
Part 2: 
One-parameter models
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Bernoulli/binomial models
Return to                                     .  The sampling 
model/likelihood is

Y1, . . . , Yn
iid⇠ Bin(1, ✓)

When combined with a prior        , Bayes’ rule gives 
the posterior

p(✓)

p(✓|y1, . . . , yn) =
✓

P
yi(1� ✓)n�

P
yi ⇥ p(✓)

p(y1, . . . , yn)

p(y1, . . . , yn|✓) = ✓
P

yi(1� ✓)n�
P

yi

•         is a sufficient statistic
P

yi
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The Binomial model
When                                     , the sufficient statistic                   
                       has a                distribution

Y1, . . . , Yn
iid⇠ Bin(1, ✓)

Bin(n, ✓)

Having observed               our task is to obtain the 
posterior distribution of   :

{Y = y}
✓

p(✓|y) =
p(y|✓)p(✓)

p(y)
=

�n
y

�
✓y(1� ✓)n�yp(✓)

p(y)
= c(y)✓y(1� ✓)n�yp(✓)

where        is a function of     and notc(y) y ✓

Y =
Pn

i=1 Yi
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Suppose our prior information for    is such that all 
subintervals of           having the same length also have 
the same probability

[0, 1]

P (a  ✓  b) = P (a + c  ✓  b + c),
for 0  a < b < b + c  1

✓

A uniform prior
The parameter    is some unknown number between  
0 and 1

✓

This condition implies a uniform density for   :  ✓

p(✓) = 1 for all ✓ 2 [0, 1]
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Normalizing constant

we can find out what        is under the uniform priorc(y)

Using the following result from calculus
Z 1

0
✓a�1(1� ✓)b�1 d✓ =

�(a)�(b)
�(a + b)

where                            is evaluated in R  
as gamma(n)

�(n) = (n� 1)!

c(y) =
�(n + 2)

�(y + 1)�(n� y + 1))

Z 1

0
p(�|y) d� = 1

 5



Beta posterior
So the posterior distribution is

p(✓|y) =
�(n + 2)

�(y + 1)�(n� y + 1)
✓y(1� ✓)n�y

=
�(n + 2)

�(y + 1)�(n� y + 1)
✓(y+1)�1(1� ✓)(n�y+1)�1

= Beta(y + 1, n� y + 1)

To wrap up:  

• a uniform prior, plus
• a Bernoulli/Binomial likelihood (sampling model)
• gives a Beta posterior

 6



Example: Happiness

Each female of age 65 or over in the 1998 General 
Social Survey was asked whether or not they were 
generally happy

Let             if respondent    reported being generally 
happy, and             otherwise, for                
individuals

Yi = 1 i
Yi = 0 i = 1, . . . , n = 129

Since                , the total size of the female senior 
citizen population, our joint beliefs about            
are well approximated by (the sampling model)

129⌧ N
Y1, . . . , Y129

• our beliefs about
• the model that, conditional on   , the        are  
   IID Bernoulli RVs with expectation 

✓ =
PN

i=1 Yi/N
✓ Yi’s

✓
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Example: Happiness IID Bernoulli likelihood

This sampling model says that the probability for any 
potential outcome                    , conditional on   , is 
given by

{y1, . . . , yn} ✓

p(y1, . . . , y129|✓) = ✓
P129

i=1 yi(1� ✓)129�
P129

i=1 yi

The survey revealed that

• 118 individuals report being generally happy (91%)
• 11 individuals do not (9%) 

So the probability of these data for a given value of    is✓

p(y1, . . . , y129|✓) = ✓118(1� ✓)11
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Example: Happiness Binomial likelihood

In the binomial formulation

Y =
nX

i=1

Yi ⇠ Bin(n, ✓)

and our observed data is y = 118

So (now) the probability of these data for a given  
value of    is✓

p(y|✓) =
✓

129
118

◆
✓118(1� ✓)11
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Example: Happiness Posterior

If we take a uniform prior for   , expressing our 
ignorance, then we know the posterior is 

✓

p(✓|y) = Beta(y + 1, n� y + 1)

For               and              , this givesn = 129 y = 118
✓|{Y = 118} ⇠ Beta(119, 12)
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Uniform is Beta
The uniform prior has                for all ✓ 2 [0, 1]
This can be thought of as a Beta distribution with 
parameters a = 1, b = 1

p(✓) =
�(2)

�(1)�(1)
✓1�1(1� ✓)1�1

=
1

1⇥ 1
1⇥ 1 (under the convention that               )          �(1) = 1

We saw that if                                   

⇢
✓ ⇠ Beta(1, 1)

