
Part 5: 
MCMC: Metropolis and 

Gibbs Samplers 
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Full conditionals and Gibbs
• For many multi-parameter models, the joint posterior 

is non-standard and difficult to sample from directly 

• However, it is often the case that we may easily sample 
from the posterior conditional distribution of each 
parameter 

• In such cases we can construct an iterative algorithm 
that provides a dependent sequence of parameter 
values sampled from each conditional that converges 
to the target joint posterior distribution

This is the essence of the Gibbs sampler
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From a tedious integral

In our normal model, recall how we found the 
posterior distribution of      by integrating over the 
unknown value of     when 

�2

giving

µ p(µ, �) = p(µ|�)p(�)

p(�2|y1, . . . , yn) / p(y1, . . . , yn|�2)p(�2)

= p(�2)
Z

p(y1, . . . , yn|µ, �2)p(µ|�2) dµ
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to a trivial sampler

This lead to the straightforward sampler

What can we do when we can’t do this integral?

• e.g., when p(µ, �2) = p(µ)p(�2)

�2(1) ⇠ IG(⌫n/2, �2
n⌫/2), µ(1) ⇠ N (µn, �2(1)/n)

�2(2) ⇠ IG(⌫n/2, �2
n⌫/2), µ(2) ⇠ N (µn, �2(2)/n)

...
...

�2(S) ⇠ IG(⌫n/2, �2
n⌫/2), µ(S) ⇠ N (µn, �2(S)/n)
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p(�2|µ, y1, . . . , yn)

/ p(y1, . . . , yn|µ, �2)p(�2)

/ (�2)�(⌫0+n)+1 ⇥ exp

(
� 1

2�2

"
⌫0�

2
0 +

nX

i=1

(yi � µ)2
#)

Quite a bit.
The conditional distribution of      given     and  
                    is

�2 µ
{y1, . . . , yn}

where

This is a Gamma density for                  , and so�̃2 = 1/�2

{�2|µ, y1, . . . , yn} ⇠ IG(⌫n/2, ⌫n�2
n(µ)/2)

⌫n = ⌫0 + n, and �2
n(µ) =

1
⌫n

[⌫o�
2
0 + ns2

n(µ)]
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Sampling from conditionals
So now we have the ability to sample from

�2|µ, y1, . . . , yn µ|�2, y1, . . . , yn

Suppose we were given         , a single sample from the 
marginal posterior                           

�2(1)

p(�2|y1, . . . , yn)

Then we could take µ(1) ⇠ p(µ|�2(1), y1, . . . , yn)
and                     would be a sample from the joint 
posterior distribution of 

(µ(1), �2(1))
(µ, �2)

and

Additionally,        can be considered as a sample from 
the marginal posterior                         , from which 
we may obtain

µ(1)

p(µ|y1, . . . , yn)
�2(2) ⇠ p(�2|µ(1), y1, . . . , yn)
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Sampling from conditionals
Now, since        is a sample from the marginal 
posterior for   , and         is a sample from the 
posterior conditional of            , then                    is 
also a sample from the joint distribution of

µ(1)

µ �2(2)

So the conditionals can be used to generate samples 
from the joint if we have          from which to start�2(1)

This, in turn, means that          is a sample from the 
marginal posterior

�2(2)

p(�2|y1, . . . , yn)
which can then be used to generate a new sample       
and so on

µ(2)

�2|µ(1) {µ(1), �2(2)}
{µ, �2}
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Full conditionals

The distributions

are called the full (posterior) conditional distributions, 
or “full conditionals” of     and     , respectively, as they 
are each a conditional distribution of a parameter given 
everything else (including the data)

p(µ|�2, y1, . . . , yn)

p(�2|µ, y1, . . . , yn)

µ �2
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Full conditionals
To make this sampling idea more precise, suppose the 
current state of the   -dimensional parameter is p

where            and                                          in our 
motivating normal example

p = 2 (✓(s)
1 , ✓(s)

2 ) = (µ(s), �2(s))

✓(s) = {✓(s)
1 , . . . , ✓(s)

p }

And suppose that we can sample from each conditional

for                     , where i = 1, . . . , p

✓(�i) = {✓1, . . . , ✓i�1, ✓i+1, . . . , ✓p}

⇡(✓i|✓(�i), y) ⌘ p(✓i|✓(�i), y1, . . . , yn)
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Gibbs sampling
Gibbs Sampling (GS) proceeds as follows from some 
arbitrary state                                   .  At iteration  
   in state      , take

✓(0) = (✓(0)
1 , . . . , ✓(0)

p )
s ✓(s)

✓(s+1)
1 ⇠ ⇡(✓1|✓(s)

(�1), y)

...

