
Part 5:
MCMC: Metropolis and

Gibbs Samplers

 1

Full conditionals and Gibbs
• For many multi-parameter models, the joint posterior

is non-standard and difficult to sample from directly

• However, it is often the case that we may easily sample
from the posterior conditional distribution of each
parameter

• In such cases we can construct an iterative algorithm
that provides a dependent sequence of parameter
values sampled from each conditional that converges
to the target joint posterior distribution

This is the essence of the Gibbs sampler
 2

From a tedious integral

In our normal model, recall how we found the
posterior distribution of by integrating over the
unknown value of when

�2

giving

µ p(µ, �) = p(µ|�)p(�)

p(�2|y1, . . . , yn) / p(y1, . . . , yn|�2)p(�2)

= p(�2)
Z

p(y1, . . . , yn|µ, �2)p(µ|�2) dµ

 3

to a trivial sampler

This lead to the straightforward sampler

What can we do when we can’t do this integral?

• e.g., when p(µ, �2) = p(µ)p(�2)

�2(1) ⇠ IG(⌫n/2, �2
n⌫/2), µ(1) ⇠ N (µn, �2(1)/n)

�2(2) ⇠ IG(⌫n/2, �2
n⌫/2), µ(2) ⇠ N (µn, �2(2)/n)

...
...

�2(S) ⇠ IG(⌫n/2, �2
n⌫/2), µ(S) ⇠ N (µn, �2(S)/n)

 4

p(�2|µ, y1, . . . , yn)

/ p(y1, . . . , yn|µ, �2)p(�2)

/ (�2)�(⌫0+n)+1 ⇥ exp

(
� 1

2�2

"
⌫0�

2
0 +

nX

i=1

(yi � µ)2
#)

Quite a bit.
The conditional distribution of given and  
 is

�2 µ
{y1, . . . , yn}

where

This is a Gamma density for , and so�̃2 = 1/�2

{�2|µ, y1, . . . , yn} ⇠ IG(⌫n/2, ⌫n�2
n(µ)/2)

⌫n = ⌫0 + n, and �2
n(µ) =

1
⌫n

[⌫o�
2
0 + ns2

n(µ)]
 5

Sampling from conditionals
So now we have the ability to sample from

�2|µ, y1, . . . , yn µ|�2, y1, . . . , yn

Suppose we were given , a single sample from the
marginal posterior

�2(1)

p(�2|y1, . . . , yn)

Then we could take µ(1) ⇠ p(µ|�2(1), y1, . . . , yn)
and would be a sample from the joint
posterior distribution of

(µ(1), �2(1))
(µ, �2)

and

Additionally, can be considered as a sample from
the marginal posterior , from which
we may obtain

µ(1)

p(µ|y1, . . . , yn)
�2(2) ⇠ p(�2|µ(1), y1, . . . , yn)

 6

Sampling from conditionals
Now, since is a sample from the marginal
posterior for , and is a sample from the
posterior conditional of , then is
also a sample from the joint distribution of

µ(1)

µ �2(2)

So the conditionals can be used to generate samples
from the joint if we have from which to start�2(1)

This, in turn, means that is a sample from the
marginal posterior

�2(2)

p(�2|y1, . . . , yn)
which can then be used to generate a new sample  
and so on

µ(2)

�2|µ(1) {µ(1), �2(2)}
{µ, �2}

 7

Full conditionals

The distributions

are called the full (posterior) conditional distributions,
or “full conditionals” of and , respectively, as they
are each a conditional distribution of a parameter given
everything else (including the data)

p(µ|�2, y1, . . . , yn)

p(�2|µ, y1, . . . , yn)

µ �2

 8

Full conditionals
To make this sampling idea more precise, suppose the
current state of the -dimensional parameter is p

where and in our
motivating normal example

p = 2 (✓(s)
1 , ✓(s)

2) = (µ(s), �2(s))

✓(s) = {✓(s)
1 , . . . , ✓(s)

p }

And suppose that we can sample from each conditional

for , where i = 1, . . . , p

✓(�i) = {✓1, . . . , ✓i�1, ✓i+1, . . . , ✓p}

⇡(✓i|✓(�i), y) ⌘ p(✓i|✓(�i), y1, . . . , yn)

 9

Gibbs sampling
Gibbs Sampling (GS) proceeds as follows from some
arbitrary state . At iteration  
 in state , take

✓(0) = (✓(0)
1 , . . . , ✓(0)

p)
s ✓(s)

✓(s+1)
1 ⇠ ⇡(✓1|✓(s)

(�1), y)

...

