

=
✓

|⌃|�n/2 exp
⇢
�1

2
tr(Sµ⌃�1)

�◆

⇥
✓

|⌃|�(⌫0+p+1)/2 exp
⇢
�1

2
tr(S0⌃�1)

�◆

= |⌃|�(⌫0+n+p�1)/2 exp
⇢
�1

2
tr([S0 + Sµ]⌃�1)

�
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Posterior
Thus we have

Even though it was rough going to obtain, hopefully the 
result is intuitive

• the posterior sample size                      is the sum  
   of the prior sample size and the data sample size
• Similarly, the posterior residual sum of squares  
                          is a sum of the prior sum of  
   squares and the data sum of squares

⌫n = ⌫0 + n

Sn = S0 + Sµ

{⌃|y1, . . . ,yn, µ} ⇠ IW(⌫0 + n, [S0 + Sµ]�1)
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Gibbs sampler

We now have the set of full posterior conditionals

{µ|y1, . . . ,yn,⌃} ⇠ Np(µn,⇤n)

{⌃|y1, . . . ,yn, µ} ⇠ IW(⌫n, S�1
n )

which we may use to construct a GS algorithm to 
obtain a MCMC approximation to the joint posterior

p(µ,⌃|y1, . . . ,yn)
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Gibbs sampler
Given a starting value       , the GS algorithm generates  
                          from                    via the following 
two steps:

⌃(0)

{µ(s+1),⌃(s+1)} {µ(s),⌃(s)}

1. Sample           from its full conditional distribution:
a) compute       and       from                  and  
b) sample

µn ⇤n y1, . . . ,yn ⌃(s)

µ(s+1) ⇠ Np(µn,⇤n)

µ(s+1)

2. Sample            from its full conditional distribution:
a) compute       from                  and  
b) sample

⌃(s+1)

Sn y1, . . . ,yn µ(s+1)

⌃(s+1) ⇠ IW(⌫n, S�1
n )

a)                    depend on     and     depends on    , so 
these must be recalculated every iteration

{µn,⇤n} ⌃ S0) µ
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Example: reading comprehension

We shall model the 22 pairs of scores, before and after 
instruction, as IID samples from a MVN distribution

The exam was designed to give average scores of 
around 50 out of 100, so                       is sensible as a 
prior expectation

µ0 = (50, 50)

Lets return to the our motivating reading 
comprehension example

We start by thinking about the priors for     and µ ⌃
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Example: mean prior variance

Since the true mean cannot be below 0 or above 100, 
it is desirable to use a prior variance for     that puts 
little probability outside of this range

µ

If we take                                                then �2
0,1 = �2

0,2 = (50/2)2 = 625
P (µj /2 [0, 100]) = 0.05

Since the two exams are measuring the same thing, 
whatever the true values of     and     are, it is probable 
that they are close

µ1 µ2

We can reflect this with a prior correlation of 0.5, so 
that �1,2 = 312.5
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Example: prior covariance & data

Some of the same logic about the range of exam 
scores applies to choosing a prior for ⌃

⌃We’ll take              , but only loosely center     around 
this value by taking

S0 = ⇤0

⌫0 = p + 2 = 4

The sufficient statistics of                    needed for 
MVN inference are

ȳ = (47.18, 53.86)>

(s2
1, s

2
2) = (182.16, 243.65)

s1,2/(s1s2) = 0.7

y1, . . . ,y22
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Example: Gibbs sampler

Initialize the GS algorithm with ⌃(0) =
✓

s2
1 s1,2

s1,2 s2
2

◆
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mu[, 1]

m
u[

, 2
]

no effect

Quantile-based CIs

2.5% 97.5%

1.48 11.74µ2 � µ1

P (µ2 > µ1|y1, . . . ,y22) > 0.99
strong evidence that the instruction is working
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Example: Posterior predictive

What is the probability that a randomly selected child 
will score higher on the second exam than on the first?

Quantile-based CIs

2.5% 97.5%

-14.01 34y2 � y1

a less significant, and possibly worrying result!
P (y2 > y1|y1, . . . ,y22) = 0.78
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Regression
Regression modeling is concerned with describing how 
the sampling distribution of one random variable     

varies with another variable or set of variables

Y

x = (x1, . . . , xp)

response variable

explanatory variable(s)  
or “covariates”

Specifically, a regression model postulates a form for    
          , the conditional distribution for     givenp(y|x) Y x

Estimation of            is made using data                  
gathered under a variety of conditions 

p(y|x) y1, . . . , yn

x1, . . . , xn
 29



Linear model
One simple but flexible approach to regression is via 
the linear (sampling) model (LM)

where the     are known,      is an unknown    
  -dimensional parameter vector of regression 
coefficients, and      is an unknown variance parameter

xi �
p

�2

The LM treats responses       as independent (but not 
identically distributed) realizations of a process that is 
linear in explanatory variables                                  , 
observed with Gaussian noise

Yi

x>i = (xi,1, . . . , xi,p)

Yi
ind⇠ N (µi, �

2) where µi = E{Y |xi} = x>i �
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Compact notation
The LM is usually written as                      , whereY = X� + "

Y =

0

B@
Y1
...

