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Preface

Computer simulation experiments are essential to modern scientific discovery. Barriers to
computing have come way down. Meanwhile all the low-hanging fruit has been picked from
the mathematical tree of cute closed-form solutions serving as crude approximations to
reality. Occam’s Razor1 is nice philosophy, but the real world isn’t always simple. On that
Wikipedia page, Isaac Newton is quoted as saying the following about how simple the world
must be.

We are to admit no more causes of natural things than such as are both true
and sufficient to explain their appearances. Therefore, to the same natural
effects we must, as far as possible, assign the same causes.

If Newton believes in parsimony, he’s sure chosen a complicated way of saying so. Given
otherwise equivalent competing explanations for puzzling phenomena, I agree simpler is
better. But we live in a world exhibiting fine balance, disequilibrium and chaotic behavior
all at once. Inherent complexity rules the day. Solving interesting problems at high fidelity
requires intricate numerics. Fortunately, in our modern age, lots of highly modular public
libraries are available. It’s never been easier to patch together a simulation to entertain “what
ifs?”, discover emergent behavior in novel circumstances, challenge hypotheses with data,
and stress-test scenarios; that is, assuming you can code and tolerate a bit of iteration or
Monte Carlo. Computer simulations aren’t just for physics and chemistry anymore. Biology,
epidemiology, ecology, economics, business, finance, engineering, sociology even politics are
experiencing a renaissance of mathematical exploration through simulation.

Trouble is, while vastly greater than just a few decades ago, computing capacity isn’t infinite.
Simulation experiments must be carefully planned to make the most of a finite resource,
input configurations chosen to span representative scenarios, and appropriate meta-models
fit in order to effectively utilize simulations towards the advance of science. That’s where
surrogates come in; as meta models of computer simulations used to solve mathematical
systems that are too intricate to be worked by hand. Gaussian process (GP) regression has
percolated up to the canonical position in this arena. It sounds hard, but it’s actually quite
straightforward and supremely flexible at the same time. One of the main purposes of this
text is to expose the beauty and potential held by GPs in a variety of contexts. Our emphasis
will be on GP surrogates for computer simulation experiments, but we’ll draw upon and
exemplify many successes with similar tools deployed in geostatistics and machine learning.

Emphasis is on methods, recipes and reproducibility. The latter two make this book unique by

1https://en.wikipedia.org/wiki/Occams_razor

xi
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xii Preface

many measures, but especially in the subjects of surrogate modeling and GPs. Methodology
wise, this monograph is somewhat less broad than Santner et al. (2018), a standard text
on design and analysis of computer experiments. But it offers more depth on core subjects,
particularly on computing and implementation in R (R Core Team, 2019), and is more
modern in its connection to methodology from machine learning, industrial statistics and
geostatistics. Every subject, with the exception of a few references to ancillary material,
is paired with illustration in worked code. There’s not a single table or figure (which is
not a drawing) in the book that’s not supported by code on the page. Everything is fully
reproducible. What you see is what you get. This wouldn’t be possible without modern
extensions to R such as RStudio2. Specifically, this book is authored in Rmarkdown via
bookdown (Xie, 2016, 2018a) on CRAN, combining knitr (Xie, 2015, 2018b) and rmarkdown
(Allaire et al., 2018) packages.

One downside to Rmarkdown is that sometimes, e.g., when illustrations are based on
randomly generated data, it’s hard to precisely narrate the outcome of a calculation. I hope
that readers will appreciate the invitation this implies. You’re encouraged to cut-and-paste
the example into your own session and see what I mean when I say something like “It’s
hard to comment precisely about outcomes in this Rmarkdown build.” In a small handful of
places, random number generator (RNG) seeds are fixed to “freeze” the experiments and
enhance specificity, even though that’s technically cheating.3 Uncertainty quantification
(UQ) is a major theme in this book. A disappointingly vague narrative represents a perfect
opportunity to catch a glimpse at how important, and difficult, it can be to appropriately
quantify salient uncertainties.

Use of R, rather than say Python or MATLAB®, signals that this book is statistical in
nature, as opposed to computer science/machine learning, engineering or applied math.
That’s true, to a point. I’m a professor of statistics, but I was trained as a mathematician,
computer scientist, and engineer first. I moved to stats later primarily as a means of latching
onto interesting applications from other areas of applied science. This book is the product of
that journey. It’s mathematical language is statistical because surrogate modeling involves
random variables, estimators, uncertainty, conditioning and inference. But that’s where it
ends. This book has (almost) none of the things practitioners hate about statistics: p-values,
sampling distributions, asymptotics, consistency, and so on. The writing is statistical in form,
but the subjects are not about statistics. They’re about prediction and synthesis of model
and data under uncertainty, about visualization and analysis of information, about design
and decision making, about computing, and about implementation. Crucially, it’s about all
of those things in the context of experimentation through simulation. The target audience is
PhD students and post-doctoral scientists in the natural and engineering sciences, in which
I include statistics and computer science. The social sciences are increasingly mathematical
and computational and I think this book will appeal to folks there as well.

There’s nothing special about R here, except that I know R and CRAN packages for surrogate
modeling best. Many good tools exist in Python and MATLAB, and pointers are provided.
R is lingua franca in the statistical surrogate modeling world, with MATLAB on somewhat
of a decline and Python picking up pace. Any coded examples in the book which don’t
leverage highly customized CRAN libraries would be trivial to port to any high-level language.
Illustrations emphasize algorithmic execution first, using basic subroutines, and library-based

2https://www.rstudio.com/
3Seeds are not provided, in part because RNG sequences can vary across R versions. Conditional

expressions involving floating point calculations can change across architectures and lead to different results
in stochastic experimentation even with identical pseudorandom numbers. It’s impossible to fully remove
randomness from the experience of engaging with the book material, which inevitably thwarts precise
verbiage at times.

https://www.rstudio.com/


Preface xiii

automation second. An effort is made to strip the essence of numerical calculations into
digestible component parts. I view code readability as at least as important as efficiency.
I don’t make use of Tideyverse4, just ordinary R.5 Anyone with experience coding, not
only R experts, should have no trouble following the examples. Reproducibility, and careful
engineering of clean and well-documented code are important to me, and I intend this book
as a showcase, benchmark and template for young coders.

The progression of subjects is as follows. Chapters 1–2 offer a gentle introduction comprised
of historical perspective followed by an overview of four challenging real data/simulator
applications. Links to data and simulation code are provided on the book web page:
http://bobby.gramacy.com/surrogates6. These motivating examples are revisited periodically
in the remainder of the text, but mostly in later chapters. Chapter 3 covers classical response
surface methodology (RSM), primarily developed before computer simulation modeling and
GP surrogates became mainstream. Most of the exposition here is a fly-by of Chapters 5–6
from Myers et al. (2016) with refreshed examples in R. I’m grateful to Christine Anderson–
Cook for help on some of the details. Chapter 4 begins a transition to modern surrogate
modeling by introducing appropriate experiment designs. Chapter 5 is on GP regression,
starting simple and building up slowly, extolling virtues but not ignoring downsides, and
offering several competing perspectives on almost magical properties. Material here served
as the basis of a webinar7 I gave for the American Statistical Association’s (ASA) Section
on Physical and Engineering Sciences (SPES) in 2017. Chapter 6 revisits design aspects
in Chapter 4 from a GP perspective, motivating sequential design as modus operandi and
setting the stage for Bayesian optimization (BO) in Chapter 7. Data acquisition as a decision
problem, for the purpose of learning and optimization under uncertainty, is one of the great
success stories of GP surrogates, combining accurate predictions with autonomous action.
Chapter 8 covers calibration and input sensitivity analysis, two important applications of
GP surrogates leveraging their ability to synthesize sources of information and to sensibly
quantify uncertainty. Smooshing these somewhat disparate themes into a single chapter
may seem awkward. My intention is to feature them as two examples of things people
do with GP surrogates where UQ is key. Other texts like Santner et al. (2018) present
these in two separate chapters. Chapter 9 addresses many of the drawbacks alluded to
in Chapter 5, tackling computational bottlenecks limiting training data sizes, scaling up
modeling fidelity, hybridizing and dividing-and-conquering with trees, and approximating
with highly-parallelizable local GP surrogates. Chapter 10 discusses recent upgrades to
address surrogate modeling and design for highly stochastic, low signal-to-noise, simulations
in the face of heteroskedasticity (input-dependent noise). Appendix A discusses linear algebra
libraries that are all but essential when working with larger problems; Appendix B introduces
a game that helps reinforce many of the ideas expounded upon in this text.

While intended for instruction at the PhD level, I hope you’ll find this book to be a useful
reference as well. Excepting Chapters 1–2 which target perspective, overview and motivation,
the technical progression within and between chapters is highly linear. Methodological
development and examples within a chapter build upon one another. Later chapters assume
familiarity of concepts introduced earlier, with appropriate context and pointers provided.

4https://www.tidyverse.org/
5Tidyverse is a very important part of the R ecosystem, and its introduction has helped keep the R

community on the cutting edge of analytics and data science. Its target audience is data wranglers. Mine is
methodological developers and practitioners of applied science. I feel strongly that building from a simple
base is essential to effective communication and portability of code.