✓(s+1)
i ⇠ ⇡(✓i|✓(s+1)

1 , . . . , ✓(s+1)
i�1 , ✓(s)

i+1, . . . , ✓
(s)
p , y)

...

✓(s+1)
p ⇠ ⇡(✓p|✓(s+1)

(�p) , y)
 10

Moving coordinate-wise

2. Then, at time t, in state θ(t), update the state vector one component at a time, so
that:

θ(t+1)
1 ∼ π(θ1|θ(t)

(−1))

θ(t+1)
2 ∼ π(θ2|θ(t+1)

1 , θ(t)
3 , . . . , θ(t)

p)
...

θ(t+1)
i ∼ π(θi|θ(t+1)

1 , . . . , θ(t+1)
i−1 , θ(t)

i+1, . . . , θ
(t)
p)

...

θ(t+1)
p ∼ π(θp|θ(t+1)

(−p)),

to obtain new state θ(t+1)

3. Collect a total of T samples {θ(t)}T
t=1 in this fashion.

4. Discard the first b samples {θ(t)}b
t=1 as burn in—allowing the Markov chain to reach

the stationary distribution π.

5. Treat {θ(t)}T
t=b+1 as a dependent sample from π.

x

xx

x0

x1

x2 x3

x4

Figure 9: Gibbs Sampling updates components one at a time.

[Each sample from the Gibbs sampler involves taking a step in each of the coordinate
directions. See Figure 9.]

Example: Suppose we wish to sample from a bivariate normal distribution θ = (x, y),
where

π(θ) ≡ f(x, y) =
1

2π
√

1 − ρ2
exp

{

−
x2 + y2 − 2ρxy

2(1 − ρ2)

}

where ρ ∈ (−1, 1).

48

 11

Gibbs sampling
In this way, the algorithm generates a dependent
sequence of vectors:

In this sequence, depends upon  
only through

✓(s) ✓(0), . . . , ✓(s�1)

✓(s�1)

✓(1) = {✓(1)
1 , . . . , ✓(1)

p }

✓(2) = {✓(2)
1 , . . . , ✓(2)

p }
...

✓(S) = {✓(S)
1 , . . . , ✓(S)

p }

 12

Markov property
In other words, is conditionally independent of  
 given

✓(s)

✓(0), . . . , ✓(s�2) ✓(s�1)

This is called the Markov property, and so the
sequence is called a Markov chain

The ergodic theorem insures that

In other words, the sampling distribution of
approaches the target distribution as , no
matter the starting value

✓(s)

⇡ s!1
✓(0)

P (✓(s) 2 A)!
Z

A
⇡(✓|y) d✓ as s!1

 13

MCMC
More importantly, for most functions of interest, g

1
S

SX

s=1

g(✓(s))! E{g(✓)} =
Z

g(✓)⇡(✓) d✓

as S !1
This means that we can approximate with the
sample average of just as in MC
approximation

E{g(✓)}
{g(✓(1)), . . . , g(✓(S))}

For this reason we call such approximations Markov
chain Monte Carlo (MCMC) approximations, and the
procedure an MCMC algorithm

 14

Example: bivariate normal

Suppose we wish to sample from a bivariate normal
distribution , where✓ = (x, y)

⇡(✓) ⌘ f(x, y) =
1

2⇡
p

1� ⇢2
exp

⇢
�x2 + y2 � 2⇢xy

2(1� ⇢2)

�

and ⇢ 2 (0, 1)

The full conditionals are

f(x|y) / exp
⇢
� (x� ⇢y)2

2(1� ⇢2)

�
) X|y ⇠ N (⇢y, 1� ⇢2)

) Y |x ⇠ N (⇢x, 1� ⇢2)(and similarly)
 15

Example: bivariate normal

This gives the following Gibbs Sampling algorithm

Take , say✓(0) = (x(0), y(0)) = (0, 0)

Then, conditional on , sample ✓(s) = (x(s), y(s))

x(s+1) ⇠ N (⇢y(s), 1� ⇢2)

y(s+1) ⇠ N (⇢x(s+1), 1� ⇢2)

for s = 1, . . . , S

 16

Example: Midge data
Consider constructing a Gibbs Sampler for the midge
data example and the prior decomposition

p(µ, �2) = p(µ)p(�2)

leading to the posterior conditional

where

Our code uses the fact that

ns2
n(µ) =

nX

i=1

(yi � µ)2 = (n� 1)s2 + n(ȳ � µ)2

which is more efficient in the GS loop

⌫n = ⌫0 + n, and �2
n(µ) =

1
⌫n

[⌫o�
2
0 + ns2

n(µ)]