Yn

1

CA , X =

0

B@
x>1
...

x>n

1

CA , � =

0

B@
�1
...

�p

1

CA , " =

0

B@
"1
...

"n

1

CA

and {"1, . . . , "n}
iid⇠ N(0, �2)

Even more compact notation is

Y ⇠ Nn(X�, In�2)

where      is a           identity matrixIn n⇥ n

design matrix
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Maximum Likelihood

As long as           is invertible, which is the case when    
    is of full rank   , the MLE is

X>X
X p

�̂ = (X>X)�1X>Y

Similarly, we may find

�̂2 =
1
n

||Y �X�̂||2 =
1
n

nX

i=1

(Yi � x>i �̂)2
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Sampling the MLE

• It may be shown that �̂ ⇠ Np(�,�2(X>X)�1)

and �̂2 ⇠ �2

n
�2

n�p

• Moreover     and       are independent�̂ �̂2

These results may be used to construct confidence 
intervals, test hypotheses, etc., in a frequentist setup
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Example: Oxygen intake

12 healthy men who did not exercise regularly were 
recruited to take part in a study of the effects of two 
different exercise regimen on oxygen intake

• 6 were randomly assigned to a 12-week flat-  
   terrain running program
• the remaining 6 were assigned a 12-week step  
   aerobics program

The maximum oxygen intake of each subject was 
measured (in l/m) while running on an inclined 
treadmill, both before and after the 12-week program
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Example: Oxygen intake

Of interest is how a subject’s change in maximal 
oxygen intake may depend upon which program they 
were assigned to

• one explanatory variable

However, other factors, such as age, are expected to 
affect the change in maximal intake as well

• two explanatory variables

I.e., we wish to estimate the conditional distribution of 
oxygen intake for a given exercise program and age
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Example: Data
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It is easy to “imagine” two straight lines, one for the 
aerobic points, and the for the running ones

e.g., 

How do we estimate them, and do we need two?
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Example: Linear in “covariates”

A sensible LM may be constructed as follows

(intercept term) 

(interaction term) 

Yi = �1xi,1 + �2xi,2 + �3xi,3 + �4xi,4

xi,1 = 1 for each subject i

xi,2 = 0 if subject i is running, 1 if aerobic
xi,3 = the age of subject i

xi,4 = xi,2 ⇥ xi,3

x>i = (xi,1, xi,2, xi,3, xi,4)

Thus, the (12) rows of     are comprised of 4 columns:X
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Example: Explaining the terms in the model

Under this model the conditional expectations of     
for the two different levels of        are

Y
xi,2

E{Y |x} = �1 + �3 ⇥ age, if running
E{Y |x} = (�1 + �2) + (�3 + �4)⇥ age, if aerobic

The model assumes that the relationship is linear in 
age for both exercise groups, with

• the difference in intercepts given by
• and the difference in slopes by 

�2

�4
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Example: MLE/OLS inference
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Coefficients:
    Estimate Std. Error t value Pr(>|t|)   
x1 -51.2939  12.2522  -4.187  0.00305 **
x2  13.1071   5.7620   0.832   0.42978   
x3   2.0947    0.5264   3.980   0.00406 **
x4  -0.3182    0.6498  -0.490   0.63746   

Classical tests 
indicate that the 
exercise program 
may not be 
significant
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Bayesian LM
We demonstrate how a simple semi-conjugate prior 
distribution for     and      can be used when there is 
information available about the parameters

� �2

In situations where prior information is unavailable or 
difficult to quantify, an alternative “default” class of 
prior distributions is given

We shall see how the MLE             crops up as factors 
in our posterior distributions, with similar sampling 
distributions as posteriors in the default prior case

(�̂, �̂2)
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Semi-conjugate prior
The sampling density of the data, as a function of     is�

p(y|X,�, �2) = Nn(y;X�,�2)

/ exp
⇢
� 1

2�2
(y �X�)>(y �X�)

�

= exp
⇢
� 1

2�2
[y>y � 2�>X>y + �>X>X�]

�

The role that     plays in the exponent looks very 
similar to that played by   , which is MVN