6http://bobby.gramacy.com/surrogates
7https://www.youtube.com/watch?v=XxqVPzb_sGM&feature=youtu.be
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Each chapter’s R examples execute in a novel, standalone R session.8 Chapter 3 on RSM
is relatively self-contained, and not essential for subsequent methodological development,
except perhaps as a straw man. Instructors wishing to cut material in order to streamline
content should consider Chapter 3 first, possibly encouraging students to skim these sections.
Relying on simple linear models, basic calculus and linear algebra, material here is the most
intuitive, least mathematically and computationally challenging. Nevertheless, RSM works
astonishingly well and is used widely in industry. (These techniques are highly effective on
the game in Appendix B.) Chapters 4–8 are the “meat”, with Chapters 9–10 demarcating
the surrogate modeling frontier. Homework exercises are provided at the end of each chapter.
These have been vetted in the classroom over two semesters. Many are deliberately open-
ended, framed as research vignettes where students are invited to fill in the gaps. For
assignments, I try to strike a balance between mathematical and computational problems
(e.g., do #1, #3 and two others of your choosing . . . ) in a way that allows students to play
to their strengths while avoiding crutches. Fully reproducible solutions in Rmarkdown are
available from me upon request.

There are many subjects that are not in this book, but very well could be. GP surrogates
are king here, but they’re by no means the only game in town. Polynomial chaos9 and deep
neural networks10 are popular alternatives, but they’re not covered in this text. My opinion
is that both fall short from a UQ perspective, although they offer many other attractive
features, especially in big data contexts. Even limiting to GPs, the presentation is at times
deliberately narrow. Chosen methods and examples are unashamedly biased toward what I
know well, to problems and methods I’ve worked on, and to R packages in wide use and
available on CRAN. Many of those are my own contribution. If it looks like shameless
self-promotion, it probably is. I like my work and want to share it with you. Although I’ve
tried to provide pointers to related material when relevant, this book makes no attempt to
serve as a systematic review of anything. Books like Santner et al. (2018) are much better in
this regard. I hope that readers of my book will appreciate that its value lies in the recipes
and intuition it provides, combining math and code in a (hopefully) seamless way, and as a
demonstration that reproducibility in science is well within reach.

Before we get started, there are plenty of folks to thank. Let’s start with family. Where
would I be without Mama and those sweet kiddos? Thank you Leah, Natalia and Kaspar for
letting me be proud of you and for helping me be proud of myself. This book is the outcome
of confidence’s virtuous cycle more than any other single thing. Thanks to my parents for
encouraging me in school and for asking “who’s paying for that?” every time they called to
say hi (to the kids) only to find I’m out of town. Thanks to the Universities of California
(Santa Cruz), Cambridge, Chicago and Virginia Tech, for supporting my research and for
nurturing my career, and thanks to the US National Aeronautics and Space Administration
(NASA), UK Engineering and Physical Sciences Research Council (EPSRC), US National
Science Foundation (NSF) and the US Department of Energy (DOE) for funding over
the years. Kudos to the Virginia Tech Department of Statistics for inviting me to teach
a graduate course on the subject of my choosing, and thereby planting the seed for this
book in my mind. Many thanks to students in my Fall 2016 and Spring 2019 classes on
Response Surface Methods and Surrogate Modeling, for being my guinea pigs and for helping
me refine presentation and fix typos along the way; shout outs to Sierra Merkes, Valeria
Quevedo and Ryan Christianson in particular. I appreciated invitations to give short courses
to the Statistics Department at Brigham Young University in 2017, a summer program at

8An tacit library(knitr) begins each chapter for pretty table printing, as with kable.
9https://en.wikipedia.org/wiki/Polynomial_chaos

10https://en.wikipedia.org/wiki/Deep_learning
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Lawrence Livermore National Laboratory in 2017, the 2017 Fall Technical Conference and
a 2018 DataWorks meeting. Huge thanks to Max Morris (IA State) and Brian Williams
(LANL) for going above and beyond with their reviews for CRC.

Robert B. Gramacy
Blacksburg, VA





1
Historical Perspective

A surrogate is a substitute for the real thing. In statistics, draws from predictive equations
derived from a fitted model can act as a surrogate for the data-generating mechanism. If the
fit is good – model flexible yet well-regularized, data rich enough and fitting scheme reliable
– then such a surrogate can be quite valuable. Gathering data is expensive, and sometimes
getting exactly the data you want is impossible or unethical. A surrogate could represent a
much cheaper way to explore relationships, and entertain “what ifs?”. How do surrogates
differ from ordinary statistical modeling? One superficial difference may be that surrogates
favor faithful yet pragmatic reproduction of dynamics over other things statistical models
are used for: interpretation, establishing causality, or identification. As you might imagine,
that characterization oversimplifies.

The terminology came out of physics, applied math and engineering literatures, where the
use of mathematical models leveraging numerical solvers has been commonplace for some
time. As such models became more complex, requiring more resources to simulate/solve
numerically, practitioners increasingly relied on meta-models built off of limited simulation
campaigns. Often they recruited help from statisticians, or at least used setups resembling
ones from stats. Data collected via expensive computer evaluations tuned flexible functional
forms that could be used in lieu of further simulation. Sometimes the goal was to save money
or computational resources; sometimes to cope with an inability to perform future runs
(expired licenses, off-line or over-impacted supercomputers). Trained meta-models became
known as surrogates or emulators, with those terms often used interchangeably. (A surrogate
is designed to emulate the numerics coded in the solver.) The enterprise of design, running
and fitting such meta-models became known as a computer experiment.

So a computer experiment is like an ordinary statistical experiment, except the data are
generated by computer codes rather than physical or field observations, or surveys. Surrogate
modeling is statistical modeling of computer experiments. Computer simulations are generally
cheaper than physical observation, so the former could be entertained as an alternative
or precursor to the latter. Although computer simulation can be just as expensive as
field experimentation, computer modeling is regarded as easier because the experimental
apparatus is better understood, and more aspects may be controlled. For example many
numerical solvers are deterministic, whereas field observations are noisy or have measurement
error. For a long time noise was the main occupant in the gulf between modeling and design
considerations for surrogates, on the one hand, and more general statistical methodology on
the other. But hold that thought for a moment.

Increasingly that gulf is narrowing, not so much because the nature of experimentation is
changing (it is), but thanks to advances in machine learning. The canonical surrogate model,
a fitted Gaussian process (GP) regression, which was borrowed for computer experiments
from the geostatistics’ kriging1 literature of the 1960s, enjoys wide applicability in contexts
where prediction is king. Machine learners exposed GPs as powerful predictors for all sorts

1https://en.wikipedia.org/wiki/Kriging

1

https://en.wikipedia.org/wiki/Kriging


2 1 Historical Perspective

of tasks2, from regression to classification, active learning/sequential design, reinforcement
learning and optimization, latent variable modeling, and so on. They also developed powerful
libraries, lowering the bar to application by non-expert practitioners, especially in the
information technology world. Facebook uses surrogates to tailor its web portal and apps to
optimize engagement; Uber uses surrogates trained to traffic simulations to route pooled
ride-shares in real-time, reducing travel and wait time.

Round about the same time, computer simulation as a means of scientific inquiry began to
blossom. Mathematical biologists, economists and others had reached the limit of equilibrium-
based mathematical modeling with cute closed-form solutions. They embraced simulation as
a means of filling in the gap, just as physicists and engineers had decades earlier. Yet their
simulations were subtly different. Instead of deterministic solvers based on finite elements3,
Navier–Stokes4 or Euler methods5, they were building stochastic simulations6, and agent-
based models7, to explore predator-prey (Lotka–Voltera8) dynamics, spread of disease,
management of inventory or patients in health insurance markets. Suddenly, and thanks to
an explosion in computing capacity, software tools, and better primary school training in
STEM9 subjects (all decades in the making), simulation was enjoying a renaissance. We’re
just beginning to figure out how best to model these experiments, but one thing is for sure:
the distinction between surrogate and statistical model is all but gone.

If there’s (real) field data, say on a historical epidemic, further experimentation may be
almost entirely limited to the mathematical and computer modeling side. You can’t seed a
real community with Ebola and watch what happens. Epidemic simulations, and surrogates
built from a limited number of expensive runs where virtual agents interact and transmit
infection, can be calibrated to a limited amount of physical data. Doing that right and getting
something useful out of it depends crucially on surrogate methodology and design. Classical
statistical methods offer little guidance. The notion of population is weak at best, and
causation is taken as given. Mechanisms engineered into the simulation directly “cause” the
outputs we observe as inputs change. Many classically statistical considerations take a back
seat to having trustworthy and flexible prediction. That means not just capturing the essence
of the simulated dynamics under study, but being hands-off in fitting while at the same time
enabling rich diagnostics to help criticize that fit; understanding its sensitivity to inputs
and other configurations; providing the ability to optimize and refine both automatically
and with expert intervention. And it has to do all that while remaining computationally
tractable. What good is a surrogate if it’s more work than the original simulation? Thrifty
meta-modeling is essential.

This book is about those topics. It’s a statistics text in form but not really in substance. The
target audience is both more modern and more diverse. Rarely is emphasis on properties of
a statistic. We won’t test many hypotheses, but we’ll make decisions – lots of them. We’ll
design experiments, but not in the classical sense. It’ll be more about active learning and
optimization. We’ll work with likelihoods, but mostly as a means of fine-tuning. There will
be no asymptopia. Pragmatism and limited resources are primary considerations. We’ll talk
about big simulation but not big data. Uncertainty quantification (UQ) will play a huge role.
We’ll visualize confidence and predictive intervals, but rarely will those point-wise summaries

2http://research.cs.aalto.fi/pml/software/gpstuff/
3https://en.wikipedia.org/wiki/Finite_element_method
4https://en.wikipedia.org/wiki/NavierStokes_equations
5https://en.wikipedia.org/wiki/Euler_method
6https://en.wikipedia.org/wiki/Stochastic_simulation
7https://en.wikipedia.org/wiki/Agent-based_model
8https://en.wikipedia.org/wiki/Lotka-Volterra_equations
9https://en.wikipedia.org/wiki/Science,_technology,_engineering,_and_mathematics
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be the main quantity of interest. Instead, the goal is to funnel a corpus of uncertainty,
to the extent that’s computationally tractable, through to a decision-making framework.
Synthesizing multiple data sources, and combining multiple models/surrogates to enhance
fidelity, will be a recurring theme – once we’re comfortable with the basics, of course.