{�2|µ, y1, . . . , yn} ⇠ IG(⌫n/2, ⌫n�2
n(µ)/2)

 17

Example: Midge data

Quantile-based CIs

2.5% 97.5%

1.7 1.9

0.008 0.06

µ

�2

E{µ|y1, . . . , yn} ⇡
1

1000

1000X

s=1

µ(s) = 1.80

E{�2|y1, . . . , yn} ⇡
1

1000

1000X

s=1

�2(s) = 0.021
 18

Non-conjugate priors
In situations where a conjugate prior distribution is
unavailable, or undesirable, the full conditional
(posterior) distributions of the parameters do not have
a standard form and GS cannot easily be used

In these situations we can use the Metropolis-Hastings
algorithm, which is a generic method for sampling from
distributions that requires only knowledge of the
density function

• which may be a posterior: product of prior and
sampling model (likelihood)

• but it applies much more generally
 19

Metropolis-Hastings

• draw candidate samples from a proposal
distribution, possibly conditional on (only) the
last sample

• the samples are accepted or rejected according
to the relative densities of the next sample and
the last sample, and the proposal probabilities

• upon rejection, we take the next sample to be (a
copy of) the last sample

The Metropolis-Hastings (MH) algorithm is a form of
generalized rejection sampling

thereby inducing a Markov chain
 20

MH rejection rule
Suppose the “chain” is currently in state , then the
MH algorithm proposes a new state

✓(s)

� ⇠ q(✓(s), �)

The new value is accepted with probability

↵(✓(s), �) = min{1, A}
where

A =
⇡(�|y)q(�, ✓(s))

⇡(✓(s)|y)q(✓(s), �)

 21

The MH algorithm
.... goes as follows

1. Begin in some arbitrary state  

2. Simulate  

3. Set with probability or  
 else reject and set  

4. Set and repeat from Step 2.

✓(0)

✓(s+1) = � ↵(✓(s), �)
✓(s+1) = ✓(s)

s s + 1

� ⇠ q(✓(s), �)

 22

The MH algorithm
Important notes:

• Upon “rejection” the chain stays in the same  
 place (different from rejection sampling)  

• we only need to know up to a normalizing  
 constant 

• MH can be used for each parameter individually  
 via the full conditionals as in Gibbs Sampling  

‣ called Metropolis-within-Gibbs

⇡

 23

Flavors of MH: Metropolis
There are many common choices for simulating
proposals , e.g.,q(✓,�)

Symmetric (Metropolis) proposal:

q(✓,�) = q(�, ✓)

The acceptance probability reduces to

A =
⇡(�|y)
⇡(✓|y)

 24

Random-Walk Metropolis

The Random Walk (RW) Metropolis algorithm
involves proposals of the form

� = ✓ + Z, where Z ⇠ f

Common choices for include the uniform, normal,
or multivariate normal

f

• often symmetric, but not necessarily so

 25

Random-Walk Metropolis

•

••
••
•

•
•

•

•

••

•
•

•••

••••

••
•

••

••

•

••

•
•

•

•
•••

•••
••••••

•••

•••

••

•
•

••
•

•

••
•

•

•

•

•••
•
•

•
••
•

••
•

•••
•••

•
•
•
•
••••

••
•

•
•

•
•

•

t

x

0 20 40 60 80 100

-1
.0

-0
.5

0.
0

0.
5

1.
0

Figure 10: Random–walk Metropolis sample path

[END OF LECTURE 10]

• Independence sampler

Here the candidate observation φ is drawn independently of the current state θ, so
that q(θ,φ) = f(φ).

The corresponding acceptance probability can be written as

α(θ,φ) = min

{

1,
ω(φ)

ω(θ)

}

where ω(θ) =
π(θ|x)

f(θ)
.

This is the importance weight function that would be used in importance sampling
given observations drawn from f (from Chapter 3).

See Figure 11. [see demo mh.R]

• Gibbs sampler

The Gibbs sampler is simply a special case of the MH algorithm.

We generate new values of the parameters from their corresponding posterior con-
ditional distribution, which are accepted with probability one.

Proof: Suppose we have parameters θ = (θ1, . . . , θk). Then, we need to break each
iteration of the MH algorithm into steps, and propose to update each θj in turn
with proposal density qj.