�
y

This suggests that a MVN prior for     is conjugate�
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Semi-conjugate prior
If                          , then� ⇠ Np(�0,⌃0)

i.e., {�|y,X, �2} ⇠ Np(�n,⌃n)

which we recognize as proportional to an MVN with

⌃n ⌘ Var[�|y, X, �2] = (⌃�1
0 + X>X/�2)�1

�n ⌘ E{�|y, X, �2} = ⌃n(⌃�1
0 �0 + X>y/�2)

p(�|y,X,⇥2)

exp

⇢
�>

✓
��1

0 �0 +
X>y

⇥2

◆
� 1

2
�>

✓
��1

0 +
X>X

⇥2

◆
�

�
/
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Interpretation
We can gain some understanding of the posterior 
(conditional) by considering some limiting cases of

If the elements of the prior precision matrix        are 
small, then            , the MLE (or OLS estimator)

⌃�1
0

�n ⇡ �̂

On the other hand, if the measurement precision is 
very small (     is very large), then              , the prior 
expectation

�n ⇡ �0�2

⌃n ⌘ Var[�|y, X, �2] = (⌃�1
0 + X>X/�2)�1

�n ⌘ E{�|y, X, �2} = ⌃n(⌃�1
0 �0 + X>y/�2)
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Conjugate prior variance
As in most normal sampling problems, the semi-
conjugate prior for      is IG�2

If                                       then�2 ⇠ IG(⌫0/2, ⌫0�
2
0/2)

p(�2|yX,�)

= (�2)�(⌫0+n)/2+1 exp
⇢
� 1

2�2
[⌫0�

2
0 + (y �X�)>(y �X�)]

�

which we recognize as an IG density, i.e.,

{�2|y,X, �} ⇠ IG
✓

⌫0 + n

2
,
⌫0�2

0 + (y �X�)>(y �X�)
2

◆
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Gibbs sampler
Using these full conditionals, we may construct a GS 
algorithm as follows:  given current values of            
                   , new values can be generated by{�(s), �2(s)}

1. updating �

a) compute                          and
b) sample

⌃n(y,X, �2(s)) �n(y,X, �2(s))
�(s+1) ⇠ Np(�n,⌃n)

2. updating �2

a) compute                     
b) sample

s2
� = (y �X�(s+1))>(y �X�(s+1))

�2(s+1) ⇠ IG([⌫0 + n]/2, [⌫0�
2
0 + s2

� ]/2)
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Prior difficulty
The Bayesian analysis of the LM requires a specification 
of the prior parameters               and(�0,⌃0) (⌫0, �

2
0)

There are           such parameters, so this can be quite 
a monumental task even for modest 

O(p2)
p

Even when prior information exists (as in the oxygen 
intake example) sometimes an analysis must be done in 
the absence of prior information

Fortunately, there are some convenient weakly-
informative priors that are easy to use
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Jeffreys’ prior
The (independence) Jeffreys prior for the LM is

p(�,�2) / 1/�2

i.e.,                                 andp(�|�) = p(�) / 1 p(�2) / 1/�2

We may interpret the former as                        ,  
and the latter as                       , from which we may 
easily derive

� ⇠ N (0,1p)
�2 ⇠ IG(0, 0)

�|y, X, �2 ⇠ Np(�̂,�2(X>X)�1)

�2|y,X, � ⇠ IG(n/2, n�̂2/2)

Check that the posterior is proper for n > p + 1
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Marginal posterior variance
The marginal posterior variance is available in closed 
form under the IG (and Jeffreys’) prior

(cond. prob)

Since we can sample from both of these distributions, 
samples from the joint posterior                       may be 
obtained by MC

p(�,�2|y,X)
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Example: Oxygen intake

We will use the independent Jeffreys’ prior for this 
example with the MC procedure using the marginal 
posterior p(�2|y, X)
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Example: effect of aerobics?

The posterior distributions seem to suggest only weak 
evidence of a difference between the two groups, as 
the 95% CIs for      and      both contain zero�2 �4

However, these parameters themselves do not quite 
tell the whole story

According to the model, the average difference in    
between two people of the same age     but in different 
exercise programs is

y
x

�2 + �4x

Thus, the posterior distribution for the effect of the 
aerobics program over the running program is 
obtained via the posterior distribution of    
for each

�2 + �4x
x
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Example: effect of aerobics depends on age
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This indicates reasonably strong evidence of a 
difference at young ages and less at older ones
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Prediction (forecasting)
Suppose that we wish to obtain the posterior 
predictive distribution           at a new locationY (x⇤) x⇤

There are several ways in which we may go about 
sampling from this predictive distribution

The decomposition:

p(y⇤|y,X, x⇤) =
Z

p(y⇤|x⇤, �, �2)p(�,�2|y, X) d� d�2
(LTP)

(cond. prob.)

says that we may obtain MC samples as

y⇤(s) ⇠ N (x⇤>�(s), �2(s))
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Example: predictive quantiles
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