
Part 4: 
Multi-parameter and 

normal models
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The normal model

Perhaps the most useful (or utilized) probability model 
for data analysis is the normal distribution

There are several reasons for this, e.g.,

• the CLT
• it is a simple model with separate parameters for  
   the population mean and variance - two quantities  
   that are often of primary interest
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The normal PDF

A RV     is said to be normally distributed with mean      
and variance      if the density of     is given by

Y µ
�2 Y

f(y|µ, �2) =
1p

2⇡�2
exp

⇢
� (y � µ)2

2�2

�

for �1 < y <1

We shall write                         and call the pair of 
parameters 

Y ⇠ N (µ, �2)
✓ ⌘ (µ, �2)
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Normal properties
Some important things to remember about the normal 
distribution include

• the distribution is symmetric about   : the mode,  
   the median and the mean are all equal to   
• about 95% of the population lies within two (more  
   precisely 1.96) standard deviations of the mean 
• if                           and                           and      
   and     are independent, then

µ
µ

X ⇠ N (µx, �2
x) Y ⇠ N (µy, �2

y) X
Y

aX + bY ⇠ N (aµx + bµy, a2�2
x + b2�2

y)
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Joint sampling density
Suppose our sampling model is 

{Y1, . . . , Yn|µ, �2} iid⇠ N (µ, �2)

Then the joint sampling density is given by

p(y1, . . . , yn|µ, �2) =
nY

i=1

p(yi|µ, �2)

=
nY

i=1

1p
2⇡�2

exp
⇢
� (yi � µ)2

�2

�

= (
p

2⇡�2)�n/2 exp

(
�1

2

nX

i=1

(yi � µ)2

�2

)
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Joint sampling density
By expanding the quadratic term in the exponent

we see that                                depends upon  
                 through                      , a two-dimensional 
sufficient statistic

p(y1, . . . , yn|µ, �2)
y1, . . . , yn

nX

i=1

(yi � µ)2

�2
=

1
�2

nX

i=1

y2
i � 2

µ

�2

nX

i=1

yi + n
µ2

�2

{
P

y2
i ,

P
yi}

Knowing these quantities is equivalent to knowing

ȳ =
1
n

nX

i=1

yi, and s2 =
1

n� 1

nX

i=1

(yi � ȳ)2

and so            are also a sufficient statistic {ȳ, s2}  6



Inference by conditioning
Inference for this two-parameter model can be broken 
down into two one-parameter problems

We begin with the problem of making inference for     
when      is known, and use a conjugate prior for 

µ
µ�2

For any (conditional) prior distribution              the 
posterior distribution will satisfy

p(µ|�2)

p(µ|y1, . . . , yn, �2) / exp

(
� 1

2�2

nX

i=1

(yi � µ)2
)
⇥ p(µ|�2)

/ ec1(µ�c2)
2
⇥ p(µ|�2)
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Conjugate prior
So we see that if             is to be conjugate, then it 
must include quadratic terms like

p(µ|�)
exp{c1(µ� c2)2}

then                                is also a normal density

The simplest such class of probability densities is the 
normal family, suggesting that if             is normal andp(µ|�)

{y1, . . . , yn}
iid⇠ N (µ, �2)

p(µ|y1, . . . , yn, �2)
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Posterior derivation

p(µ|y1, . . . , yn, �2) / exp
⇢
� (µ� b/a)2

2/a

�

where

If                          then µ ⇠ N (µ0, ⌧
2
0 )

a =
1
⌧2
0

+
n

�2
and b =

µ0

⌧2
0

+
P

yi

�2

This function has exactly the same form as a normal 
density curve with        playing the role of the variance 
and        playing the role of the mean  

1/a
b/a
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Normal posterior
Since probability distributions are determined by their 
shape, this means that                                is indeed a 
normal density

p(µ|y1, . . . , yn, �2)

So:  normal prior + normal sampling model = normal 
posterior

i.e.,                                                    where{µ|y1, . . . , yn, �2} ⇠ N (µn, ⌧2
n)