Emphasis is on GPs, but we’ll start a little old school and finish by breaking outside of the
GP box, with tangents and related methodology along the way. This chapter and the next
are designed to set the stage for the rest of the book. Below is historical context from two
perspectives. One perspective is so-called response surface methods (RSMs), a poster child
from industrial statistics’ heyday, well before information technology became a dominant
industry. Here surrogates are crude, but the literature is rich and methods are tried and
tested in practice, especially in manufacturing. Careful experimental design, paired with a
well understood model and humble expectations, can add a lot of value to scientific inquiry,
process refinement, optimization, and more. These ideas are fleshed out in more detail in
Chapter 3. Another perspective comes from engineering. Perhaps more modern, but also less
familiar to most readers, our limited presentation of this viewpoint here is designed to whet
the reader’s appetite for the rest of the book (i.e., except Chapter 3). Chapter 2 outlines
four real-world problems that would be hard to address within a classical RSM framework.
Modern GP surrogates are essential, although in some cases the typical setup oversimplifies.
Fully worked solutions will require substantial buildup and will have to wait until the last
few chapters of the book.

1.1 Response surface methodology

RSMs are a big deal to the Virginia Tech Statistics Department, my home. Papers and books
by Ray Myers, his students and colleagues, form the bedrock of best statistical practice
in design and modeling in industrial, engineering and physical sciences. Related fields of
design of experiments, quality, reliability and productivity are also huge here (Geoff Vining,
Bill Woodall, JP Morgan). All three authors of my favorite book on the subject, Response
Surface Methodology (Myers et al., 2016), are Hokies10. Much of the development here and
in Chapter 3 follows this highly accessible text, sporting fresh narrative and augmented with
reproducible R examples. Box and Draper (2007)’s Response Surfaces, Mixtures, and Ridge
Analyses is perhaps more widely known, in part because the authors are household names
(in stats households). Methods described in these texts are in wide use in application areas
ranging from materials science, manufacturing, applied chemistry, and climate science, to
name just a few.

1.1.1 What is it?

Response surface methodology (RSM) is a collection of statistical and mathematical tools
useful for developing, improving, and optimizing processes. Applications historically come
from industry and manufacturing, focused on design, development, and formulation of new
products and the improvement of existing products but also from (national) laboratory
research, and with obvious military application. The overarching theme is a study of how

10https://en.wikipedia.org/wiki/HokieBird
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input variables controlling a product or process potentially influence a response measuring
performance or quality characteristics.

Consider the relationship between the response variable yield (y) in a chemical process
and two process variables: reaction time (ξ1) and reaction temperature (ξ2). R code below
synthesizes this setting for the benefit of illustration.

yield <- function(xi1, xi2)
{
xi1 <- 3*xi1 - 15
xi2 <- xi2/50 - 13
xi1 <- cos(0.5)*xi1 - sin(0.5)*xi2
xi2 <- sin(0.5)*xi1 + cos(0.5)*xi2
y <- exp(-xi1^2/80 - 0.5*(xi2 + 0.03*xi1^2 - 40*0.03)^2)
return(100*y)
}

Seasoned readers will recognize the form above as a variation on the so-called “banana
function”. Figure 1.1 shows this yield response plotted in perspective as a surface above the
time/temperature plane.

xi1 <- seq(1, 8, length=100)
xi2 <- seq(100, 1000, length=100)
g <- expand.grid(xi1, xi2)
y <- yield(g[,1], g[,2])
persp(xi1, xi2, matrix(y, ncol=length(xi2)), theta=45, phi=45,
lwd=0.5, xlab="xi1 : time", ylab="xi2 : temperature",
zlab="yield", expand=0.4)

FIGURE 1.1: Banana yield example as a function of time and temperature.

Although perhaps not as pretty, it’s easier to see what’s going on in an image–contour plot.
Figure 1.2 utilizes heat colors where white is hotter (higher) and red is cooler (lower).
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cols <- heat.colors(128)
image(xi1, xi2, matrix(y, ncol=length(xi2)), col=cols,
xlab="xi1 : time", ylab="xi2 : temperature")

contour(xi1, xi2, matrix(y, ncol=length(xi2)), nlevels=4, add=TRUE)

FIGURE 1.2: Alternative heat map view of banana yield.

By inspection, yield is optimized near (ξ1, ξ2) = (5 hr, 750◦C). Unfortunately in practice, the
true response surface is unknown. When yield evaluation is not as simple as a toy banana
function, but a process requiring care to monitor, reconfigure and run, it’s far too expensive
to observe over a dense grid. Moreover, measuring yield may be a noisy/inexact process.

That’s where stats comes in. RSMs consist of experimental strategies for exploring the space
of the process (i.e., independent/input) variables (above ξ1 and ξ2); for empirical statistical
modeling targeted toward development of an appropriate approximating relationship between
the response (yield) and process variables local to a study region of interest; and optimization
methods for sequential refinement in search of the levels or values of process variables that
produce desirable responses (e.g., that maximize yield or explain variation).

Suppose the true response surface is driven by an unknown physical mechanism, and that
our observations are corrupted by noise. In that setting it can be helpful to fit an empirical
model to output collected under different process configurations. Consider a response Y that
depends on controllable input variables ξ1, ξ2, . . . , ξm. Write

Y = f(ξ1, ξ2, . . . , ξm) + ε

E{Y } = η = f(ξ1, ξ2, . . . , ξm)

where ε is treated as zero mean idiosyncratic noise possibly representing inherent variation,
or the effect of other systems or variables not under our purview at this time. A simplifying
assumption that ε ∼ N (0, σ2) is typical. We seek estimates for f and σ2 from noisy
observations Y at inputs ξ.

Inputs ξ1, ξ2, . . . , ξm above are called natural variables because they’re expressed in their
natural units of measurement, such as degrees Celsius (◦C), pounds per square inch (psi), etc.
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We usually transform these to coded variables x1, x2, . . . , xm to mitigate hassles and confusion
that can arise when working with a multitude of scales of measurement. Transformations
offering dimensionless inputs x1, . . . , xm in the unit cube, or scaled to have a mean of zero
and standard deviation of one, are common choices. In that space the empirical model
becomes

η = f(x1, x2, . . . , xm).

Working with coded inputs x will be implicit throughout this text except when extra code
is introduced to explicitly map from natural coordinates. (Rarely will ξj notation feature
beyond this point.)

1.1.2 Low-order polynomials

Learning about f is lots easier if we make some simplifying approximations. Appealing to
Taylor’s theorem11, a low-order polynomial in a small, localized region of the input (x) space
is one way forward. Classical RSM focuses on disciplined application of local analysis and
sequential refinement of “locality” through conservative extrapolation. It’s an inherently
hands-on process.

A first-order model, or sometimes called a main effects model , makes sense in parts of the
input space where it’s believed that there’s little curvature in f .

η = β0 + β1x1 + β2x2

for example = 50 + 8x1 + 3x2

In practice, such a surface would be obtained by fitting a model to the outcome of a designed
experiment. Hold that thought until Chapter 3; for now the goal is a high-level overview.

To help visualize, code below encapsulates that main effects model . . .

first.order <- function(x1, x2)
{
50 + 8*x1 + 3*x2
}

. . . and then evaluates it on a grid in a double-unit square centered at the origin. These
coded units are chosen arbitrarily, although one can imagine deploying this approximating
function nearby x(0) = (0, 0),

x1 <- x2 <- seq(-1, 1, length=100)
g <- expand.grid(x1, x2)
eta1 <- matrix(first.order(g[,1], g[,2]), ncol=length(x2))

Figure 1.3 shows the surface in perspective (left) and image–contour (right) plots, again
with heat colors: white is hotter/higher, red is cooler/lower.

11https://en.wikipedia.org/wiki/Taylor’s_theorem
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par(mfrow=c(1,2))
persp(x1, x2, eta1, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, eta1, col=heat.colors(128))
contour(x1, x2, matrix(eta1, ncol=length(x2)), add=TRUE)

FIGURE 1.3: Example of a first-order response surface via perspective (left) and heat
map (right).

Clearly the development here serves as a warm up. I presume that you, the keen reader,
know that a first-order model in 2d traces out a plane in y × (x1, x2) space. My aim with
these passages is twofold. One is to introduce classical RSMs. But another, perhaps more
important goal, is to introduce the style of Rmarkdown presentation adopted throughout
the text. There’s a certain flow that (at least in my opinion) such presentation demands.
This book’s style is quite distinct compared to textbooks of just ten years ago, even ones
supported by code. Although my presentation here closely follows early chapters in Myers
et al. (2016), the R implementation and visualization here are novel, and are engineered for
compatibility with the diverse topics which follow in later chapters.

Ok, enough digression. Back to RSMs. A simple first-order model would only be appropriate
for the most trivial of response surfaces, even when applied in a highly localized part of
the input space. Adding curvature is key to most applications. A first-order model with
interactions induces a limited degree of curvature via different rates of change of y as x1 is
varied for fixed x2, and vice versa.