✓(s+1)
i ⇠ ⇡(✓i|✓(s+1)

1 , . . . , ✓(s+1)
i�1 , ✓(s)

i+1, . . . , ✓
(s)
p , y)

...

✓(s+1)
p ⇠ ⇡(✓p|✓(s+1)

(�p) , y)
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Moving coordinate-wise

2. Then, at time t, in state θ(t), update the state vector one component at a time, so
that:

θ(t+1)
1 ∼ π(θ1|θ(t)

(−1))

θ(t+1)
2 ∼ π(θ2|θ(t+1)

1 , θ(t)
3 , . . . , θ(t)

p )
...

θ(t+1)
i ∼ π(θi|θ(t+1)

1 , . . . , θ(t+1)
i−1 , θ(t)

i+1, . . . , θ
(t)
p )

...

θ(t+1)
p ∼ π(θp|θ(t+1)

(−p) ),

to obtain new state θ(t+1)

3. Collect a total of T samples {θ(t)}T
t=1 in this fashion.

4. Discard the first b samples {θ(t)}b
t=1 as burn in—allowing the Markov chain to reach

the stationary distribution π.

5. Treat {θ(t)}T
t=b+1 as a dependent sample from π.

x

xx

x0

x1

x2 x3

x4

Figure 9: Gibbs Sampling updates components one at a time.

[Each sample from the Gibbs sampler involves taking a step in each of the coordinate
directions. See Figure 9.]

Example: Suppose we wish to sample from a bivariate normal distribution θ = (x, y),
where

π(θ) ≡ f(x, y) =
1

2π
√

1 − ρ2
exp

{

−
x2 + y2 − 2ρxy

2(1 − ρ2)

}

where ρ ∈ (−1, 1).

48
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Gibbs sampling
In this way, the algorithm generates a dependent 
sequence of vectors:

In this sequence,       depends upon    
only through

✓(s) ✓(0), . . . , ✓(s�1)

✓(s�1)

✓(1) = {✓(1)
1 , . . . , ✓(1)

p }

✓(2) = {✓(2)
1 , . . . , ✓(2)

p }
...

✓(S) = {✓(S)
1 , . . . , ✓(S)

p }
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Markov property
In other words,        is conditionally independent of  
                         given

✓(s)

✓(0), . . . , ✓(s�2) ✓(s�1)

This is called the Markov property, and so the 
sequence is called a Markov chain

The ergodic theorem insures that

In other words, the sampling distribution of      
approaches the target distribution     as             , no 
matter the starting value

✓(s)

⇡ s!1
✓(0)

P (✓(s) 2 A)!
Z

A
⇡(✓|y) d✓ as s!1
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MCMC
More importantly, for most functions    of interest, g

1
S

SX

s=1

g(✓(s))! E{g(✓)} =
Z

g(✓)⇡(✓) d✓

as S !1
This means that we can approximate              with the 
sample average of                                    just as in MC 
approximation

E{g(✓)}
{g(✓(1)), . . . , g(✓(S))}

For this reason we call such approximations Markov 
chain Monte Carlo (MCMC) approximations, and the 
procedure an MCMC algorithm
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Example: bivariate normal

Suppose we wish to sample from a bivariate normal 
distribution                 , where✓ = (x, y)

⇡(✓) ⌘ f(x, y) =
1

2⇡
p

1� ⇢2
exp

⇢
�x2 + y2 � 2⇢xy

2(1� ⇢2)

�

and ⇢ 2 (0, 1)

The full conditionals are 

f(x|y) / exp
⇢
� (x� ⇢y)2

2(1� ⇢2)

�
) X|y ⇠ N (⇢y, 1� ⇢2)

