Bayesian Inference



Learning Obijectives

® Understand the basic principles underlying Bayesian
modeling methodology

® Understand how to use Bayesian inference for real-
world problems

® Understand the computational techniques required
p (how to turn the Bayesian crank)

® Appreciate the need for sensitivity analysis, model
checking and comparison, and the potential dangers
of Bayesian methods



Part O:

VVhat is Bayesian stats
all about!?



Bayesian inference

® Probabilities numerically represent beliefs about
unknown quantities

® Bayes rule provides a rational method for updating
those beliefs in light of new information

p This inductive learning is Bayesian inference

® Bayesian methods are data analysis tools derived
from the principles of Bayesian inference



Bayesian methods provide

models for rational, quantitative learning
parameter estimates with good statistical properties
estimators that work for small and large sample sizes

parsimonious descriptions of data, predictions for
missing data, and forecasts for future data

a coherent computational framework for model
estimation, selection and validation

methods for generating statistical procedures in
complicated problems



An alternative to!?

® Maximum likelihood (ML)
® |ikelihood ratio tests:
p t-test, F-tests, Chi-squared tests

® Complicated frequency arguments where we must
imagine re-applying (ML) inference on “similar” data

® Appeals to “asymptopia” and the central limit
theorem

® the Bootstrap, etc.



Essence of Bayesian inference

IS ....

The inductive process of learning about the general

characteristics ) € © of a population ) from a
subset ¥y € V

Both 0 and Yy are uncertain

The information obtained in a particular data set y
can be used to decrease our uncertainty about ¢

Quantifying this change is the purpose of Bayesian
inference: this is Bayesian learning or updating
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Bayesian learning

... begins with a numerical formulation of joint beliefs
about @ and Y expressed in terms of probability
distributions over © and Y

® For each numerical value 6 € O, our prior
distribution p(6) describes our belief that 0
represents the true population characteristics

® Foreach § € © and y € ), our sampling model
p(y|0) describes our belief that ¢ would be the
outcome of our study if we knew 0 to be true
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Bayesian learning

Once we obtain the data v, the last step is to update
our beliefs about §

® For each numerical value 6 € ©, our posterior
distribution p(@|y) describes our belief that 6 is the
true value, having observed the data set Y

The posterior distribution is obtained from the prior
distribution and sampling model via Bayes’ rule

p(yl0)p(0)
o p(y10)p(8) b

p(fly) =



Why Bayes?

® The mathematical results of Cox (1946, 1961) and
Savage (1954, 1972) prove that if p(6)and p(y|6)
represent a rational person’s beliefs, then Bayes’ rule

is an optimal method of updating this person’s beliefs
about @ given the new information ¥

p justifies using Bayes’ rule for quantitative learning

® |n practice it can be hard to precisely mathematically
formulate prior beliefs

) p(e) often chosen in an ad hoc manor, or for
reasons of computational tractability
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Why Bayes?

So how can we justify using Bayesian data analysis!?

® “All models are wrong, but some are useful.”
(Box and Draper, 1987, pp. 424)

o f p(9) approximates our prior beliefs then p(ﬁ\y)
shall approximate our posterior beliefs

In many complicated statistical problems there are
no obvious non-Bayesian methods of inference

® Bayes’ rule can be used to generate estimators

® performance evaluated with non-Bayesian criteria



Example:
Estimating the probability of a rare event

Suppose we are interested in the prevalence of an
infectious disease in a small city. A small random
sample of 20 individuals will be checked for infection

® |nterest is in the fraction of infected individuals
e =101

® [he data records the number infected individuals

ye)Y=410,1,...,20}



Example: sampling model

Before the sample is obtained, the number of infected
individuals is unknown

® |Let Y denote this to-be-determined value

® |f ) were known, a sensible sampling model is

Y6 ~ Bin(20, 6)

o
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Example: prior

Other studies from various parts of the country
indicate that the infection rate ranges from about
0.05 to 0.20, with an average prevalence of 0.1

® Moment matching from a beta distribution (a
convenient choice) gives the prior

0 ~ Beta(2,20)

prior

density
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Example: posterior

The prior and sampling model combination
0 ~ Beta(a,b)
Y0 ~ Bin(n, 0)

and an observed Yy (the data), leads to the posterior

p(fly) = Beta(a +y,b+n —y)

o _
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Example: sensitivity analysis

How influential is our prior!?