η = β0 + β1x1 + β2x2 + β12x1x2

for example = 50 + 8x1 + 3x2 − 4x1x2

To help visualize, R code below facilitates evaluations for pairs (x1, x2) . . .

first.order.i <- function(x1, x2)
{
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50 + 8*x1 + 3*x2 - 4*x1*x2
}

. . . so that responses may be observed over a mesh in the same double-unit square.

eta1i <- matrix(first.order.i(g[,1], g[,2]), ncol=length(x2))

Figure 1.4 shows those responses on the z-axis in a perspective plot (left), and as heat colors
and contours (right).

par(mfrow=c(1,2))
persp(x1, x2, eta1i, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, eta1i, col=heat.colors(128))
contour(x1, x2, matrix(eta1i, ncol=length(x2)), add=TRUE)

x1
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FIGURE 1.4: Example of a first-order response surface with interaction(s).

Observe that the mean response η is increasing marginally in both x1 and x2, or conditional
on a fixed value of the other until x1 is 0.75 or so. Rate of increase slows as both coordinates
grow simultaneously since the coefficient in front of the interaction term x1x2 is negative.
Compared to the first-order model (without interactions), such a surface is far more useful
locally. Least squares regressions – wait until §3.1.1 for details – often flag up significant
interactions when fit to data collected on a design far from local optima.

A second-order model may be appropriate near local optima where f would have substantial
curvature.

η = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2

for example = 50 + 8x1 + 3x2 − 7x2
1 − 3x2

2 − 4x1x2

The code below implements this function . . .
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simple.max <- function(x1, x2)
{
50 + 8*x1 + 3*x2 - 7*x1^2 - 3*x2^2 - 4*x1*x2
}

. . . which is then evaluated on our grid for visualization.

eta2sm <- matrix(simple.max(g[,1], g[,2]), ncol=length(x2))

Panels in Figure 1.5 show that this surface has a maximum near about (0.6, 0.2).

par(mfrow=c(1,2))
persp(x1, x2, eta2sm, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, eta2sm, col=heat.colors(128))
contour(x1, x2, eta2sm, add=TRUE)
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FIGURE 1.5: Second-order simple maximum surface.

Not all second-order models would have a single stationary point, which in RSM jargon
is called a simple maximum. (In this “yield maximizing” setting we’re presuming that our
response surface is concave down from a global viewpoint, even though local dynamics may
be more nuanced). Coefficients in front of input terms, their interactions and quadratics, must
be carefully selected to get a simple maximum. Exact criteria depend upon the eigenvalues
of a certain matrix built from those coefficients, which we’ll talk more about in §3.2.1. Box
and Draper (2007) provide a beautiful diagram categorizing all of the kinds of second-order
surfaces one can encounter in an RSM analysis, where finding local maxima is the goal. An
identical copy, with permission, appears in Myers et al. (2016) too. Rather than duplicate
those here, a third time, we shall continue with the theme of R-ification of that presentation.

An example set of coefficients describing what’s called a stationary ridge is provided by the
R code below.
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stat.ridge <- function(x1, x2)
{
80 + 4*x1 + 8*x2 - 3*x1^2 - 12*x2^2 - 12*x1*x2
}

Let’s evaluate that on our grid . . .

eta2sr <- matrix(stat.ridge(g[,1], g[,2]), ncol=length(x2))

. . . and then view the surface with our usual pair of panels in Figure 1.6.

par(mfrow=c(1,2))
persp(x1, x2, eta2sr, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, eta2sr, col=heat.colors(128))
contour(x1, x2, eta2sr, add=TRUE)
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FIGURE 1.6: Example of a stationary ridge.

Observe how there’s a ridge – a whole line – of stationary points corresponding to maxima:
a 1d submanifold of the 2d surface, if I may be permitted to use vocabulary I don’t fully
understand. Assuming the approximation can be trusted, this situation means that the
practitioner has some flexibility when it comes to optimizing, and can choose the precise
setting of (x1, x2) either arbitrarily or (more commonly) by consulting some tertiary criteria.

An example of a rising ridge is implemented by the R code below . . .

rise.ridge <- function(x1, x2)
{
80 - 4*x1 + 12*x2 - 3*x1^2 - 12*x2^2 - 12*x1*x2
}



1.1 Response surface methodology 11

. . . and evaluated on our grid as follows.

eta2rr <- matrix(rise.ridge(g[,1], g[,2]), ncol=length(x2))

Notice in Figure 1.7 how there’s a continuum of (local) stationary points along any line
going through the 2d space, excepting one that lies directly on the ridge.

par(mfrow=c(1,2))
persp(x1, x2, eta2rr, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, eta2rr, col=heat.colors(128))
contour(x1, x2, eta2rr, add=TRUE)
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FIGURE 1.7: Example of a rising ridge.

In this case, the stationary point is remote to the study region. Although there’s comfort in
learning that an estimated response will increase as you move along the axis of symmetry
toward its stationary point, this situation indicates either a poor fit by the approximating
second-order function, or that the study region is not yet precisely in the vicinity of a local
optima – often both. The inversion of a rising ridge is a falling ridge, similarly indicating
one is far from local optima, except that the response decreases as you move toward the
stationary point. Finding a falling ridge system can be a back-to-the-drawing-board affair.

Finally, we can get what’s called a saddle or minimax system. In R . . .

saddle <- function(x1, x2)
{
80 + 4*x1 + 8*x2 - 2*x1 - 12*x2 - 12*x1*x2
}

. . . and . . .
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eta2s <- matrix(saddle(g[,1], g[,2]), ncol=length(x2))

Panels in Figure 1.8 show that the (single) stationary point is either a local maxima or
minima, depending on your perspective.

par(mfrow=c(1,2))
persp(x1, x2, eta2s, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, eta2s, col=heat.colors(128))
contour(x1, x2, eta2s, add=TRUE)
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FIGURE 1.8: Example of a saddle or minimax system.

Likely further data collection, and/or outside expertise, is needed before determining a
course of action in this situation. Finding a simple maximum, or stationary ridge, represents
ideals in the spectrum of second-order approximating functions. But getting there can be a
bit of a slog. Using models fitted from data means uncertainty due to noise, and therefore
uncertainty in the type of fitted second-order model you’re dealing with. A ridge analysis
[see §3.2.2] attempts to offer a principled approach to navigating uncertainties when one
is seeking local maxima. The two-dimensional setting exemplified above is convenient for
visualization, but rare in practice. Complications compound when studying the effect of
more than two process variables.

1.1.3 General models, inference and sequential design

The general first-order model on m process variables x1, . . . , xm is

η = β0 + β1x1 + · · ·+ βmxm,

and the general second-order model thus
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η = β0 +
m∑
j=1

βjxj +
m∑
j=1

βjjx
2
j +

m∑
j=2

j∑
k=1

βkjxkxj .

Inference from data is carried out by ordinary least squares (OLS). I won’t review OLS,
or indeed any of the theory for linear modeling, although properties will be introduced as
needed. For an excellent review including R examples, see Sheather (2009). However we’ll
do plenty of fully implemented examples in Chapter 3. Throughout I shall be rather cavalier
in my haphazard interchangeable use of OLS and maximum likelihood estimators (MLEs)
in the typical Gaussian linear modeling setup, as the two are basically equivalent.

Besides serving to illustrate RSM methods in action, we shall see how important it is to
organize the data collection phase of a response surface study carefully. A design is a choice
of x’s where we plan to observe y’s, for the purpose of approximating f . Analyses and designs
need to be carefully matched. When using a first-order model, some designs are preferred
over others. When using a second-order model to capture curvature, a different sort of design
is appropriate. Design choices often contain features enabling modeling assumptions to be
challenged, e.g., to check if initial impressions are supported by the data ultimately collected.

Although a substantial portion of this text will be devoted to design for GP surrogates,
especially sequential design, design for classical RSMs will be rather more limited. There are
designs which help with screening, to determine which variables matter so that subsequent
experiments may be smaller and/or more focused. Then there are designs tailored to the
form of model (first- or second-order, say) in the screened variables. And then there are more
designs still. In our empirical examples we shall leverage off-the-shelf choices introduced at
length in other texts (Myers et al., 2016; Box and Draper, 2007) with little discussion.

Usually RSM-based experimentation begins with a first-order model, possibly with inter-
actions, under the presumption that the current process is operating far from optimal
conditions. Based on data collected under designs appropriate for those models, the so-called
method of steepest ascent deploys standard error and gradient calculations on fitted surfaces
in order to a) determine where the data lie relative to optima (near or far, say); and b)
to inch the “system” closer to such regimes. Eventually, if all goes well after several such
carefully iterated refinements, second-order models are entertained on appropriate designs
in order to zero-in on ideal operating conditions. Again this involves a careful analysis of
the fitted surface – a ridge analysis, see §3.2.2 – with further refinement using gradients of,
and standard errors associated with, the fitted surfaces, and so on. Once the practitioner is
satisfied with the full arc of design(s), fit(s), and decision(s), a small experiment called a
confirmation test may be performed to check if the predicted optimal settings are indeed
realizable in practice.