53

 26

Example: Normal distribution with known variance

Recall that with

the posterior is where µ|y ⇠ N (µn, ⌧2
n)

µn = ȳ
n/�2

n/�2 + 1/⌧2
0

+ µ0
1/⌧2

0

n/�2 + 1/⌧2
0

⌧2
n =

1
n/�2 + 1/⌧2

0

If we take and observe  
 , then

�2 = 1, ⌧2
0 = 10, µ0 = 5

y = (9.37, 10.18, 9.16, 11.60, 10.33)
µ|y ⇠ N (10.03, 0.196)

µ � N (µ0, ⇥
2
0)

{Y1, . . . , Yn}
iid� N (µ,�2)

 27

Example: A RWM approximation

Now suppose for some reason we were unable to
obtain the formula for this posterior distribution and
needed to use RWM with proposals

µ⇤ ⇠ N (µ(s), �2
q)

This is symmetric, so the acceptance probability
reduces to where↵(µ, µ⇤) = min{1, A}

(likelihood ratio) (prior ratio)

A =
⇡(µ⇤|y)
⇡(µ(s)|y)

=
Qn

i=1 N (yi;µ⇤, �2)Qn
i=1 N (yi;µ(s), �2)

⇥ N (µ⇤;µ0, ⌧2
0)

N (µ(s);µ0, ⌧2
0)

 28

Example: Comparing RWM to the truth

0 2000 4000 6000 8000 10000

0
2

4
6

8
10

s

m
u

mu

D
en
si
ty

8.5 9.0 9.5 10.0 10.5 11.0 11.5

0.
0

0.
2

0.
4

0.
6

0.
8

 29

Independence sampler
Here the proposed is drawn independently of the
current state , so that

�
✓ q(✓,�) = f(�)

In this case, the corresponding acceptance
probability can be written as

↵(✓,�) = min
⇢

1,
!(�)
!(✓)

�
where !(✓) =

⇡(✓|y)
f(✓)

This is the importance weight function that would
be used in importance sampling with draws from f

 30

Independence sampler
•

•

•

••

•

•

•
•

•

••
•

•

•

•

•
•

•
••

•

•

•

•
•

•

•

•

•

•

•
•••

•

•••

•
•
•••

•
•••

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•

•

•

•

••

•
•

•

•

•

•

•

•

•

•

•
•

•

•

•••

•

•

•

•

•

•

•

•

•

••

•

t

x

0 20 40 60 80 100

-0
.5

0.
0

0.
5

1.
0

Figure 11: Independence sampler Metropolis sample path

Consider qj(θ,φ) = π(φj|θ(−j),x), the jth full conditional, for φ(−j) = θ(−j) and
j = 1, . . . , k.

The acceptance probability is min{1, Aj} where

Aj =
π(φ|x)qj(φ,θ)

π(θ|x)qj(θ,φ)

=
π(φ|x)/π(φj|θ(−j),x)

π(θ|x)/π(θj|φ(−j),x)

=
π(φ|x)/π(φj|φ(−j),x)

π(θ|x)/π(θj|θ(−j),x)
since φ(−j) = θ(−j)

=
π(φ(−j)|x)

π(θ(−j)|x)
by def. of cond. prob. of (φ,φ(−j)) = φ

= 1.

[So using the conditional distribution for the proposed update results in a MH
acceptance ratio of one, i.e., always accept.]

!

Other issues include, how to know:

• when the Markov chain has converged to the stationary distribution π—i.e., choos-
ing the burn–in b

• where to start the Markov chain—i.e., choosing θ(0)

54

 31

Gibbs sampling
GS is a special case of the MH algorithm

We generate new values of the parameters from their
corresponding (posterior) conditional distribution,
which are accepted with probability one

Proof: Suppose that we have parameters

✓ = (✓1, . . . , ✓p)

We need to break each iteration of the MH algorithm
into steps, and propose to update each in turn with
proposal density

✓j

qj

 32

Gibbs sampler
Consider the full
conditional, with otherwise

qj(✓,�) = ⇡(�j |✓(�j), y) jth

�(�j) = ✓(�j)

The acceptance probability is where min{1, Aj}

Aj =
⇡(�|y)qj(�, ✓)
⇡(✓|y)qj(✓,�)

=
⇡(�(�j)|y)
⇡(✓(�j)|y)

= 1

So using the conditional distribution for the proposed
update results in a MH acceptance ratio of unity, i.e.,
always accept

 33

MCMC issues
.... include, how to know

• when the Markov chain has converged to the
stationary distribution

• where to start the Markov chain, i.e., choosing

• how many samples to use to summarize  
empirically

⇡

✓(0)