) Y |x ⇠ N (⇢x, 1� ⇢2)(and similarly)
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Example: bivariate normal

This gives the following Gibbs Sampling algorithm

Take                                          , say✓(0) = (x(0), y(0)) = (0, 0)

Then, conditional on                             , sample ✓(s) = (x(s), y(s))

x(s+1) ⇠ N (⇢y(s), 1� ⇢2)

y(s+1) ⇠ N (⇢x(s+1), 1� ⇢2)

for s = 1, . . . , S
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Example: Midge data
Consider constructing a Gibbs Sampler for the midge 
data example and the prior decomposition

p(µ, �2) = p(µ)p(�2)

leading to the posterior conditional

where

Our code uses the fact that 

ns2
n(µ) =

nX

i=1

(yi � µ)2 = (n� 1)s2 + n(ȳ � µ)2

which is more efficient in the GS loop

⌫n = ⌫0 + n, and �2
n(µ) =

1
⌫n

[⌫o�
2
0 + ns2

n(µ)]

{�2|µ, y1, . . . , yn} ⇠ IG(⌫n/2, ⌫n�2
n(µ)/2)
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Example: Midge data

Quantile-based CIs

2.5% 97.5%

1.7 1.9

0.008 0.06

µ

�2

E{µ|y1, . . . , yn} ⇡
1

1000

1000X

s=1

µ(s) = 1.80

E{�2|y1, . . . , yn} ⇡
1

1000

1000X

s=1

�2(s) = 0.021
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Non-conjugate priors
In situations where a conjugate prior distribution is 
unavailable, or undesirable, the full conditional 
(posterior) distributions of the parameters do not have 
a standard form and GS cannot easily be used

In these situations we can use the Metropolis-Hastings 
algorithm, which is a generic method for sampling from 
distributions that requires only knowledge of the 
density function

• which may be a posterior: product of prior and 
sampling model (likelihood) 

• but it applies much more generally
 19



Metropolis-Hastings

• draw candidate samples from a proposal 
distribution, possibly conditional on (only) the 
last sample 

• the samples are accepted or rejected according 
to the relative densities of the next sample and 
the last sample, and the proposal probabilities

• upon rejection, we take the next sample to be (a 
copy of) the last sample

The Metropolis-Hastings (MH) algorithm is a form of 
generalized rejection sampling

thereby inducing a Markov chain
 20



MH rejection rule
Suppose the “chain” is currently in state      , then the 
MH algorithm proposes a new state

✓(s)

� ⇠ q(✓(s), �)

The new value is accepted with probability 

↵(✓(s), �) = min{1, A}
where

A =
⇡(�|y)q(�, ✓(s))

⇡(✓(s)|y)q(✓(s), �)
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The MH algorithm
.... goes as follows

1. Begin in some arbitrary state  

2. Simulate  

3. Set                    with probability                 or  
    else reject and set    
 
4. Set                  and repeat from Step 2.

✓(0)

✓(s+1) = � ↵(✓(s), �)
✓(s+1) = ✓(s)

s s + 1

� ⇠ q(✓(s), �)
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The MH algorithm
Important notes:

• Upon “rejection” the chain stays in the same  
   place (different from rejection sampling)  

• we only need to know     up to a normalizing  
   constant 

• MH can be used for each parameter individually  
   via the full conditionals as in Gibbs Sampling  

‣ called Metropolis-within-Gibbs

⇡
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Flavors of MH: Metropolis
There are many common choices for simulating 
proposals            , e.g.,q(✓,�)

Symmetric (Metropolis) proposal:

q(✓,�) = q(�, ✓)

The acceptance probability reduces to 

A =
⇡(�|y)
⇡(✓|y)
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Random-Walk Metropolis

The Random Walk (RW) Metropolis algorithm 
involves proposals of the form

� = ✓ + Z, where Z ⇠ f

Common choices for     include the uniform, normal, 
or multivariate normal

f

• often symmetric, but not necessarily so

 25



Random-Walk Metropolis
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Figure 10: Random–walk Metropolis sample path

[END OF LECTURE 10]

• Independence sampler

Here the candidate observation φ is drawn independently of the current state θ, so
that q(θ,φ) = f(φ).