That all seems sensible, and pretty straightforward as quantitative statistics-based analysis
goes. Yet it can get complicated, especially when input dimensions are moderate in size.
Design considerations are particularly nuanced, since the goal is to obtain reliable estimates of
main effects, interaction and curvature while minimizing sampling effort/expense. Textbooks
devote hundreds of pages to that subject (e.g., Morris, 2010; Wu and Hamada, 2011), which
is in part why we’re not covering it. (Also, I’m by no means an expert.) Despite intuitive
appeal, several downsides to this setup become apparent upon reflection, or after one’s first
attempt to put the idea into practice. The compartmental nature of sequential decision
making is inefficient. It’s not obvious how to re-use or update analysis from earlier phases,
or couple with data from other sources/related experiments. In addition to being local in
experiment-time, or equivalently limited in memory (to use math programming jargon), it’s
local in experiment-space. Balance between exploration (maybe we’re barking up the wrong
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tree) and exploitation (let’s make things a little better) is modest at best. Interjection of
expert knowledge is limited to hunches about relevant variables (i.e., the screening phase),
where to initialize search, how to design the experiments. Yet at the same time classical
RSMs rely heavily on constant scrutiny throughout stages of modeling and design and on
the instincts of seasoned practitioners. Parallel analyses, conducted according to the same
best intentions, rarely lead to the same designs, model fits and so on. Sometimes that means
they lead to different conclusions, which can be cause for concern.

In spite of those criticisms, however, there was historically little impetus to revise the
status quo. Classical RSM was comfortable in its skin, consistently led to improvements
or compelling evidence that none can reasonably be expected. But then in the late 20th
century came an explosive expansion in computational capability, and with it a means of
addressing many of those downsides.

These days people are getting more out of smaller “field experiments” or “tests” and more out
of their statistical models, designs and optimizations by coupling with mathematical models
of the system(s) under study. And by mathematical model I don’t mean F = ma, although
that’s not a bad place to start pedagogically. Gone are the days where simple equations are
regarded as sufficient to describe real-world systems. Physicists figured that out fifty years ago;
industrial engineers followed suit. Biologists, social scientists, climate scientists and weather
forecasters, have jumped on the bandwagon rather more recently. Systems of equations
are required, solved over meshes (e.g., finite elements), or you might have stochastically
interacting agents acting out predator–prey dynamics in habitat, an epidemic spreading
through a population in a social network, citizens making choices about health care and
insurance. Goals for those simulation experiments are as diverse as their underlying dynamics.
Simple optimization is common. Or, one may wish to discover how a regulatory framework,
or worst-case scenario manifests as emergent behavior from complicated interactions. Even
economists and financial mathematicians, famously favoring equilibrium solutions (e.g.,
efficient markets12), are starting to notice. An excellent popular science book called Forecast
by Buchanan (2013) argues that this revolution is long overdue.

Solving systems of equations, or exploring the behavior of interacting agents, requires
numerical analysis13 and that means computing. Statistics can be involved at various stages:
choosing the mathematical model, solving by stochastic simulation (Monte Carlo), designing
the computer experiment, smoothing over idiosyncrasies or noise, finding optimal conditions,
or calibrating mathematical/computer models to data from field experiments. Classical
RSMs are not well-suited to any of those tasks, primarily because they lack the fidelity
required to model these data. Their intended application is too local. They’re also too
hands-on. Once computers are involved, a natural inclination is to automate – to remove
humans from the loop and set the computer running on the analysis in order to maximize
computing throughput, or minimize idle time. New response surface methodology is needed.

1.2 Computer experiments

Mathematical models implemented in computer codes are now commonplace as a means of
avoiding expensive field data collection. Codes can be computationally intensive, solving sys-

12https://en.wikipedia.org/wiki/Efficient-market_hypothesis
13https://en.wikipedia.org/wiki/Numerical_analysis

https://en.wikipedia.org/wiki/Efficient-market_hypothesis
https://en.wikipedia.org/wiki/Numerical_analysis
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tems of differential equations, finite element analysis, Monte Carlo quadrature/approximation,
individual/agent based models (I/ABM), and more. Highly nonlinear response surfaces,
high signal-to-noise ratios (often deterministic evaluations) and global scope demands a
new approach to design and modeling compared to a classical RSM setting. As computing
power has grown, so too has simulation fidelity, adding depth in terms of both accuracy
and faithfulness to the best understanding of the physical, biological, or social dynamics
in play. Computing has fueled ambition for breadth as well. Expansion of configuration
spaces and increasing input dimension yearn for ever-bigger designs. Advances in high
performance computing (HPC) have facilitated distribution of solvers to an unprecedented
degree, allowing thousands of runs where only tens could be done before. That’s helpful
with big input spaces, but shifts the burden to big models and big training data which bring
their own computational challenges.

Research questions include how to design computer experiments that spend on computation
judiciously, and how to meta-model computer codes to save on simulation effort. Like with
classical RSM, those two go hand in hand. The choice of surrogate model for the computer
codes, if done right, can have a substantial effect on the optimal design of the experiment.
Depending on your goal, whether descriptive or response-maximizing in nature, different
model–design pairs may be preferred. Combining computer simulation, design, and modeling
with field data from similar, real-world experiments leads to a new class of computer model
calibration or tuning problems. There the goal is to learn how to tweak the computer model
to best match physical dynamics observed (with noise) in the real world, and to build
an understanding of any systematic biases between model and reality. And as ever with
computers, the goal is to automate to the extent possible so that HPC can be deployed with
minimal human intervention.

In light of the above, many regard computer experiments as distinct from RSM. I prefer to
think of them as a modern extension. Although there’s clearly a need to break out of a local
linear/quadratic modeling framework, and associated designs, many similar themes are in
play. For some, the two literatures are converging, with self-proclaimed RSM researchers
increasingly deploying GP models and other techniques from computer experiments. On the
other hand, researchers accustomed to interpolating deterministic computer simulations are
beginning to embrace stochastic simulation, thus leveraging designs resembling those for
classical RSM. Replication for example, which would never feature in a deterministic setting,
is a tried and true means of separating signal from noise. Traditional RSM is intended for
situations in which a substantial proportion of variability in the data is just noise and the
number of data values that can be acquired can sometimes be severely limited. Consequently,
RSM is intended for a somewhat different class of problems, and is indeed well-suited for
their purposes.

There are two very good texts on computer experiments and surrogate modeling. The Design
and Analysis of Computer Experiments, by Santner et al. (2018) is the canonical reference
in the statistics literature. Engineering Design via Surrogate Modeling by Forrester et al.
(2008) is perhaps more popular in engineering. Both are geared toward design. Santner et al.
is more technical. My emphasis is a bit more on modeling and implementation, especially in
contemporary big- and stochastic-simulation contexts. Whereas my style is more statistical,
like Santner et al. the presentation is more implementation-oriented like Forrester, et al.
(They provide extensive MATLAB® code; I use R.)
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TABLE 1.1: Wing weight parameters.

Symbol Parameter Baseline Minimum Maximum
Sw Wing area (ft2) 174 150 200
Wfw Weight of fuel in wing (lb) 252 220 300
A Aspect ratios 7.52 6 10
Λ Quarter-chord sweep (deg) 0 -10 10
q Dynamic pressure at cruise (lb/ft2) 34 16 45
λ Taper ratio 0.672 0.5 1
Rtc Aerofoil thickness to chord ratio 0.12 0.08 0.18
Nz Ultimate load factor 3.8 2.5 6
Wdg Final design gross weight (lb) 2000 1700 2500

1.2.1 Aircraft wing weight example

To motivate expanding the RSM toolkit towards better meta-modeling and design for a
computer-implemented mathematical model, let’s borrow an example from Forrester et al.
Besides appropriating the example setting, not much about the narrative below resembles
any other that I’m aware of. Although also presented as a warm-up, Forrester et al. utilize
this example with a different pedagogical goal in mind.

The following equation has been used to help understand the weight of an unpainted light
aircraft wing as a function of nine design and operational parameters.

W = 0.0365S0.758
w W 0.0035

fw

(
A

cos2 Λ

)0.6
q0.006λ0.04

(
100Rtc

cos Λ

)−0.3
(NzWdg)0.49 (1.1)

Table 1.1 details each of the parameters and provides reasonable ranges on their natural
scale. A baseline setting, coming from a Cessna C172 Skyhawk aircraft, is also provided.

I won’t go into any detail here about what each parameter measures, although for some
(wing area and fuel weight) the effect on overall weight is obvious. It’s worth remarking that
Eq. (1.1) is not really a computer simulation, although we’ll use it as one for the purposes
of this illustration. Utilizing a true form, but treating it as unknown, is a helpful tool for
synthesizing realistic settings in order to test methodology. That functional form was derived
by “calibrating” known physical relationships to curves obtained from existing aircraft data
(Raymer, 2012). So in a sense it’s itself a surrogate for actual measurements of the weight of
aircrafts. It was built via a mechanism not unlike one we’ll expound upon in more depth in a
segment on computer model calibration in §8.1, albeit in a less parametric setting. Although
we won’t presume to know that functional form in any of our analysis below, observe that
the response is highly nonlinear in its inputs. Even when modeling the logarithm, which
turns powers into slope coefficients and products into sums, the response would still be
nonlinear owing to the trigonometric terms.

Considering the nonlinearity and high input dimension, simple linear and quadratic response
surface approximations will likely be insufficient. Of course, that depends upon the appli-
cation of interest. The most straightforward might simply be to understand input–output
relationships. Given the global purview implied by that context, a fancier model is all but
essential. For now, let’s concentrate on that setting to fix ideas. Another application might
be optimization. There might be interest in minimizing weight, but probably not without
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some constraints. (We’ll need wings with non-zero area if the airplane is going to fly.) Let’s
hold that thought until Chapter 7, where I’ll argue that global perspective, and thus flexible
modeling, is essential in (constrained) optimization settings.