⌧2
n =

1
a

=
1

1
⌧2
0

+ n
�2

and µn =
b

a
=

1
⌧2
0
µ0 + n

�2 ȳ
1
⌧2
0

+ n
�2
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Combining information
The (conditional) posterior parameters      and      
combine the prior parameters      and      with the 
terms from the data 

⌧2
n µn

⌧2
0 µ0

First consider the posterior inverse variance, a.k.a. the 
precision:

1
⌧2
n

=
1
⌧2
0

+
n

�2

So the posterior precision combines the sampling 
precision and the prior precision

⌧̃2
0

⌧̃2
n �̃2 =

1
�2

⌧̃2
n = ⌧̃2

0 + n�̃2 and ⌧̃2
n !1, as n!1
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Combining means

Notice that the posterior mean decomposes as

µn =
⌧̃2
0

⌧̃2
0 + n�̃2

µ0 +
n�̃2

⌧̃2
0 + n�̃2

ȳ

so it is a weighted average of the prior mean and the 
data mean

The weight on the prior mean is         , the prior 
precision

1/⌧2
0
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Prior sample size
If the prior mean were based on      prior observations 
from the same (or similar) population as   
then we might want to set

0

Y1, . . . , Yn

which may be interpreted as the variance of the mean 
of the prior observations

⌧2
0 =

�2

0

In this case the formula for the posterior mean 
reduces to

µn =
0

0 + n
µ0 +

n

0 + n
ȳ

µn ! ȳ, as n!1Finally,
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Prediction
Consider predicting a new observation     from the 
population after having observed

Ỹ

{Y1 = y1, . . . , Yn = yn}

In other words, saying that     is normal with mean    is 
the same as saying that     is equal to     plus some 
mean-zero normally distributed noise

Ỹ µ
Ỹ µ

To find the predictive distribution we may take 
advantage of the following fact

{Ỹ |µ, �2} ⇠ N (µ, �2), Ỹ = µ + "̃, "̃ ⇠ N (0, �2)
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Predictive moments
Using this result, let’s first compute the posterior mean 
and variance of Ỹ

Var[Ỹ |y1, . . . , yn, �2]

= Var[µ + "̃|y1, . . . , yn, �2]

= Var[µ|y1, . . . , yn, �2] + Var["̃|y1, . . . , yn, �2]

= ⌧2
n + �2

E{Ỹ |y1, . . . , yn, �2}
= E{µ + "̃|y1, . . . , yn, �2}
= E{µ|y1, . . . , yn, �2} + E{"̃|y1, . . . , yn, �2}
= µn + 0 = µn
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Moments to distribution
Recall that the sum of independent normal random 
variables is normal

Therefore, since    and   , conditional on                   
and     , are normally distributed, so is

"̃ y1, . . . , yn

�2

So the predictive distribution is

Ỹ |y1, . . . , yn, �2 ⇠ N (µn, ⌧2
n + �2)

Observe that, as             , n!1
Var[Ỹ |y1, . . . , yn, �2]! �2 > 0

i.e., certainty in    does not translate into certainty 
about

µ
Ỹ

µ
Ỹ = µ + "̃
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Example: Midge wing length

Grogan and Wirth (1981) provide data on the wing 
length in millimeters of nine members of a species of 
midge (small, two-winged flies)

From these measurements we wish to make inference 
about the population mean µ
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Example: prior information

Studies from other populations suggest that wing 
lengths are usually around 1.9mm, so we set µ0 = 1.9

We also know that lengths must be positive (µ > 0)

We can approximate this restriction with a normal 
prior distribution for     as follows:µ

Since most of the normal density is within two 
standard deviations of the mean we choose      so that⌧2

0

µ0 � 2⌧0 > 0) ⌧0 < 1.9/2 = 0.95

For now we take                    which somewhat 
overstates our prior uncertainty

⌧2
0 = 0.952
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Example: data and posterior

The observations in order of increasing magnitude are

(1.64, 1.70, 1.72, 1.74, 1.82, 1.82, 1.82, 1.9, 2.08)

