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Learning Objectives

• Understand the basic principles underlying Bayesian 
modeling methodology

• Understand how to use Bayesian inference for real-
world problems

• Understand the computational techniques required

‣ (how to turn the Bayesian crank)

• Appreciate the need for sensitivity analysis, model 
checking and comparison, and the potential dangers 
of Bayesian methods

 2



Part 0: 
What is Bayesian stats 

all about?
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Bayesian inference

• Probabilities numerically represent beliefs about 
unknown quantities

• Bayes rule provides a rational method for updating 
those beliefs in light of new information

‣ This inductive learning is Bayesian inference

• Bayesian methods are data analysis tools derived 
from the principles of Bayesian inference
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Bayesian methods provide 

• models for rational, quantitative learning

• parameter estimates with good statistical properties

• estimators that work for small and large sample sizes

• parsimonious descriptions of data, predictions for 
missing data, and forecasts for future data

• a coherent computational framework for model 
estimation, selection and validation

• methods for generating statistical procedures in 
complicated problems
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An alternative to?

• Maximum likelihood (ML)

• Likelihood ratio tests:

‣ t-test, F-tests, Chi-squared tests

• Complicated frequency arguments where we must 
imagine re-applying (ML) inference on “similar” data

• Appeals to “asymptopia” and the central limit 
theorem

• the Bootstrap, etc.
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Essence of Bayesian inference

• The inductive process of learning about the general 
characteristics            of a population     from a 
subset 

• Both    and    are uncertain

• The information obtained in a particular data set    
can be used to decrease our uncertainty about 

• Quantifying this change is the purpose of Bayesian 
inference: this is Bayesian learning or updating

y

y

✓

✓

✓ 2 ⇥ Y
y 2 Y

is ....
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• For each numerical value           , our prior 
distribution         describes our belief that     
represents the true population characteristics 

• For each            and           , our sampling model             
           describes our belief that    would be the 
outcome of our study if we knew    to be true

Bayesian learning

✓
✓ 2 ⇥

p(✓)

✓ 2 ⇥
y
✓

p(y|✓)
y 2 Y

y✓
... begins with a numerical formulation of joint beliefs 
about     and     expressed in terms of probability 
distributions over     and   Y⇥
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• For each numerical value           , our posterior 
distribution            describes our belief that    is the 
true value, having observed the data set

Once we obtain the data   , the last step is to update 
our beliefs about    

Bayesian learning
y

✓

✓
✓ 2 ⇥

y
p(✓|y)

The posterior distribution is obtained from the prior 
distribution and sampling model via Bayes’ rule

p(✓|y) =
p(y|✓)p(✓)

R
⇥ p(y|✓̃)p(✓̃) d✓̃
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Why Bayes?
• The mathematical results of Cox (1946, 1961) and 

Savage (1954, 1972) prove that if         and      
represent a rational person’s beliefs, then Bayes’ rule 
is an optimal method of updating this person’s beliefs 
about     given the new information

‣ justifies using Bayes’ rule for quantitative learning

• In practice it can be hard to precisely mathematically 
formulate prior beliefs

‣         often chosen in an ad hoc manor, or for 
reasons of computational tractability
p(✓)

p(✓) p(y|✓)

✓ y
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So how can we justify using Bayesian data analysis?  

Why Bayes?

• “All models are wrong, but some are useful.”  
(Box and Draper, 1987, pp. 424)

• if         approximates our prior beliefs then      
shall approximate our posterior beliefs

p(✓) p(✓|y)

In many complicated statistical problems there are 
no obvious non-Bayesian methods of inference

• Bayes’ rule can be used to generate estimators

• performance evaluated with non-Bayesian criteria
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• Interest is in the fraction of infected individuals 

• The data records the number infected individuals 

Example:  
Estimating the probability of a rare event

Suppose we are interested in the prevalence of an 
infectious disease in a small city.  A small random 
sample of 20 individuals will be checked for infection

✓ 2 ⇥ = [0, 1]

y 2 Y = {0, 1, . . . , 20}
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• Let     denote this to-be-determined value

• If     were known, a sensible sampling model is  

Example: sampling model

Before the sample is obtained, the number of infected 
individuals is unknown

Y

✓

Y |✓ ⇠ Bin(20, ✓)
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• Moment matching from a beta distribution (a 
convenient choice) gives the prior 

Example: prior

Other studies from various parts of the country 
indicate that the infection rate ranges from about
0.05 to 0.20, with an average prevalence of 0.1

✓ ⇠ Beta(2, 20)
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Example: posterior

The prior and sampling model combination

and an observed     (the data), leads to the posterior

✓ ⇠ Beta(a, b)
Y |✓ ⇠ Bin(n, ✓)

y

p(✓|y) = Beta(a + y, b + n� y)
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Example: sensitivity analysis

How influential is our prior?