The R code below serves as a genuine computer implementation “solving” a mathematical
model. It takes arguments coded in the unit cube. Defaults are used to encode baseline
settings from Table 1.1, also mapped to coded units.

wingwt <- function(Sw=0.48, Wfw=0.28, A=0.38, L=0.5, q=0.62, l=0.344,
Rtc=0.4, Nz=0.37, Wdg=0.38)
{
## put coded inputs back on natural scale
Sw <- Sw*(200 - 150) + 150
Wfw <- Wfw*(300 - 220) + 220
A <- A*(10 - 6) + 6
L <- (L*(10 - (-10)) - 10) * pi/180
q <- q*(45 - 16) + 16
l <- l*(1 - 0.5) + 0.5
Rtc <- Rtc*(0.18 - 0.08) + 0.08
Nz <- Nz*(6 - 2.5) + 2.5
Wdg <- Wdg*(2500 - 1700) + 1700

## calculation on natural scale
W <- 0.036*Sw^0.758 * Wfw^0.0035 * (A/cos(L)^2)^0.6 * q^0.006
W <- W * l^0.04 * (100*Rtc/cos(L))^(-0.3) * (Nz*Wdg)^(0.49)
return(W)
}

Compute time required by the wingwt “solver” is trivial, and approximation error is minuscule
– essentially machine precision. Later we’ll imagine a more time consuming evaluation by
mentally adding a Sys.sleep(3600) command to synthesize a one-hour execution time, say.
For now, our presentation will utilize cheap simulations in order to perform a sensitivity
analysis (see §8.2), exploring which variables matter and which work together to determine
levels of the response.

Plotting in 2d is lots easier than 9d, so the code below makes a grid in the unit square to
facilitate sliced visuals. (This is basically the same grid as we used earlier, except in [0, 1]2
rather than [−1, 1]2. The coding used to transform inputs from natural units is largely a
matter of taste, so long as it’s easy to undo for reporting back on original scales.)

x <- seq(0, 1, length=100)
g <- expand.grid(x, x)

Now we can use the grid to, say, vary Nz and A, with other inputs fixed at their baseline
values.

W.A.Nz <- wingwt(A=g[,1], Nz=g[,2])

To help interpret outputs from experiments such as this one – to level the playing field when
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comparing outputs from other pairs of inputs – code below sets up a color palette that can
be re-used from one experiment to the next.

cs <- heat.colors(128)
bs <- seq(min(W.A.Nz), max(W.A.Nz), length=129)

Figure 1.9 shows the weight response as a function of Nz and A with an image–contour
plot. Slight curvature in the contours indicates an interaction between these two variables.
Actually, this output range (180–320 approximately) nearly covers the entire span of outputs
observed from settings of inputs in the full, 9d input space.

image(x, x, matrix(W.A.Nz, ncol=length(x)), col=cs, breaks=bs,
xlab="A", ylab="Nz")

contour(x, x, matrix(W.A.Nz, ncol=length(x)), add=TRUE)
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FIGURE 1.9: Wing weight over an interesting 2d slice.

Apparently an aircraft wing is heavier when aspect ratios A are high, and designed to cope
with large g-forces (large Nz), with a compounding effect. Perhaps this is because fighter
jets cannot have efficient (light) glider-like wings. How about the same experiment for two
other inputs, e.g., taper ratio λ and fuel weight Wfw?

W.l.Wfw <- wingwt(l=g[,1], Wfw=g[,2])

Figure 1.10 shows the resulting image–contour plot, utilizing the same color palette as in
Figure 1.9 in order to emphasize a stark contrast.

image(x, x, matrix(W.l.Wfw,ncol=length(x)), col=cs, breaks=bs,
xlab="l", ylab="Wfw")

contour(x,x, matrix(W.l.Wfw,ncol=length(x)), add=TRUE)

Apparently, neither input has much effect on wing weight, with λ having a marginally greater
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FIGURE 1.10: Wing weight over an ineffectual 2d slice.

effect, covering less than 4% of the span of weights observed in the A×Nz plane. There’s
no interaction evident in λ×Wfw.

Well that’s all fine and good. We’ve learned about two pairs of inputs, out of 36 total pairs.
For each pair we evaluated wingwt 10,000 times. Doing the same for all pairs would require
360K evaluations, not a reasonable number with a real computer simulation that takes any
non-trivial amount of time to evaluate. Even at just 1s per evaluation, presuming speedy
but not instantaneous numerical simulation in a slightly more realistic setting, we’re talking
> 100 hours. Many solvers take minutes/hours/days to execute a single run. Even with great
patience, or distributed evaluation in an HPC setting, we’d only really know about pairs.
How about main effects or three-way interactions? A different strategy is needed.

1.2.2 Surrogate modeling and design

Many of the most effective strategies involve (meta-) modeling the computer model. The
setting is as follows. Computer model f(x) : Rp → R is expensive to evaluate. For con-
creteness, take f to be wingwt from §1.2.1. To economize on expensive runs, avoiding a
grid in each pair of coordinates say, the typical setup instead entails choosing a small
design Xn = {x1, . . . , xn} of locations in the full m-dimensional space, where m = 9 for
wingwt. Runs at those locations complete a set of n example evaluation pairs (xi, yi), where
yi ∼ f(xi) for i = 1, . . . , n. If f is deterministic, as it is with wingwt, then we may instead
write yi = f(xi). Collect the n data pairs as Dn = (Xn, Yn), where Xn is an n×m matrix
and Yn is an n-vector. Use these data to train a statistical (regression) model, producing
an emulator f̂n ≡ f̂ | Dn whose predictive equations may be used as a surrogate f̂n(x′) for
f(x′) at novel x′ locations in the m-dimensional input space.

Often the terms surrogate and emulator are used interchangeably, as synonyms. Some refer
to the fit f̂n as emulator and the evaluation of its predictive equations f̂n(x′) as surrogate,
as I have done above. Perhaps the reasoning behind that is that the suffix “or” on emulator
makes it like estimator in the statistical jargon. An estimator holds the potential to provide
estimates when trained on a sample from a population. We may study properties of an
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estimator/emulator through its sampling distribution, inherited from the data-generating
mechanism imparted on the population by the model, or through its Bayesian posterior
distribution. Only after providing an x′ to the predictive equations, and extracting some
particular summary statistic like the mean, do we actually have a surrogate f̂(x′) for f(x′),
serving as a substitute for a real simulation.

If that doesn’t make sense to you, then don’t worry about it. Emulator and surrogate are
the same thing. I find myself increasingly trying to avoid emulator in verbal communication
because it confuses folks who work with another sort of computer emulator14, virtualizing a
hardware architecture in software. In that context the emulator is actually more cumbersome,
requiring more flops-per-instruction than the real thing. You could say that’s exactly the
opposite of a key property of effective surrogate modeling, on which I’ll have more to say
shortly. But old habits die hard. I will not make any substantive distinction in this book
except as verbiage supporting the narrative – my chatty writing style – prefers.

The important thing is that a good surrogate does about what f would do, and quickly.
At risk of slight redundancy given the discussion above, good meta-models for computer
simulations (dropping n subscripts)

a. provide a predictive distribution f̂(x′) whose mean can be used as a surrogate for f(x′)
at new x′ locations and whose variance provides uncertainty estimates – intervals for
f(x′) – that have good coverage properties;

b. may interpolate when computer model f is deterministic;
c. can be used in any way f could have been used, qualified with appropriate uncertainty

quantification (i.e., bullet #a mapped to the intended use, say to optimize);
d. and finally, fitting f̂ and making predictions f̂(x′) should be much faster than working

directly with f(x′).

I’ll say bullet #d a third (maybe fourth?) time because it’s so important and often overlooked
when discussing use of meta-models for computer simulation experiments. There’s no point
in all this extra modeling and analysis if the surrogate is slower than the real thing. Much
of the discussion in the literature focuses on #a–c because those points are more interesting
mathematically. Computer experiments of old were small, so speed in training/evaluation
were less serious concerns. These days, as experiments get big, computational thriftiness is
beginning to get more (and much deserved) attention.

As ever in statistical modeling, choosing a designXn is crucial to good performance, especially
when data-gathering expense limits n. It might be tempting to base designs Xn on a grid.
But that won’t work in our 9-dimensional wingwt exercise, at least not at any reasonable
resolution. Even having a modest ten grid elements per dimension would balloon into
n = 109 ≡ 1-billion runs of the computer code! Space-filling designs were created to mimic
the spread of grids, while sacrificing regularity in order to dramatically reduce size. Chapter
4 covers several options that could work well in this setting. As a bit of foreshadowing, and
to have something concrete to work with so we can finish the wingwt example, consider a
so-called Latin Hypercube sample (LHS, see §4.1). An LHS is a random design which is better
than totally uniform (say via direct application of runif in R) because it limits potential for
“clumps” of runs in the input space. Maximal spread cannot be guaranteed with LHSs, but
they’re much easier to compute than maximin designs (§4.2) which maximize the minimum
distance between design elements xi.

Let’s use a library routine to generate a n = 1000-sized LHS for our wing weight example in
9d.