® [he posterior expectation is
n w

“j{@‘Y — y} — Zj (90

w+n w+n

a weighted average of the sample mean and the
prior expectation

a

0, = p— == > prior expectation (or guess)

w=a-+b :> prior confidence
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Example: A non-Bayesian approach

A standard estimate of a population proportion ¢
is the sample mean ¢y = y/n, the fraction of infected

people in the sample

® |f y = 0, this gives zero, so reporting the sampling
uncertainty is crucial (e.g., for reporting to health
officials)

® A popular 95% confidence interval for a population
proportion @ is the Wald interval:

7+ 1.961/75(1 — 7)/n

which has the correct asymptotic coverage (i.e., for
large 1), but notice y = 0 is still problematic!
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Example: A non-Bayesian approach, ctd.

People have suggested a variety of alternatives to the
Wald interval in hopes of avoiding this type of
behavior, e.g., the “adjusted” Wald interval

(Agresti and Coull, 1998):

1.961/0(1 — ) /n, where
n 4 1

T hra4? T a2

O

O



Part |:
Fundamentals



Conditional probability

We usually denote P(AN B) = P(A, B)

P(A, B)

P(A|B) = P(B)

is the conditional probability of A given B
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Law of total probability

Suppose that {1, ..., Ex }is a partition of ()

K

sie, F,..., Ek disjointand | | E; = 0
1=1

then

K
P(A)=) P(AE;) (LTP)
1=1

K
(by conditional probability) = Z P(A‘E@)P(EZ)
1=1
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Bayes’ rule

In its simplest form:

pialp) - PBIAPA

P(B)

Given a partition { E1,..., Ex} of Q:
P(A|LE;)P(E;)
P(A)
P(A|E;)P(E;)

P(E;|A) =

(LTP) =

Sie, P(A|E)P(E;)
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Independence

Two events A and B are independent if
P(A,B) = P(A)P(B)
Independence implies that P(A|B) = P(A)

Two events A and B are conditionally independent
given (' if

P(A, B|C) = P(A|C)P(B|C)
Likewise, conditional independence implies that

P(A|B,C) = P(A|C)
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Probability mass function

The event that the outcome Y of our survey has the
value v is expressed as {Y = vy}

For each y € )V = (1, we use the shorthand notation

P(Y =y) = p(y)

* this is the probability mass function or PMF
* the PMF has the following properties

0<py) <1 forallyey
Pye A) = Zp = Py € )) = ZP

yeA yey
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Example: Binomial Distribution

Let YV =1{0,1,2,...,n} for some positive integer n

* The uncertain quantity Y € ) has a binomial
distribution with probability 6 if

PIY = yl6) = p(ul0) = (7 )o"(1 )"

M gu(1 — gy
- yl(n—y)!

* To evaluate the mass in R we use
dbinom(y,n,theta)
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Uncountable Sample Spaces

If )V is uncountable then we cannot work with
probabilities of discrete events

* the event {Y = 5} say, for ) C R cannot have any
probability “mass” since 5 is a singleton in R

e |ikewise P(Y < 5) Zp ) does not make sense
y<5b

So we must work directly with the cumulative
distribution function (CDF) F'(y) = P(Y < y) instead

F(oo) =1,F(—o0) =0 & F(b) < F(a) ifb< a

P(Y >a)=1- F(a)
Pla <Y <b)=F(b) — F(a)

Giving:



Continuous RVs & PDFs

If I is continuous, then Y is a continuous RY

* For every continuous CDF F' there exists a positive
function f(y) such that

/ fy e, F'(y)=f(y)

This function is called the probability density function
(PDF) of Y
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Probability density

The properties of the PDF are similar to the PMF

E.g., . 0< f(y), forally ey
2. P(yeA>=/ f(y)dw/ Fly) dy = 1

yeA yey
In fact, we will often write p(y) = f(y). However,

* Unlike a PMF, the PDF may be greater than one, and
e p(y) is not “the probability that Y = ¢”

Still, if p(y1) > p(y2) we will sometimes informally
say that Y1 “has higher probability” [density] than yo
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Example: Normal Distribution

Suppose that we are sampling from a population on
Y = (—00, 00), and we know that the mean of the
population is & and the variance is o

* Then the distribution that has the most “spread”, or is
the most “diffuse” is the normal distribution: N (1, o°°)

e SICD
<CDF> ~~
(PDF)  f(y)