Y |✓⇠ Bin(n, ✓)

�

then ✓|{Y = y} ⇠ Beta(1 + y, 1 + n� y)

p(✓) = 1
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General Beta prior
Suppose                         and ✓ ⇠ Beta(a, b) Y |✓ ⇠ Bin(n, ✓)

p(✓|y) / ✓a+y�1(1� ✓)b+n�y�1

) ✓|y ⇠ Beta(a + y, b + n� y)

In other words, the constant of proportionality must be:

c(n, y, a, b) =
�(a + b + n)

�(a + y)�(b + n� y)
How do I know?

•            (and the beta density) must integrate to 1p(✓|y)
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Posterior proportionality

We will use this trick over and over again!

I.e., if we recognize that the posterior distribution is 
proportional to a known probability density, then it 
must be identical to that density

But Careful!  The constant of proportionality must be 
constant with respect to ✓
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Conjugacy
We have shown that a beta prior distribution and a 
binomial sampling model lead to a beta posterior 
distribution

To reflect this, we say that the class of beta priors is 
conjugate for the binomial sampling model

Formally, we say that a class     of prior distributions 
for    is conjugate for a sampling model            if

P
✓ p(y|✓)

p(✓) 2 P ) p(✓|y) 2 P

Conjugate priors make posterior calculations easy, but 
might not actually represent our prior information
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Posterior summaries
If we are interested in point-summaries of our 
posterior inference, then the (full) distribution gives us 
many points to choose from

E.g., if                                                            then✓|{Y = y} ⇠ Beta(a + y, b + n� y)

E{✓|y} =
a + y

a + b + n

mode(✓|y) =
a + y � 1

a + b + n� 2

Var[✓|y] =
E{✓|y}E{1� ✓|y}

a + b + n + 1
not including quantiles, etc.
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Combining information
The posterior expectation             is easily 
recognized as a combination of prior and data 
information:

E{✓|y}

E{✓|y} =
a + b

a + b + n
⇥

✓
prior

expectation

◆
+

n

a + b + n
⇥

✓
data

average

◆

I.e., for this model and prior distribution, the 
posterior mean is a weighted average of the prior 
mean and the sample average with weights 
proportional to           and     respectivelya + b n
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Prior sensitivity
This leads to the interpretation of     and     as “prior 
data”:

a b

a ⇡ “prior number of 1’s”
b ⇡ “prior number of 0’s”

a + b ⇡ “prior sample size”

If                  , then it seems reasonable that most of 
our information should be coming from the data as 
opposed to the prior

n� a + b

a + b

a + b + n
⇡ 0

Var[✓|y] ⇡ 1
n

y

n

⇣
1� y

n

⌘
E{✓|y} ⇡ y

n

Indeed:

&
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Prediction
An important feature of Bayesian inference is the 
existence of a predictive distribution for new 
observations

Revert, for the moment, to our notation for Bernoulli 
data.  Let                 , be the outcomes of a sample of  
    binary RVs

y1, . . . , yn

n

Let                  be an additional outcome from the 
same population that has yet to be observed

Ỹ 2 {0, 1}

The predictive distribution of      is the conditional 
distribution of      given

Ỹ
Ỹ {Y1 = y1, . . . , Yn = yn}
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Predictive distribution
For conditionally IID binary variables the predictive 
distribution can be derived from the distribution of    
given    and the posterior distribution of 

Ỹ
✓ ✓

p(Ỹ = 1|y1, . . . , yn) = E{✓|y1, . . . , yn}

=
a +

PN
i=1 yi

a + b + n

p(Ỹ = 0|y1, . . . , yn) = 1� p(Ỹ = 1|y1, . . . , yn)

b + n�
PN

i=1 yi

a + b + n
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Two points about prediction
1. The predictive distribution does not depend upon any 
   unknown quantities

• if it did, we would not be able to use it to  
   make predictions

2. The predictive distribution depends on our observed  
   data

• i.e.     is not independent of
• this is because observing                   gives  
   information about   , which in turn gives  
   information about

Ỹ Y1, . . . , Yn

Y1, . . . , Yn

✓
Ỹ
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Example: Posterior predictive

Consider a uniform prior, or                 , usingBeta(1, 1)
Y =

Pn
i=1 yi

Does this discrepancy between these two posterior 
summaries of our information make sense?