14https://en.wikipedia.org/wiki/Emulator

https://en.wikipedia.org/wiki/Emulator
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library(lhs)
n <- 1000
X <- data.frame(randomLHS(n, 9))
names(X) <- names(formals(wingwt))

Figure 1.11 offers a projection of that design down into two dimensions, with red horizontal
bars overlaid as a visual aid.

plot(X[,1:2], pch=19, cex=0.5)
abline(h=c(0.6, 0.8), col=2, lwd=2)
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FIGURE 1.11: Projection of 9d LHS down to two dimensions with red bars demarking 20
percent of the spatial area.

Those horizontal lines, partitioning away one-fifth of the two-dimensional projection, help
illustrate a nice property of LHS designs. Namely, an LHS guarantees marginals that are
space-filling in a certain sense.

inbox <- X[,1] > 0.6 & X[,1] < 0.8
sum(inbox)/nrow(X)

## [1] 0.2

Twenty percent of the design resides in a (contiguous) region occupying 20% of the volume
of the study region. A grid could offer the same guarantee, but without such diversity
in settings along the margin. Projections of a grid down into lower dimensions creates
replicates. Something similar happens under maximin designs, although to a lesser degree.
Such properties, and other points of comparison and contrast are left to Chapter 4. For now,
let’s take this design as given, as a decent choice, and feed it through our simulator.

Y <- wingwt(X[,1], X[,2], X[,3], X[,4], X[,5], X[,6], X[,7], X[,8], X[,9])
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Ok now, what to do with that? We have 1000 evaluations Yn at design Xn in 9d. How
can that data be used to learn about input–output dynamics? We need to fit a model.
The simplest option is a linear regression. Although that approach wouldn’t exactly be
the recommended course of action in a classical RSM setting, because the emphasis isn’t
local and we didn’t utilize an RSM design, it’s easy to see how that enterprise (even done
right) would be fraught with challenges, to put it mildly. Least squares doesn’t leverage the
low/zero noise in these deterministic simulations, so this is really curve fitting15 as opposed
to genuine regression. The relationship is obviously nonlinear and involves many interactions.
A full second-order model could require up to 54 coefficients. Looking at Eq. (1.1) it might
be wise to model log Yn, but that’s cheating!

Just to see what might come up, let’s fit a parsimonious first-order model with interactions,
cheating with the log response, using backward step-wise elimination with BIC16. Other
alternatives include AIC17 with k=2 below, or F -testing18.

fit.lm <- lm(log(Y) ~ .^2, data=data.frame(Y,X))
fit.lmstep <- step(fit.lm, scope=formula(fit.lm), direction="backward",
k=log(length(Y)), trace=0)

Although it’s difficult to precisely anticipate which variables would be selected in this
Rmarkdown build, because the design Xn is random, typically about ten input coordinates
are selected, mostly main effects and sometimes interactions.

coef(fit.lmstep)

## (Intercept) Sw A q l
## 5.082505 0.218905 0.303856 -0.008359 0.030108
## Rtc Nz Wdg q:Nz
## -0.237338 0.407365 0.188313 0.022064

Although not guaranteed, again due to randomness in the design, it’s quite unlikely that the
A:Nz interaction is chosen. Check to see if it appears in the list above. Yet we know that
that interaction is present, as it’s one of the pairs we studied in §1.2.1. Since this approach
is easy to dismiss on many grounds it’s not worth delving too deeply into potential remedies.
Rather, let’s use it as an excuse to recommend something new.

Gaussian process (GP) models have percolated up the hierarchy for nonlinear nonparametric
regression in many fields, especially when modeling real-valued input–output relationships
believed to be smooth. Machine learning, spatial/geo-statistics, and computer experiments
are prime examples. Actually GPs can be characterized as linear models, in a certain sense,
so they’re not altogether new to the regression arsenal. However GPs privilege modeling
through a covariance structure, rather than through the mean, which allows for more fine
control over signal-versus-noise and for nonlinearities to manifest in a relative (i.e., velocity
or differences) rather than absolute (position) sense. The details are left to Chapter 5. For
now let’s borrow a library I like.

15https://en.wikipedia.org/wiki/Curve_fitting
16https://en.wikipedia.org/wiki/Bayesian_information_criterion
17https://en.wikipedia.org/wiki/Akaike_information_criterion
18https://en.wikipedia.org/wiki/F-test

https://en.wikipedia.org/wiki/Curve_fitting
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https://en.wikipedia.org/wiki/Akaike_information_criterion
https://en.wikipedia.org/wiki/F-test
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library(laGP)

Fitting, for a certain class of GP models, can be performed with the code below.

fit.gp <- newGPsep(X, Y, 2, 1e-6, dK=TRUE)
mle <- mleGPsep(fit.gp)

A disadvantage to GPs is that inspecting estimated coefficients isn’t directly helpful for
understanding. This is a well-known drawback of nonparametric methods. Still, much can be
gleaned from the predictive distribution, which is what we would use as a surrogate for new
evaluations under the fitted model. Code below sets up a predictive matrix XX comprised of
baseline settings for seven of the inputs, combined with our 100× 100 grid in 2d to span
combinations of the remaining two inputs: A and Nz.

baseline <- matrix(rep(as.numeric(formals(wingwt)), nrow(g)),
ncol=9, byrow=TRUE)

XX <- data.frame(baseline)
names(XX) <- names(X)
XX$A <- g[,1]
XX$Nz <- g[,2]

That testing design can be fed into predictive equations derived for our fitted GP.

p <- predGPsep(fit.gp, XX, lite=TRUE)

Figure 1.12 shows the resulting surface, which is visually identical to the one in Figure 1.9,
based on 10K direct evaluations of wingwt.

image(x, x, matrix(p$mean, ncol=length(x)), col=cs, breaks=bs,
xlab="A", ylab="Nz")

contour(x, x, matrix(p$mean, ncol=length(x)), add=TRUE)

What’s the point of this near-duplicate plot? Well, I think its pretty amazing that 1K
evaluations in 9d, paired with a flexible surrogate, can do the work of 10K in 2d! We’ve not
only reduced the number of evaluations required for a pairwise input analysis, but we have
a framework in place that can provide similar surfaces for all other pairs without further
wingwt evaluation.

What else can we do? We can use the surrogate, via predGPsep in this case, to do whatever
wingwt could do! How about a sensitivity analysis via main effects (§8.2)? As one example,
the code below reinitializes XX to baseline settings and then loops over each input coordinate
replacing its configuration with the elements of a one-dimensional grid. Predictions are then
made for all XX, with means and quantiles saved. The result is nine sets of three curves
which can be plotted on a common axis, namely of coded units in [0, 1].

meq1 <- meq2 <- me <- matrix(NA, nrow=length(x), ncol=ncol(X))
for(i in 1:ncol(me)) {
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FIGURE 1.12: Surrogate for wing weight over an interesting 2d slice; compare to Figure
1.9.

XX <- data.frame(baseline)[1:length(x),]
XX[,i] <- x
p <- predGPsep(fit.gp, XX, lite=TRUE)
me[,i] <- p$mean
meq1[,i] <- qt(0.05, p$df)*sqrt(p$s2) + p$mean
meq2[,i] <- qt(0.95, p$df)*sqrt(p$s2) + p$mean

}

Figure 1.13 shows these nine sets of curves. On the scale of the responses, quantiles summa-
rizing uncertainty are barely visible around their means. So it really looks like nine thick lines.
Uncertainty in these surrogate evaluations is low despite being trained on a rather sparse
design of just n = 1000 points in 9d. This is, in part, because the surrogate is interpolating
deterministically observed data values.

matplot(x, me, type="l", lwd=2, lty=1, col=1:9, xlab="coded input")
matlines(x, meq1, type="l", lwd=2, lty=2, col=1:9)
matlines(x, meq2, type="l", lwd=2, lty=2, col=1:9)
legend("topleft", names(X)[1:5], lty=1, col=1:5, horiz=TRUE,
bty="n", cex=0.5)

legend("bottomright", names(X)[6:9], lty=1, col=6:9, horiz=TRUE,
bty="n", cex=0.5)

Some would call that a main effects plot. Others might quibble that main effects must
integrate over the other (in this case eight) coordinates, rather than fixing them at baseline
values. See §8.2.2 for details. Both are correct – what you prefer to look at is always a matter
of perspective. Regardless, many would agree that much can be gleaned from plots such as
the one in Figure 1.13. For example, we see that Wfw, Λ, q, and λ barely matter, at least in
terms of departure from baseline. Only Rtc has a negative effect. Nonlinearities are slight
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FIGURE 1.13: Main effects for the nine wing weight inputs.

in terms of main effects, as they were with pairwise interactions. It’s hard to visualize in
higher dimension, but there are lots more tools to help here.

1.3 A road map

We’ll learn in detail about GPs and what they can and can’t do. They’ve revolutionized
machine learning, spatial statistics, and computer simulation experiments. But they’re no
panacea. They can be slow, which you may have noticed if you tried some of the examples
above in your own R session. That’s because they can involve big-matrix calculations.
Even though GPs are super flexible, particularly by comparison to ordinary linear models,
sometimes they’re too rigid. They can over-smooth. Whether or not that’s a big deal depends
on your application domain. As kriging in geostatistics (Matheron, 1963), where input spaces
are typically two-dimensional (longitude and latitude), these limitations are more easily
hurdled. Low-dimensional input spaces emit several alternative formulations which are more
convenient to work with both mathematically and computationally. §5.4.1 covers process
convolutions which form the basis of many attractive alternatives in this setting.