Therefore the posterior is 

{µ|y1, . . . , y9, �
2} ⇠ N (µn, ⌧2

n)
where

µn =
1
⌧2
0
µ0 + n

�2 ȳ
1
⌧2
0

+ n
�2

=
1.11⇥ 1.9 + 9

�2 ⇥ 1.804
1.11 + 9

�2

⌧2
n =

1
1
⌧2
0

+ n
�2

=
1

1.11 + 9
�2
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Example: a choice of 

If we take                           , then 

�2

�2 = s2 = 0.017
{µ|y1, . . . , y9, �

2 = 0.017} ⇠ N (1.805, 0.002)

A 95% CI for    is (1.72, 1.89) µ

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
2

4
6

8

mu

de
ns
ity posterior

prior

 20



Example: full accounting of uncertainty

However, these results assume that we are certain that 
              when in fact      is only a rough estimate of       
based upon only nine observations
�2 = s2 s2

To get a more accurate representation of our 
information (and in particular of our posterior 
uncertainty) we need to account for the fact that      is 
not known

�2

�2
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Joint Bayesian inference
Bayesian inference for two or more parameters is not 
conceptually different from the one-parameter case

For any joint prior distribution               for    and     , 
posterior inference proceeds using Bayes’ rule:

p(µ, �2) µ �2

p(µ, �2|y1, . . . , yn) =
p(y1, . . . , yn|µ, �2)p(µ, �2)

p(y1, . . . , yn)

As before, we will begin by developing a simple 
conjugate class of prior distributions which will make 
posterior calculations easy
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Prior decomposition
A joint distribution can always be expressed as the 
product of a conditional probability and a marginal 
probability:

p(µ, �2) = p(µ|�2)p(�2)

We just saw that if      were known, then a conjugate 
prior distribution for     was 

�2

µ N (µ0, ⌧
2
0 )
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Prior decomposition
Lets consider the particular case where                    :    ⌧2

0 = �2/0

p(µ, �2) = p(µ|�2)p(�2)

= N (µ;µ0, ⌧
2
0 = �2/0)⇥ p(�2)

For      we need a family of prior distributions that has 
support on       

�2

(0,1)

The parameters      and      can be interpreted as the 
mean and sample size from a set of prior observations

µ0 0
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Conjugate prior for �2

One such family of distributions is the gamma family, as 
we used for the Poisson sampling model

Unfortunately, this family is not conjugate for the 
normal variance

However, the gamma family does turn out to be a 
conjugate class of densities for the precision 1/�2

When using such a prior we say that      has an inverse-
gamma distribution

�2

1/�2 ⇠ G(a, b)

�2 ⇠ IG(a, b))
 25



Inverse-gamma prior
For interpretability, instead of using    and    we will use a b

We can interpret the prior parameters              as the 
prior sample variance and the prior sample size

(�2
0 , ⌫0)

Under this parameterization:

E{�2} = �2
0

⌫0/2
⌫0/2� 1

mode(�2) = �2
0

⌫0/2
⌫0/2 + 1

, so mode(�2) < �2
0 < E{�2}

Var[�2] is decreasing in v0

�2 ⇠ IG
✓

⌫0

2
,
⌫0�2

0

2

◆
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Posterior inference
Suppose our prior model and sampling model are

�2 ⇠ IG(⌫0/2, ⌫0�
2
0/2)

µ|�2 ⇠ N (µ0, �
2/0)

Y1, . . . Yn
iid⇠ N (µ, �2)

Just as the prior distribution for    and      can be 
decomposed as                                        , the 
posterior distribution can be similarly decomposed as

µ �2

p(µ, �2) = p(µ|�2)p(�2)

p(µ, �2|y1, . . . , yn) = p(µ|�2, y1, . . . , yn)p(�2|y1, . . . , yn)
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Posterior conditional(s)
We have already derived the posterior conditional 
distribution of     given    µ �2

Plugging in            for      we have�2/0

{µ|y1, . . . , yn, �2} ⇠ N (µn, �2/n), where

n = 0 + n and µn =
(0/�2)µ0 + (n/�2)ȳ

0/�2 + n/�2

=
0µ0 + nȳ

n

(posterior sample size 
 and mean)