Consider the case in which           , for whichY = 0

mode(✓|Y = 0) = 0
but P (Ỹ = 1|Y = 0) = 1/(2 + n)

but

P (Ỹ = 1|Y = y) = E{✓|Y = y} =
2

2 + n

1
2

+
n

2 + n

y

n

mode(✓|Y = y) =
y

n
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Confidence regions
An interval                  , based on the observed data  
          , has 95% Bayesian coverage for    if

[l(y), u(y)]
Y = y ✓

P (l(y) < ✓ < u(y)|Y = y) = 0.95

The interpretation of this interval is that it describes 
your information about the true value of     after you 
have observed 

✓
Y = y

Such intervals are typically called credible intervals, to 
distinguish them from frequentist confidence intervals
which is an interval that describes a region (based 
upon   ) wherein the true      lies 95% of the time✓̂ ✓0

Both, confusingly, use the acronym CI
 22



Quantile-based (Bayesian) CI
Perhaps the easiest way to obtain a credible interval 
is to use the posterior quantiles

To make a                       % quantile-based CI, find 
numbers                         such that

100⇥ (1� ↵)
✓↵/2 < ✓1�↵/2

P (✓ < ✓↵/2|Y = y) = ↵/2
P (✓ > ✓1�↵/2|Y = y) = ↵/2

(1)

(2)

The numbers                      are the        and     
posterior quantiles of

✓↵/2, ✓1�↵/2 ↵/2 1� ↵/2
✓

 23



Example: Binomial sampling and uniform prior

Suppose out of             conditionally independent 
draws of a binary random variable we observe       
ones

n = 10
Y = 2

Using a uniform prior distribution for   , the posterior 
distribution is 

✓
✓|{Y = 2} ⇠ Beta(1 + 2, 1 + 8)

A 95% CI can be obtained from the 0.025 and 0.975 
quantiles of this beta distribution

These quantiles are 0.06 and 0.52, respectively, and so 
the posterior probability that                          is 95%✓ 2 [0.06, 0.52]
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Notice that there are   -values outside the quantile-
based CI that have higher probability [density] than 
some points inside the interval
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Example: a quantile-based CI drawback
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Example:  
Estimating the probability of a female birth

The proportion of births that are female has long 
been a topic of interest both scientifically and to the 
lay public

E.g., Laplace, perhaps the first “Bayesian”, analyzed 
Parisian birth data from 1745 with a uniform prior 
and a binomial sampling model

241,945 girls, and 251,527 boys
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Example: female birth posterior

The posterior distribution for    is✓ (n = 493472)

Now, we can use the posterior CDF to calculate

P (✓ > 0.5|Y = 241945) =
pbeta(0.5,241945+1, 251527+1,  
      lower.tail=FALSE)

= 1.15⇥ 10�42

�|{Y = 249145} � Beta(241945 + 1, 251527 + 1)
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The Poisson model
Some measurements, such as a person’s number of 
children or number of friends, have values that are 
whole numbers

In these cases the sample space is Y = {0, 1, 2, . . . }
Perhaps the simplest probability model on     is the
Poisson model

Y

A RV     has a Poisson distribution with mean    if✓Y

P (Y = y|✓) = ✓y e�✓

y!
for y 2 {0, 1, 2, . . . }

 28



IID Sampling model

If we take                                    then the joint PDF 
is:

Y1, . . . , Yn
iid⇠ Pois(✓)

 29

Note that
Pn

i=1 Yi ⇠ Pois(n✓)



Conjugate prior

For the Poisson model, our posterior distribution for     
   has the following form✓

p(✓|y1, . . . , ym) / p(y1, . . . , yn|✓)p(✓)

/ ✓
P

yie�n✓p(✓)

This means that whatever our conjugate class of 
densities is, it will have to include terms like  
for numbers      and

✓c1e�c2✓

c1 c2

Recall that a class of priors is conjugate for a sampling 
model if the posterior is also in that class
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Conjugate gamma prior
The simplest class of probability distributions 
matching this description is the gamma family

We shall denote this family as G(a, b)

Some properties include

Var[✓] =
a

b2
E{✓} =

a

b

mode(✓) =
⇢

(a� 1)/b if a > 1
0 if a  1

p(�) =
ba

�(a)
�a�1e�b� for �, a, b > 0
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Posterior distribution
Suppose                                     andY1, . . . Yn|✓ iid⇠ Pois(✓) ✓ ⇠ G(a, b)

This is evidently a gamma distribution, and we have 
confirmed the conjugacy of the gamma family for the 
Poisson sampling model
⇢