The corresponding acceptance probability can be written as

α(θ,φ) = min

{

1,
ω(φ)

ω(θ)

}

where ω(θ) =
π(θ|x)

f(θ)
.

This is the importance weight function that would be used in importance sampling
given observations drawn from f (from Chapter 3).

See Figure 11. [see demo mh.R]

• Gibbs sampler

The Gibbs sampler is simply a special case of the MH algorithm.

We generate new values of the parameters from their corresponding posterior con-
ditional distribution, which are accepted with probability one.

Proof: Suppose we have parameters θ = (θ1, . . . , θk). Then, we need to break each
iteration of the MH algorithm into steps, and propose to update each θj in turn
with proposal density qj.

53
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Example: Normal distribution with known variance

Recall that with

the posterior is                             where               µ|y ⇠ N (µn, ⌧2
n)

µn = ȳ
n/�2

n/�2 + 1/⌧2
0

+ µ0
1/⌧2

0

n/�2 + 1/⌧2
0

⌧2
n =

1
n/�2 + 1/⌧2

0

If we take                                         and observe  
                                                        , then

�2 = 1, ⌧2
0 = 10, µ0 = 5

y = (9.37, 10.18, 9.16, 11.60, 10.33)
µ|y ⇠ N (10.03, 0.196)

µ � N (µ0, ⇥
2
0 )

{Y1, . . . , Yn}
iid� N (µ,�2)
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Example: A RWM approximation

Now suppose for some reason we were unable to 
obtain the formula for this posterior distribution and 
needed to use RWM with proposals

µ⇤ ⇠ N (µ(s), �2
q )

This is symmetric, so the acceptance probability 
reduces to                                     where↵(µ, µ⇤) = min{1, A}

(likelihood ratio) (prior ratio)

A =
⇡(µ⇤|y)
⇡(µ(s)|y)

=
Qn

i=1 N (yi;µ⇤, �2)Qn
i=1 N (yi;µ(s), �2)

⇥ N (µ⇤;µ0, ⌧2
0 )

N (µ(s);µ0, ⌧2
0 )
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Example: Comparing RWM to the truth
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Independence sampler
Here the proposed     is drawn independently of the 
current state   , so that 

�
✓ q(✓,�) = f(�)

In this case, the corresponding acceptance 
probability can be written as

↵(✓,�) = min
⇢

1,
!(�)
!(✓)

�
where !(✓) =

⇡(✓|y)
f(✓)

This is the importance weight function that would 
be used in importance sampling with draws from f
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Independence sampler
•
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Figure 11: Independence sampler Metropolis sample path

Consider qj(θ,φ) = π(φj|θ(−j),x), the jth full conditional, for φ(−j) = θ(−j) and
j = 1, . . . , k.

The acceptance probability is min{1, Aj} where

Aj =
π(φ|x)qj(φ,θ)

π(θ|x)qj(θ,φ)

=
π(φ|x)/π(φj|θ(−j),x)

π(θ|x)/π(θj|φ(−j),x)

=
π(φ|x)/π(φj|φ(−j),x)

π(θ|x)/π(θj|θ(−j),x)
since φ(−j) = θ(−j)

=
π(φ(−j)|x)

π(θ(−j)|x)
by def. of cond. prob. of (φ,φ(−j)) = φ

= 1.

[So using the conditional distribution for the proposed update results in a MH
acceptance ratio of one, i.e., always accept.]

!

Other issues include, how to know:

• when the Markov chain has converged to the stationary distribution π—i.e., choos-
ing the burn–in b

• where to start the Markov chain—i.e., choosing θ(0)

54
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Gibbs sampling
GS is a special case of the MH algorithm

We generate new values of the parameters from their 
corresponding (posterior) conditional distribution, 
which are accepted with probability one

Proof: Suppose that we have parameters 

✓ = (✓1, . . . , ✓p)

We need to break each iteration of the MH algorithm 
into steps, and propose to update each      in turn with 
proposal density   

✓j

qj

 32



Gibbs sampler
Consider                                         the       full 
conditional, with                       otherwise                       

qj(✓,�) = ⇡(�j |✓(�j), y) jth

�(�j) = ✓(�j)