⌧2
0
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Posterior conditional(s)
The posterior distribution of      can be obtained by 
integrating over the unknown value of

�2

This integral can be done without much knowledge of 
calculus, but it is somewhat tedious

µ

p(�2|y1, . . . , yn) / p(y1, . . . , yn|�2)p(�2)

= p(�2)
Z

p(y1, . . . , yn|µ, �2)p(µ|�2) dµ
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Posterior conditional(s)
Check that this leads to

{�2|y1, . . . , yn} ⇠ IG(⌫n/2, ⌫n�2
n/2), where

⌫n = ⌫0 + n

�2
n =

1
⌫n


⌫0�

2
0 + (n� 1)s2 +

0n

n
(ȳ � µ0)2

�

These formulae suggest that the interpretation of     as 
a prior sample size, from which a prior sample variance       
     has been obtained, is reasonable

⌫0

�2
0

Similarly, we may think of          and          as a prior 
and posterior sum of squares, which is the sum of the 
prior and data sum of squares

⌫0�
2
0 ⌫n�2

n
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Posterior conditional(s)

However, the third term is a bit harder to understand

�2
n =

1
⌫n


⌫0�

2
0 + (n� 1)s2 +

0n

n
(ȳ � µ0)2

�

It says that a large value of                 increases the 
posterior probability of a large     

(ȳ � µ0)2
�2

This makes sense for our joint prior              :

If we want to think of      as the sample mean of      
prior observations with variance     , then this term
is also an estimate of

�2

�2

p(µ, �2)

µ0
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Example: the midge data

The studies of other populations suggest that the true 
mean and standard deviation of our population under 
study should not be far from 1.9mm and 0.1mm 
respectively, suggesting 

µ0 = 1.9 and �2
0 = 0.01

However, this population may be different from others 
in terms of wing length, and so we choose  
so that our prior distributions are only weakly 
centered around the estimates from other populations

0 = ⌫0 = 1
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Example: the midge data

The sample mean and variance of our observed data 
are

ȳ = 1.804 and s2 = 0.0169

From these values and the prior parameters, we 
compute

µn =
0µ0 + nȳ

n
=

1.9 + 9⇥ 1.804
1 + 9

= 1.814

�2
n =

1
⌫n


⌫0µ0 + (n� 1)s2 +

0n

n
(ȳ � µ0)2

�

=
0.010 + 0.135 + 0.008

10
= 0.015
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Example: the full posterior

Our joint posterior distribution is completely 
determined by these values

and can be expressed as

µn = 1.814, n = 10, �2
n = 0.015, ⌫n = 10

{µ|y1, . . . , yn, �2} ⇠ N (1.814, �2/10)

{�2|y1, . . . , yn} ⇠ IG(10/2, 10⇥ 0.015/2)
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Example: the full posterior image

Observe that the contours are more peaked as a 
function of     for low values of      than high valuesµ �2
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Marginal interests
For many data analyses, interest primarily lies in 
estimating the population mean   , and so we would 
like to calculate quantities like

µ

E{µ|y1, . . . , yn}
Var[µ|y1, . . . , yn]
P (µ1 < µ2|y1, . . . , yn)

•  

•  

•  

These quantities are all determined by the marginal 
posterior distribution of    given the dataµ

But all we know so far is that the conditional 
distribution of    given the data and      is normal, and 
that      given the data is inverse-gamma

µ �2

�2
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Joint sampling
If we could generate marginal samples of    , then we 
could use the MC method to approximate the marginal 
quantities of interest

µ

It turns out that this is easy to do by generating 
samples of    and      from their joint posterior by MCµ �2

�2(1) ⇠ IG(⌫n/2, �2
n⌫n/2), µ(1) ⇠ N (µn, �2(1)/n)

�2(2) ⇠ IG(⌫n/2, �2
n⌫n/2), µ(2) ⇠ N (µn, �2(2)/n)

...
...