* To evaluate the CDF & PDF in R we use
pnorm(y,mu,sigma) & dnorm(y,mu,sigma)
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Expectation

The mean or expectation of an unknown quantity Y is

1Y | = Z yp(y) if Yis discrete
yey
Y} = yf(y)dy if Yis continuous
yey

The mean is the center of mass of the distribution.
However, it is not in general equal to either of

® the mode: “the most probable value of Y ”, or

® the median:‘“‘the value of Y in the middle of the
distribution
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Expectation

For skewed distributions (e.g., for income), the mean
can be far from a typical sample value

normal log—normal
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Variance

The most popular measure of how spread out the
distribution is is the variance

Var[Y] = E{(Y — E{Y'})*}
— E{Y?} — E{Y}?

® it is the average squared distance that a sample value
Y will be from the population mean [E{Y }

® the standard deviation is the square root of the
variance

D so it is on the same scale of Y
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Quantiles

Alternative measures of the spread of a distribution
are based on quantiles

® for a continuous, strictly increasing CDF F’, the
a-quantile is the value Yo such that F(y,) = «

® The interquartile range of a distribution is the interval

(90.257 90.75) which contains 50% of the mass of the
distribution

® Similarly, the interval (¥0.025, Y0.975) contains 95% of
the mass of the distribution
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Joint distributions

Let Y71, Y5 be two random variables taking values in

ylayQ

Joint beliefs about Y7 and Y5 can be represented
with probabilities. E.g.,

® for subsets A C ); and B C ),
P({Y1 € A},{Y2 € B})

represents our belief that Y7 isin A and Y5
is in B
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Marginals & Conditionals

As in the discrete case,

* The marginal density of Y7 can be computed from the
joint

(LTP) [ ©O°
fvi (1) :/ fvi,ve (W1, 92) dyo

* The conditional density of Y5 given{Y; = y;} can be
computed from the joint and marginal densities

le Yo (yla yQ)
fY Y- (yQ |y1) — ’ (cond. prob.)
21T le (yl)
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Joint mean and covariance

For a vector RV Y = (Y7,...,Y,,) ", the
expression for the mean is still

2V} = /yp

so that E{Y } = (E{Y7}, A {Yn})

The covariance matrix is defined as

Cov{Y} = [ (y~ EY Dy~ E(Y}) ply) dy
The diagonal of Cov{Y}is (Var[Yi],..., Var[Y,])
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Bayes’ rule and estimation

Let:
~ proportion of people in a large population who

~ have a certain characteristic

v _ number of people in a small random sample from
~ the population who have the characteristic

Then we might treat § as continuous and Y as discrete

Bayesian estimation of 6 derives from the calculation
p(0|y), where vy is the observed value of Y

This calculation first requires that we have a joint

“density” p(vy, 0) representing our beliefs about 6 and
the survey outcome Y
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Prior and sampling model

Often it is natural to construct this joint density from

e p(0),beliefs about 0
e p(yl|0), beliefs about Y for each value of ¢

Having observed {Y = y}, we need to compute our
updated beliefs about

o PO.9) _ p(lo)p(6)
p(0ly) = =
p(y) p(y)

This conditional “density” is called the posterior

density of 0
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A ratio of posteriors

Suppose 6, and 0, are two possible numerical values
of the true value of 6

The posterior probability (density) of 0, relative to §;,
conditional on {Y = y},is

p(faly) _ p(ylfa)p(fa)
p(Ouly)  p(y|0s)p(0s)

This means that to evaluate the relative posterior
probabilities of 0, and 6;, we do not need to compute
p(y)
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Independent & ldentical

Under independence, the joint density is given by

N
Py, ynl0) = [ [ oy (4il0)
1=1

If Y1,...,Y, are all generated from a common process
* then the marginal densities are all the same

N
p(y1, - ynld) = | | p(vil6)
1=1

In this case we say that Y7, ...,Y,, are conditionally
independent and identically distributed (lID)
iid

the shorthandis:  Yy,..., Y, ~ p(yl|f)



Likelihood

Suppose that Y has sampling model p(y|0) for
ye)Y CR"and § € © C R

The likelihood function is a function of @ for each
fixed y given by

L(0) = L(0;y) = p(y|0)

and simplifications often arise under IID assumptions

Classical stats is concerned with the log-likelihood

((0) = £(0;y) = logp(y|0)
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