• The posterior expectation is

E{✓|Y = y} =
n

w + n
ȳ +

w

w + n
✓0

a weighted average of the sample mean and the 
prior expectation

✓ =
a

a + b
w = a + b

prior expectation (or guess)

prior confidence

0
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• If          , this gives zero, so reporting the sampling 
uncertainty is crucial (e.g., for reporting to health 
officials)

• A popular 95% confidence interval for a population 
proportion    is the Wald interval:  

Example:  A non-Bayesian approach

A standard estimate of a population proportion 
is the sample mean              , the fraction of infected 
people in the sample

✓
ȳ = y/n

✓

ȳ ± 1.96
p

ȳ(1� ȳ)/n

which has the correct asymptotic coverage (i.e., for 
large   ), but notice           is still problematic!

y = 0

y = 0n
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Example:  A non-Bayesian approach, ctd.

People have suggested a variety of alternatives to the 
Wald interval in hopes of avoiding this type of 
behavior, e.g., the “adjusted” Wald interval  
(Agresti and Coull, 1998):

✓̂ ± 1.96
q

✓̂(1� ✓̂)/n, where

✓̂ =
n

n + 4
ȳ +

4
n + 4

1
2
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Part 1: 
Fundamentals

 19



Conditional probability

We usually denote P (A \B) ⌘ P (A, B)

P (A|B) ⌘ P (A, B)
P (B)

is the conditional probability of     given A B
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Law of total probability

Suppose that                        is a partition of ⌦

• i.e.,                     disjoint and E1, . . . , EK

K[

i=1

Ei = ⌦

then

(by conditional probability)

(LTP)P (A) =
KX

i=1

P (A, Ei)

=
KX

i=1

P (A|Ei)P (Ei)

{E1, . . . , EK}
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Bayes’ rule

P (A|B) =
P (B|A)P (A)

P (B)

In its simplest form:

P (Ei|A) =
P (A|Ei)P (Ei)

P (A)

=
P (A|Ei)P (Ei)PK
i=1 P (A|Ei)P (Ei)

(LTP)

Given a partition                        of     :     ⌦{E1, . . . , EK}
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Independence
Two events    and     are independent ifA B

P (A, B) = P (A)P (B)

Independence implies that P (A|B) = P (A)

Two events    and     are conditionally independent 
given     if

A B
C

P (A, B|C) = P (A|C)P (B|C)

Likewise, conditional independence implies that

P (A|B,C) = P (A|C)
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Probability mass function
The event that the outcome    of our survey has the 
value    is expressed as

Y
y {Y = y}

For each                     we use the shorthand notationy 2 Y ⌘ ⌦y

P (Y = y) = p(y)

• this is the probability mass function or PMF
• the PMF has the following properties

0  p(y)  1 for all y 2 Y

P (y 2 A) =
X

y2A

p(y)) P (y 2 Y) =
X

y2Y
p(y) = 1
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Example: Binomial Distribution

Let                                  for some positive integerY = {0, 1, 2, . . . , n} n

• The uncertain quantity             has a binomial  
  distribution with probability     if

Y 2 Y
✓

• To evaluate the mass in R we use  
  dbinom(y,n,theta)

P (Y = y|✓) = p(y|✓) =
✓

n

y

◆
✓y(1� ✓)n�y

=
n!

y!(n� y)!
✓y(1� ✓)n�y
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Uncountable Sample Spaces
If     is uncountable then we cannot work with
probabilities of discrete events
Y

• the event               say, for            cannot have any  
   probability “mass” since 5 is a singleton in     
• Likewise                               does not make sense   

R
P (Y  5) =

X

y5

p(y)

So we must work directly with the cumulative 
distribution function (CDF)                              insteadF (y) = P (Y  y)

F (1) = 1, F (�1) = 0 F (b)  F (a) if b < a&

P (Y > a) = 1� F (a)
P (a < Y  b) = F (b)� F (a)

Giving:

{Y = 5} Y ✓ R
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Continuous RVs & PDFs
If     is continuous, then     is a continuous RVYF

• For every continuous CDF     there exists a positive  
   function         such that 

F
f(y)

F (a) =
Z a

�1
f(y) dy F 0(y) = f(y)i.e.,

This function is called the probability density function 
(PDF) of    Y
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The properties of the PDF are similar to the PMF  
 
E.g.,

Probability density

0  f(y), for all y 2 Y1.

2. P (y 2 A) =
Z

y2A
f(y) dy )

Z

y2Y
f(y) dy = 1

Still, if                        we will sometimes informally 
say that      “has higher probability” [density] than 

p(y1) > p(y2)
y1 y2

In fact, we will often write                    .  However,

• Unlike a PMF, the PDF may be greater than one, and
•         is not “the probability that           ”p(y) Y = y

p(y) ⌘ f(y)
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Example: Normal Distribution

• To evaluate the CDF & PDF in R we use  
  pnorm(y,mu,sigma) & dnorm(y,mu,sigma)

Suppose that we are sampling from a population on                                  
                   , and we know that the mean of the 

population is     and the variance is    µ �2

f(y)
n(CDF)

(PDF)

Y = (�1,1)

• Then the distribution that has the most “spread”, or is   
   the most “diffuse” is the normal distribution:N (µ, �2)