�2(S) ⇠ IG(⌫n/2, �2
n⌫n/2), µ(S) ⇠ N (µn, �2(S)/n)
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Monte Carlo marginals
The sequence of pairs 

simulated with this procedure are independent samples 
from the joint posterior

{(�2(1), µ(1)), . . . , (�2(S), µ(S))}

p(µ, �2|y1, . . . , yn)

Additionally, the simulated sequence  
can be seen as independent samples from the marginal 
posterior distribution

{µ(1), . . . , µ(S)}

p(µ|y1, . . . , yn)

So these may be used to make MC approximations to 
posterior expectations of (functions of) µ
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Example: joint & marginal samples

The        samples  
are obtained 
conditional on the 
samples of 
leading to joint 
samples

µ(s)

�2(s)

We may extract
the marginals from 
the joint
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Example: credible v. confidence intervals

The Bayesian CI is very close to the frequentist CI, 
based on   -statistics sincet

p(µ|y1, . . . , yn) ⇠ St⌫0+n(µn, �2
n/n)

If      and     are small, this will be very close to the 
sampling distribution of the MLE

1.65 1.70 1.75 1.80 1.85 1.90 1.95

0
2

4
6

8
10

mu

de
ns
ity

cred
conf

⌫00
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“Objective” priors?
How small can      and    , the “prior sample sizes”, be?⌫00

Consider

µn =
0µ0 + nȳ

n

�2
n =

1
⌫n


⌫0µ0 + (n� 1)s2 +

0n

n
(ȳ � µ0)2

�

So as 0, ⌫0 ! 0

µn ! ȳ

�2
n !

n

n� 1
s2 =

1
n

X
(yi � ȳ)2
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Improper prior
This leads to the following “posterior”:

{�2|y1, . . . , yn} ⇠ IG
✓

n

2
,
n

2
1
n

X
(yi � ȳ)2

◆

{µ|y1, . . . , yn, �2} ⇠ N
✓

ȳ,
�2

n

◆

More formally, if we take the improper prior  
                           the posterior is proper, and we get 
the same posterior conditional for     as above, but
p(µ, �2) / 1/�2

{�2|y1, . . . , yn} ⇠ IG
✓

n� 1
2

,
1
2

X
(yi � ȳ)2

◆
µ
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Classical comparison
The marginal posterior for     may then be obtained asµ

(LTP)

(cond. prob)

(normal conditional) (IG conditional)

It is interesting to compare this result to the sampling 
distribution of the   -statistic, i.e., of the MLEt

t =
Ȳ � µ

s/
p

n
|µ ⇠ tn�1 , µ̂ = Ȳ ⇠ Stn�1(µ, s2/n)

p(µ|y1, . . . , yn)

=
Z

p(µ|�2, y1, . . . , yn)p(�2|y1, . . . , yn) d�2

· · · / Stn�1(µ; ȳ, s2/n)
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Point estimator
A point estimator of an unknown parameter    is a 
function that converts your data into a single element 
of the parameter space

✓

⇥

In the case of the normal sampling model and 
conjugate prior distribution, the posterior mean 
estimator of     isµ

µ̂b(y1, . . . , yn) = E{µ|y1, . . . , yn}

=
n

0 + n
ȳ +

0

0 + n
µ0

= wȳ + (1� w)µ0
 44



Sampling properties
The sampling properties of an estimator such as     
refers to its behavior under hypothetically repeatable 
surveys or experiments

µ̂b

Lets compare the sampling properties of      to  
                              , the sample mean, when the true 
population mean is
µ̂e(y1, . . . , yn) = ȳ

µ̂b

µtrue

E{µ̂e|µ = µtrue} = µtrue

E{µ̂b|µ = µtrue} = wµtrue + (1� w)µ0

So we say that      is unbiased and, unless                  ,       
we say that      is biased

µ̂e µ0 = µtrue

µ̂b
 45



Bias
• Bias refers to how close the center of mass of the 

sampling distribution of the estimator is to the true 
value 

• An unbiased estimator is an estimator with zero bias, 
which sounds desirable

• However, bias does not tell us how far away an 
estimate might be from the true value

For example,             is an unbiased estimator of the 
population mean         , but will generally be farther 
away from         than   