S

The search for good answers to these questions is
ongoing

 34

MCMC practice
In the limit as , our approximations based on
samples will be exact, but in practice
we cannot run the Markov chain forever

S !1
{✓(1), . . . , ✓(S)}

Instead, standard practice for MH or GS, is as follows:

• run the algorithm until some iteration for which
it looks like the chain has achieved stationarity

• run the algorithm more times, generating 

• discard , and use the empirical
distribution of to
approximate

B

S
{✓(B+1), . . . , ✓(B+S)}

{✓(1), . . . , ✓(B)}
{✓(B+1), . . . , ✓(B+S)}

⇡(✓|y)
 35

Burn-in and initialization
The iterations up to and including are called the
burn-in period, in which the Markov chain moves from
its initial value to a region of the parameter space that
has high posterior probability

B

If we have a good idea where the high probability
region is, we can reduce the burn-in period by starting
the Markov chain there

E.g., starting at in our Normal example is
sensible

µ(0) = ȳ

However, starting with illustrated that the
MH algorithm was able to move from a low posterior
probability region to one of high probability

µ(0) = 0

 36

MCMC diagnostics
How can we tell when our MCMC sampler has
“reached stationarity”?

It turns out that this is a very difficult question to
answer in any concrete way

However, it is easy to identify several “desirable
properties” that can be used to make qualitative
statements about MCMC samplers, and thereby make
informed comparisons between competing choices

This will help us choose amongst proposal mechanisms,
and pick the burn-in size B

 37

Autocorrelation
The main culprit in poor MCMC performance is high
autocorrelation, or “stickiness” in the chain

Monte Carlo simulation, in which we generate
independent samples directly from the target
(posterior) distribution, is in some sense the “gold
standard”

• since MC samples are independent they are  
 uncorrelated

So estimators based upon MC samples perform better
than MCMC based ones since Markov chains produce
inherently correlated samples

 38

Example: Autocorrelation

0 20 40 60 80 100

−3
−2

−1
0

1
2

s

x

Gibbs

0 20 40 60 80 100

−1
.0

0.
0

1.
0

s

x

RWM

IMH

0 20 40 60 80 100

−1
0

1
2

s

x

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

 39

High autocorrelation

A Markov chain with high autocorrelation, such as our
RWM example, moves around the parameter space
slowly, taking a long time to achieve the correct
balance of samples according to the (posterior) density

The higher the autocorrelation, the more MCMC
samples will be needed to attain a given level of
precision for the approximation

 40

effectiveSize
One (single number) commonly used to measure the
efficiency in a collection of samples
is

✓ = {✓1, . . . , ✓S}

where may be any estimator of the
autocorrelation in the collection of samples at lag

⇢̂t(✓)
✓ t

• is one choice
• the function effectiveSize in the R library  
 coda models with an autoregressive (AR)  
 model to obtain a more robust estimator

⇢̂t(✓) = acft(✓)

✓

Se↵ = ESS(✓) =
S

1 + 2
PS�1

t=1 ⇢̂t(✓)

 41

Example: Autocorrelation

0 20 40 60 80 100

−3
−2

−1
0

1
2

s

x

Gibbs

0 20 40 60 80 100

−1
.0

0.
0

1.
0

s

x

RWM

IMH

0 20 40 60 80 100

−1
0

1
2

s

x
S = 2000

Se↵ = 1764

Se↵ = 86

Se↵ = 1191

 42

Controlling autocorrelation

• So the more correlated our Markov chain is, the less
information we get per iteration

• It would seem that GS offers lower correlation than
MH since in GS the “proposals” are never rejected

• In MH we may adjust the level of correlation by
adjusting the proposal mechanism

‣ usually by adjusting the proposal variance, e.g., �2
q

q(✓,�)

 43

Example: RWM proposal choice

0 200 400 600 800 1000

1.
6

2.
2

2.
8

s2q=0.001

s

x

0 200 400 600 800 1000

−2
0

1
2

s2q=0.01

s

x

0 200 400 600 800 1000

−2
0

2

s2q=0.1

s

x

0 200 400 600 800 1000

−3
−1

1
3

s2q=1

s

x

0 200 400 600 800 1000

−3
−1

1
3

s2q=10

s

x

0 200 400 600 800 1000

−3
−1

1
s2q=100

s

x

 44

Moderate proposals

In order to construct a Markov chain with MH that has
a low autocorrelation we need a proposal variance that
is

• large enough so that the chain can quickly move
throughout the parameter space

• but not so large that proposals end up being
rejected most of the time

 45