P (Y < y|µ, �2) = F (y) =
Z y

�1

1p
2⇡�

exp

(
�1

2

✓
y � µ

�

◆2
)
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Expectation
The mean or expectation of an unknown quantity     is Y

if     is discrete

if     is continuousY

Y

The mean is the center of mass of the distribution.  
However, it is not in general equal to either of

• the mode:  “the most probable value of     ”, or

• the median: “the value of     in the middle of the 
distribution

Y

Y

E{Y } =
X

y2Y
yp(y)

E{Y } =
Z

y2Y
yf(y) dy
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Expectation
For skewed distributions (e.g., for income), the mean 
can be far from a typical sample value
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Variance
The most popular measure of how spread out the 
distribution is is the variance

Var[Y ] = E{(Y � E{Y })2}
= E{Y 2}� E{Y }2

• it is the average squared distance that a sample value        
    will be from the population mean

• the standard deviation is the square root of the 
variance

‣ so it is on the same scale of 

E{Y }Y

Y
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• for a continuous, strictly increasing CDF    , the    
   -quantile is the value      such that       

• The interquartile range of a distribution is the interval  
                     which contains 50% of the mass of the 
distribution

• Similarly, the interval                        contains 95% of 
the mass of the distribution

Quantiles
Alternative measures of the spread of a distribution 
are based on quantiles

F
↵ y↵ F (y↵) = ↵

(y0.25, y0.75)

(y0.025, y0.975)
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Joint distributions
Let           be two random variables taking values in  
 
 
Joint beliefs about      and      can be represented 
with probabilities.  E.g., 

• for subsets              and             ,  
 
              
represents our belief that      is in     and      
is in     

Y1, Y2

Y1,Y2

Y1 Y2

A ⇢ Y1 B ⇢ Y2

A
B

Y1 Y2

P ({Y1 2 A}, {Y2 2 B})
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Marginals & Conditionals
As in the discrete case, 

• The marginal density of      can be computed from the  
   joint

Y1

(LTP)

fY1(y1) =
Z 1

�1
fY1,Y2(y1, y2) dy2

• The conditional density of       given                  can be  
  computed from the joint and marginal densities

Y2 {Y1 = y1}

(cond. prob.)fY2|Y1(y2|y1) =
fY1,Y2(y1, y2)

fY1(y1)
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Joint mean and covariance
For a vector RV                               , the 
expression for the mean is still

Y = (Y1, . . . , Yn)>

E{Y } =
Z

yp(y) dy

so that E{Y } = (E{Y1}, . . . , E{Yn})>

The covariance matrix is defined as

The diagonal of                isCov{Y } (Var[Y1], . . . ,Var[Yn])

Cov{Y } =

Z
(y � E{Y })(y � E{Y })>p(y) dy
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Bayes’ rule and estimation
Let:

proportion of people in a large population who 
have a certain characteristic

number of people in a small random sample from 
the population who have the characteristic

✓ =

Y =

Then we might treat    as continuous and     as discrete✓ Y

Bayesian estimation of    derives from the calculation  
          , where    is the observed value of    

✓
y Yp(✓|y)

This calculation first requires that we have a joint 
“density”            representing our beliefs about    and 
the survey outcome  

✓
Y

p(y, ✓)
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Prior and sampling model
Often it is natural to construct this joint density from

•        , beliefs about

•           , beliefs about     for each value of 

p(✓)

p(y|✓)

Having observed               , we need to compute our 
updated beliefs about

{Y = y}

p(✓|y) =
p(✓, y)
p(y)

=
p(y|✓)p(✓)

p(y)

This conditional “density” is called the posterior 
density of ✓

✓Y

✓
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The posterior probability (density) of      relative to     ,
conditional on               , is

A ratio of posteriors
Suppose      and      are two possible numerical values 
of the true value of

✓a ✓b
✓

✓a ✓b
{Y = y}

p(✓a|y)
p(✓b|y)

=
p(y|✓a)p(✓a)
p(y|✓b)p(✓b)

This means that to evaluate the relative posterior 
probabilities of      and     , we do not need to compute    ✓a ✓b
p(y)
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Independent & Identical
 Under independence, the joint density is given by

p(y1, . . . , yn|✓) =
NY

i=1

pYi(yi|✓)

If                  are all generated from a common processY1, . . . , Yn

• then the marginal densities are all the same

p(y1, . . . , yn|✓) =
NY

i=1

p(yi|✓)

In this case we say that                   are conditionally 
independent and identically distributed (IID)

Y1, . . . , Yn

Y1, . . . , Yn
iid⇠ p(y|✓)the shorthand is:
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Likelihood
Suppose that     has sampling model           for  
                    and         

Y p(y|✓)
y 2 Y ✓ Rn ✓ 2 ⇥ ✓ Rd

The likelihood function is a function of     for each 
fixed    given by

✓
y

L(✓) ⌘ L(✓; y) = p(y|✓)

Classical stats is concerned with the log-likelihood

`(✓) ⌘ `(✓; y) = log p(y|✓)

and simplifications often arise under IID assumptions
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