The acceptance probability is                    where min{1, Aj}

Aj =
⇡(�|y)qj(�, ✓)
⇡(✓|y)qj(✓,�)

=
⇡(�(�j)|y)
⇡(✓(�j)|y)

= 1

So using the conditional distribution for the proposed 
update results in a MH acceptance ratio of unity, i.e., 
always accept

 33



MCMC issues
.... include, how to know

• when the Markov chain has converged to the 
stationary distribution    

• where to start the Markov chain, i.e., choosing

• how many samples     to use to summarize      
empirically

⇡

✓(0)

S

The search for good answers to these questions is 
ongoing

 34



MCMC practice
In the limit as             , our approximations based on 
samples                          will be exact, but in practice 
we cannot run the Markov chain forever          

S !1
{✓(1), . . . , ✓(S)}

Instead, standard practice for MH or GS, is as follows:

• run the algorithm until some iteration     for which 
it looks like the chain has achieved stationarity

• run the algorithm     more times, generating 

• discard                         , and use the empirical 
distribution of                                    to 
approximate

B

S
{✓(B+1), . . . , ✓(B+S)}

{✓(1), . . . , ✓(B)}
{✓(B+1), . . . , ✓(B+S)}

⇡(✓|y)
 35



Burn-in and initialization
The iterations up to and including     are called the 
burn-in period, in which the Markov chain moves from 
its initial value to a region of the parameter space that 
has high posterior probability

B

If we have a good idea where the high probability 
region is, we can reduce the burn-in period by starting 
the Markov chain there

E.g., starting at                in our Normal example is 
sensible

µ(0) = ȳ

However, starting with                illustrated that the 
MH algorithm was able to move from a low posterior 
probability region to one of high probability

µ(0) = 0

 36



MCMC diagnostics
How can we tell when our MCMC sampler has 
“reached stationarity”?

It turns out that this is a very difficult question to 
answer in any concrete way

However, it is easy to identify several “desirable 
properties” that can be used to make qualitative 
statements about MCMC samplers, and thereby make 
informed comparisons between competing choices

This will help us choose amongst proposal mechanisms, 
and pick the burn-in size  B
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Autocorrelation
The main culprit in poor MCMC performance is high 
autocorrelation, or “stickiness” in the chain

Monte Carlo simulation, in which we generate 
independent samples directly from the target 
(posterior) distribution, is in some sense the “gold 
standard” 

• since MC samples are independent they are  
   uncorrelated

So estimators based upon MC samples perform better 
than MCMC based ones since Markov chains produce 
inherently correlated samples

 38



Example: Autocorrelation
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High autocorrelation

A Markov chain with high autocorrelation, such as our 
RWM example, moves around the parameter space 
slowly, taking a long time to achieve the correct 
balance of samples according to the (posterior) density

The higher the autocorrelation, the more MCMC 
samples will be needed to attain a given level of 
precision for the approximation

 40



effectiveSize
One (single number) commonly used to measure the 
efficiency in a collection of samples
is 

✓ = {✓1, . . . , ✓S}

where         may be any estimator of the 
autocorrelation in the collection of samples    at lag

⇢̂t(✓)
✓ t

•                          is one choice
• the function effectiveSize in the R library  
   coda models    with an autoregressive (AR)  
   model to obtain a more robust estimator

⇢̂t(✓) = acft(✓)

✓

Se↵ = ESS(✓) =
S

1 + 2
PS�1

t=1 ⇢̂t(✓)
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Example: Autocorrelation        
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Controlling autocorrelation

• So the more correlated our Markov chain is, the less 
information we get per iteration

• It would seem that GS offers lower correlation than 
MH since in GS the “proposals” are never rejected

• In MH we may adjust the level of correlation by 
adjusting the proposal mechanism

‣ usually by adjusting the proposal variance, e.g., �2
q

q(✓,�)
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Example: RWM proposal choice        
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Moderate proposals

In order to construct a Markov chain with MH that has 
a low autocorrelation we need a proposal variance that 
is

• large enough so that the chain can quickly move 
throughout the parameter space

• but not so large that proposals end up being 
rejected most of the time
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