✓ ⇠ G(a, b)
Y1, . . . , Yn ⇠ Pois(✓)

�

{✓|Y1, . . . , Yn} ⇠ G

 
a +

nX

i=1

Yi, b + n

!
)

Then

p(✓|y1, . . . , yn) / ✓a+
P

yi�1e�(b+n)✓
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Combining information
Estimation and prediction proceed in a manner similar 
to that in the binomial model

The posterior expectation of    is a convex combination 
of the prior expectation and the sample average

•    is the number of prior observations
•    is the sum of the counts from    prior observationsa

b
b

✓

E{✓|y1, . . . , yn} =
b

b + n

a

b
+

n

b + n

P
yi

n

For large   , the information in the data dominatesn

n� b) E{✓|y1, . . . yn} ⇡ ȳ, Var[✓|y1, . . . , yn] ⇡ ȳ

n 33



Posterior predictive
Predictions about additional data can be obtained with 
the posterior predictive distribution

for       ỹ 2 {0, 1, 2, . . . , }
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Posterior predictive
This is a negative binomial distribution with 
parameters                              for which(a +

P
yi, b + n)

E{Ỹ |y1, . . . , yn} =
a +

P
yi

b + n
= E{✓|y1, . . . , yn}

Var[Ỹ |y1, . . . , yn] =
a +

P
yi

b + n

b + n + 1
b + n

= Var[✓|y1, . . . , yn]⇥ (b + n + 1)

= E{✓|y1, . . . , yn}
b + n + 1

b + n
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Example: birth rates and education

Over the course of the 1990s the General Societal 
Survey gathered data on the educational attainment 
and number of children of 155 women who were 40 
years of age at the time of their participation in the 
survey

These women were in their 20s in the 1970s, a 
period of historically low fertility rates in the United 
States

In this example we will compare the women with 
college degrees to those without in terms of their 
numbers of children
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Example: sampling model(s)

Let                         denote the numbers of children 
for the      women without college degrees and     
                        be the data for the      women with 
degrees

Y1,1, . . . , Yn1,1

Y1,2, . . . , Yn2,2

n1

n2

For this example, we will use the following sampling 
models

Y1,1, . . . , Yn1,1
iid⇠ Pois(✓1)

Y1,2, . . . , Yn2,2
iid⇠ Pois(✓2)

The (sufficient) data are

n1 = 111,
Pn1

i=1 yi,1 = 217, ȳ1 = 1.95
bachelors:

no bachelors:

n2 = 44,
Pn2

i=1 yi,2 = 66, ȳ2 = 1.50
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Example: prior(s) and posterior(s)

In the case were

we have the following posterior distributions:

✓1|{n1 = 111,
P

Yi,1 = 217} ⇠ G(2 + 217, 1 + 111)
✓2|{n1 = 44,

P
Yi,2 = 66} ⇠ G(2 + 66, 1 + 44)

Posterior means, modes and 95% quantile-based CIs 
for     and      can be obtained from their gamma 
posterior distributions

✓1 ✓2
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Example: prior(s) and posterior(s)
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The posterior(s) provide substantial evidence that 
            .  E.g., ✓1 > ✓2

P (✓1 > ✓2|
P

Yi,1 = 217,
P

Yi,2 = 66) = 0.97
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Example: posterior predictive(s)
Consider a randomly sampled individual from each 
population.  To what extent do we expect the 
uneducated one to have more children than the other?

P (Ỹ1 > Ỹ2|
P

Yi,1 = 217,
P

Yi,2 = 66) = 0.48
P (Ỹ1 = Ỹ2|

P
Yi,1 = 217,

P
Yi,2 = 66) = 0.22

The distinction between                 and                    
is important:  strong evidence of a difference between 
two populations does not mean the distance is large

{✓1 > ✓2} {Ỹ1 > Ỹ2}
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Non-informative priors
• Priors can be difficult to construct

• There has long been a desire for prior distributions 
that can be guaranteed to play a minimal role in the 
posterior distribution

• Such distributions are sometimes called “reference 
priors”, and described as “vague”, “flat”, “diffuse”, or 
non-informative

• The rationale for using non-informative priors is 
often said to be to “let the data speak for 
themselves”, so that inferences are unaffected by the 
information external to the current data

 41



Jeffreys’ invariance principle
One approach that is sometimes used to define a non-
informative prior distribution was introduced by 
Jeffreys (1946), based on considering one-to-one 
transformations of the parameter 

Jeffreys’ general principle is that any rule for 
determining the prior density should yield an equivalent 
posterior if applied to the transformed parameter