µ̂ = y1

µtrue

µtrue ȳ
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MSE[✓̂|✓true] = E{(✓ � ✓true)2|✓ = ✓true}
= E{(✓̂ �m)2|✓ = ✓true} + (m� ✓true)2

= Var[✓̂|✓ = ✓true] + Bias2[✓̂|✓ = ✓true]

Mean squared error
To evaluate how close an estimator     is likely to be to 
the true value         , we might use the mean squared 
error (MSE)

✓̂
✓true

Letting                          , the MSE ism = E{✓̂|✓true}
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Mean squared error

This means that, before the data are gathered, the 
expected distance from the estimator to the true value 
depends on 

• how close         is to the center of the 
distribution of     (the bias), and

• how spread out the distribution is  
(the variance)

✓true

✓̂

 48



Comparing estimators

Getting back to our comparison of      to     , the bias 
of      is zero, but

µ̂b µ̂e

µ̂e

Var[µ̂e|µ = µtrue, �
2] =

�2

n
, whereas

Var[µ̂b|µ = µtrue, �
2] = w2 ⇥ �2

n
<

�2

n

and so      has lower variabilityµ̂b
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Comparing estimators
Which one is better in terms of MSE?

Therefore 

if

MSE[µ̂b|µ = µtrue] < MSE[µ̂e|µ = µtrue]

(µ0 � µtrue)2 <
�2

n

1 + w

1� w
= �2

✓
1
n

+
2
0

◆

MSE[µ̂e|µ = µtrue] = Var[µ̂e|µ = µtrue] =
�2

n
MSE[µ̂b|µ = µtrue] = Var[µ̂b|µ = µtrue] + Bias2[µ̂b|µ = µtrue]

= w2 �2

n
+ (1� w)2(µ0 � µtruth)2
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Low MSE Bayesian estimators
So if you know just a little about the population you 
are about to sample from, you should be able to find 
values of      and      such that the Bayesian estimator 
has lower average distance to the truth (MSE) than the 
MLE

µ0 0

E.g., if you are pretty sure that your prior guess      is 
within two standard deviations of the true population 
mean, then if you pick             you can be pretty sure 
that the Bayes estimator has a lower MSE since

µ0

0 = 1

(µ0 � µtrue)2 < 4�2
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Example: IQ scores

Scoring on IQ tests is designed to produce a normal 
distribution with a mean of 100 and a variance of 225 
when applied to the general population

Suppose that we were to sample    individuals from a 
particular town in the USA and then use it to estimate     
  , the town-specific mean IQ scoreµ

n

For a Bayesian estimation, if we lack much information 
about the town in question, a natural choice of       
would be µ0 = 100
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Example: IQ scores, MSE

Suppose that, unknown to us, the people in this town 
are extremely exceptional and the true mean and 
variance of IQ scores in the town are

The MSEs of the estimators      and      areµ̂e µ̂b

(µtrue = 112, �2 = 169)

MSE[µ̂e|µ = 112, �2 = 169] = Var[µ̂e|µ = 112, �2 = 169]

=
169
n

MSE[µ̂b|µ = 112, �2 = 169] = Var[µ̂b|µ = 112, �2 = 169]

+ Bias2[µ̂b|µ = 112, �2 = 169]

= w2 169
n

+ (1� w)2144
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Example: Relative MSE

One way compare MSEs is through their ratio.  
Consider   
plotted as a function of    , for 

0 10 20 30 40 50

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

sample size

re
la

tiv
e 

M
SE k0 = 0
k0 = 1
k0 = 2
k0 = 3

MSE[µ̂b|µ = 112]/MSE[µ̂e|µ = 112]
n k0 2 {1, 2, 3}

• when                   ,  
   the Bayes estimate  
   has lower MSE than  
   the MLE
• the                 setting  
   is only bad for  
• as     increases, the  
   bias of the estimators  
   shrinks to zero

n

k0 2 {1, 2}

µ0 = 100
0 � 3
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Example: Sampling densities
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Consider the sampling densities when  
which highlight the relative contributions of the 
bias and variance to the MSE       

n = 10

 55