Naturally, one must take the sampling model into 
account in order to study this invariance

 42



The Jeffreys’ prior
Jeffreys’ principle leads to defining the non-informative 
prior as                         , where        is the Fisher 
information for

i(✓)
✓

Recall that

p(✓) / [i(✓)]1/2

A prior so-constructed is called the Jeffreys’ prior for 
the sampling model p(y|✓)

i(✓) = E✓

(✓
d

d✓
log p(y|✓)

◆2
)

= �E✓

⇢
d2

d✓2
log p(y|✓)

�
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Example:  
Jeffreys’ prior for the binomial sampling model

Consider the binomial distribution                       
which has log-likelihood

Y ⇠ Bin(n, ✓)

log p(y|✓) = c + y log ✓ + (n� y) log(1� ✓)

So the Jeffreys’ prior density is then

p(✓) / ✓�1/2(1� ✓)�1/2

which is the same as ✓ ⇠ Beta( 1
2 , 1

2 )

Therefore

i(✓) = �E✓

⇢
d2

d✓2
log p(y|✓)

�
=

n

✓(1� ✓)
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Example: non-informative?

This                          Jeffreys’ prior is non-informative 
in some sense, but not in all senses

✓ ⇠ Beta( 1
2 , 1

2 )

This Jeffreys’ prior “less informative” than the uniform 
prior which gives a weight of 2 samples to the prior 
mean (also 1)

In this sense, the “least informative” prior is 

✓ ⇠ Beta(0, 0)
But is this a valid prior distribution?

The posterior expectation would give                 
sample(s) worth of weight to the prior mean 

a + b = 1
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Propriety of priors

Z

⇥
p(✓) d✓ <1

We call a prior density         proper if it does not 
depend on the data and is integrable, i.e., 

p(✓)

Proper priors lead to valid joint probability models       
           and proper posteriors (                            )

R
⇥ p(✓|y) d✓ <1p(✓, y)

Improper priors do not provide valid joint probability 
models, but they can lead to proper posterior by 
proceeding with the “Bayesian algebra”

p(✓|y) / p(y|✓)p(✓)
 46



Example: continued
The                         prior is improper since✓ ⇠ Beta(0, 0)

Z 1

0
✓�1(1� ✓)�1 d✓ =1

However, the                                      posterior that 
results is proper as long as 

Beta(0 + y, 0 + n� y)
y 6= 0, n

In practice, the difference between these alternatives
                                                        is small; all three 
allow the data (likelihood) to dominate in the posterior
(Beta(0, 0),Beta( 1

2 , 1
2 ),Beta(1, 1))

A                         prior, for                  is always 
proper, and (in the limit) non-informative

✓ ⇠ Beta(✏, ✏) 0 < ✏⌧ 1
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Example:  
Jeffreys’ prior for the Poisson sampling model

Y ⇠ Pois(✓)Consider the Poisson distribution                      which 
has log-likelihood

log p(y|✓) = c + y log ✓ � ✓

So the Jeffreys’ prior “density” is then

p(✓) / ✓�1/2

Therefore

i(✓) = �E✓

⇢
d2

d✓2
log p(y|✓)

�
=

1
✓
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Example: Improper Jeffreys’ prior

Since                               this prior is improper
R1
0 ✓�1/2 d✓ =1

However, we can interpret is as a             , i.e., within 
the conjugate gamma family, to see that the posterior
is

G( 1
2 , 0)

G

 
1
2

+
nX

i=1

yi, 0 + n

!

This is proper as long as we have observed one data 
point, i.e.,           , since n � 1
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Example: non-informative?

Again, this              Jeffreys’ prior is non-informative in 
some sense, but not in all senses

G( 1
2 , 0)

The (improper) prior                  , or                   , is in 
some sense equivalent since it gives the same weight
            to the prior mean (although different)

p(✓) / ✓�1 ✓ ⇠ G(0, 0)

(b = 0)

p(✓) / ✓�1•                    is a typical default for this reason

As before, the practical difference between these 
choices is small

It can be shown that, in the limit as the prior 
parameters                        the posterior expectation 
approaches the MLE               

(a, b)! (0, 0)
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Notes of caution
The search for non-informative priors has several 
problems, including

• it can be misguided: if the likelihood (data) is truly 
dominant, the choice among relatively flat priors 
cannot matter

• for many problems there is no clear choice

Bottom line: If so few data are available that the choice 
of non-informative prior matters, then one should put 
relevant information into the prior
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