When the computer experiments crowd caught on, and realized GPs were just as good
in higher dimension, computer simulation efforts were relatively small by modern trends.
Surrogate GP calculations were trivial – cubic n×n matrix decompositions with n = 30-odd
runs is no big deal (Morris et al., 1993). Nobody worried about nonstationarity. With
such a small amount of data there was already limited scope to learn a single, unified
dynamic, let alone dynamics evolving in the input space. In the late 1990s, early 2000s, the
machine learning community latched on but their data were really big, so they had to get
creative. To circumvent big-matrix calculations they induced sparsity in the GP covariance
structure, and leveraged sparse-matrix linear algebra libraries. Or they created designs Xn

with special structure that allowed big-matrix calculations to be avoided all together. Several
schemes revolving around partition-based regression via trees, Voronoi tessellations and
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nearest neighbors have taken hold, offering a divide-and-conquer approach which addresses
computational and flexibility limitations in one fell swoop. This has paved the way for even
thriftier approximations that retain many of the attractive features of GPs (non-linear,
appropriate out-of-sample coverage) while sacrificing some of their beauty (e.g., smooth
surfaces). When computer experiments started getting big too, around the late noughties
(2000s), industrial and engineering scientists began to appropriate the best machine learning
ideas for surrogate modeling. And that takes us to where we are today.

The goal for the remaining chapters of this book is to traverse that arc of methodology. We’ll
start with classical RSM, and then transition to GPs and their contemporary application in
several important contexts including optimization, sensitivity analysis and calibration, and
finally finish up with high-powered variations designed to cope with simulation data and
modeling fidelity at scale. Along the way we shall revisit themes that serve as important
pillars supporting best practice in scientific discovery from data. Interplay between math-
ematical models, numerical approximation, simulation, computer experiments, and field
data, will be core throughout. We’ll allude to the sometimes nebulous concept of uncertainty
quantification19, awkwardly positioned at the intersection of probabilistic and dynamical
modeling. You’d think that stats would have a monopoly on quantifying uncertainty, but not
all sources of uncertainty are statistical in nature (i.e., not all derive from sampling properties
of observed data). Experimental design will play a key role in our developments, but not
in the classical RSM sense. We’ll focus on appropriate designs for GP surrogate modeling,
emphasizing sequential refinement and augmentation of data toward particular learning
goals. This is what the machine learning community calls active learning20 or reinforcement
learning21.

To motivate, Chapter 2 overviews four challenging real-data/real-simulation examples bene-
fiting from modern surrogate modeling methodology. These include rocket boosters, ground-
water remediation, radiative shock hydrodynamics (nebulae formation) and satellite drag in
low Earth orbit. Each is a little vignette illustrated through working examples, linked to
data provided as supplementary material. At first the exposition is purely exploratory. The
goal is to revisit these later, once appropriate methodology is in place.

Better than the real thing

If done right, a surrogate can be even better than the real thing: smoothing over noisy or
chaotic behavior, furnishing a notion of derivative far more reliable than other numerical
approximations for optimization, and more. Useful surrogates are not just the stuff of a
dystopian future in science fiction22. This monograph is a perfect example. That’s not to
say I believe it’s the best book on these subjects, though I hope you’ll like it. Rather, the
book is a surrogate for me delivering this material to you, in person and in the flesh. I get
tired and cranky after a while. This book is in most ways, or as a teaching tool, better than
actual me; i.e., better than the real thing. Plus it’s hard to loan me out to a keen graduate
student.

What are the properties of a good surrogate? I gave you my list above in §1.2.2, but I hope
you’ll gain enough experience with this book to come up with your own criteria. Should
the surrogate do exactly what the computer simulation would do, only faster and with
error-bars? Should a casual observer be able to tell the difference between the surrogate and

19https://en.wikipedia.org/wiki/Uncertainty_quantification
20https://en.wikipedia.org/wiki/Active_learning_(machine_learning)
21https://en.wikipedia.org/wiki/Reinforcement_learning
22https://en.wikipedia.org/wiki/Surrogates
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https://en.wikipedia.org/wiki/Surrogates
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the real thing? Are surrogates one-size-fits all, or is it sensible to build surrogates differently
for different use cases? Politicians often use surrogates – community or business leaders,
other politicians – as a means of appealing to disparate interest groups, especially at election
time. By emphasizing certain aspects while downplaying or smoothing over others, a diverse
set of statistical surrogate models can sometimes serve the same purpose: pandering to bias
while greasing the wheels of (scientific) progress. Your reaction to such tactics, on ethical
grounds, may at first be one of visceral disgust. Mine was too when I was starting out. But
I’ve learned that the best statistical models, and the best surrogates, give scientists the
power to focus, infer and explore simultaneously. Bias is all but unavoidable. Rarely is one
approach sufficient for all purposes.

1.4 Homework exercises

These exercises are designed to foreshadow themes from later chapters in light of the overview
provided here.

#1: Regression

The file wire.csv23 contains data relating the pull strength (pstren) of a wire bond (which
we’ll treat as a response) to six characteristics which we shall treat as design variables: die
height (dieh), post height (posth), loop height (looph), wire length (wlen), bond width on
the die (diew), and bond width on the post (postw). (Derived from exercise 2.3 in Myers
et al. (2016) using data from Table E2.1.)

a. Write code that converts natural variables in the file to coded variables on the unit cube.
Also, normalize responses to have a mean of zero and a range of 1.

b. Use model selection techniques to select a parsimonious linear model for the coded data
including, potentially, second-order and interaction effects.

c. Use the fitted model to make a prediction for pull strength, when the explanatory
variables take on the values c(6, 20, 30, 90, 2, 2), in the order above, with a full
accounting of uncertainty. Make sure the predictive quantities are on the original scale
of the data.

#2: Surrogates for sensitivity

Consider the so-called piston simulation function24 which was at one time a popular bench-
mark problem in the computer experiments literature. (That link, to Surjanovic and Bingham
(2013)’s Virtual Library of Simulation Experiments (VLSE)25, provides references and further
detail. VLSE is a great resource for test functions and computer simulation experiment data;
there’s a page for the wing weight example26 as well.) Response C(x) is the cycle time, in
seconds, of the circular motion of a piston within a gas-filled cylinder, the configuration of
which is described by seven-dimensional input vector x = (M,S, V0, k, P0, Ta, T0).

23http://bobby.gramacy.com/surrogates/wire.csv
24http://www.sfu.ca/~ssurjano/piston.html
25http://www.sfu.ca/~ssurjano/index.html
26http://www.sfu.ca/~ssurjano/wingweight.html
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TABLE 1.2: Piston parameters.

Symbol Parameter Baseline Minimum Maximum
M Piston weight (kg) 45 30 60
S Piston surface area (m2) 0.0125 0.005 0.020
V0 Initial gas volume (m2) 0.006 0.002 0.010
k Spring coefficient (N/M) 3000 1000 5000
P0 Atmospheric pressure (N/m2) 100000 90000 110000
Ta Ambient temperature (K) 293 290 296
T0 Filling gas temperature (K) 350 340 3600

C(x) = 2π
√

M

k + S2 P0V0
T0

Ta
V 2

, where V = S

2k

(√
A2 + 4kP0V0

T0
Ta −A

)

and A = P0S + 19.62M − kV0

S

Table 1.2 describes the input coordinates of x, their ranges, and provides a baseline value
derived from the middle of the specified range(s).

Explore C(x) with techniques similar to those used on the wing weight example (§1.2.1). Start
with a space-filling (LHS) design in 7d and fit a GP surrogate to the responses. Use predictive
equations to explore main effects and interactions between pairs of inputs. In your solution,
rather than showing all

(7
2
)

= 21 pairs, select one “interesting” and another “uninteresting”
one and focus your presentation on those two. How do your surrogate predictions for those
pairs compare to an exhaustive 2d grid-based evaluation and visualization of C(x)?

#3: Optimization

Consider two-dimensional functions f and c, defined over [0, 1]2; f is a re-scaled version of
the so-called Goldstein–Price27 function, and is defined in terms of auxiliary functions a and
b.

f(x) = log [(1 + a(x))(30 + b(x))]− 8.69
2.43 with

a(x) = (4x1 + 4x2 − 3)2

×
[
75− 56 (x1 + x2) + 3 (4x1 − 2)2 + 6 (4x1 − 2) (4x2 − 2) + 3 (4x2 − 2)2

]
b(x) = (8x1 − 12x2 + 2)2

×
[
−14− 128x1 + 12 (4x1 − 2)2 + 192x2 − 36 (4x1 − 2) (4x2 − 2) + 27 (4x2 − 2)2

]
Separately, let a “constraint” function c be defined as

c(x) = 3
2 − x1 − 2x2 −

1
2 sin(2π(x2

1 − 2x2)).

a. Evaluate f on a grid and make an image and/or image–contour plot of the surface.

27http://www.sfu.ca/~ssurjano/goldpr.html

http://www.sfu.ca/~ssurjano/goldpr.html
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b. Use a library routine (e.g., optim in R) to find the global minimum. When optimizing,
pretend you don’t know the form of the function; i.e., treat it as a “blackbox”. Initialize
your search randomly and comment on the behavior over repeated random restarts.
About how many evaluations does it take to find the local optimum in each initialization
repeat; about how many to reliably find the global one across repeats?

c. Now, re-create your plot from #a with contours only (no image), and then add color to
the plot indicating the region(s) where c(x) > 0 and c(x) ≤ 0, respectively. To keep it
simple, choose white for the latter, say.

d. Use a library routine (e.g., nloptr in R) to solve the following constrained optimization
problem: min f(x) such that c(x) ≤ 0 and x ∈ [0, 1]2. Initialize your search randomly and
comment on the behavior over repeated random restarts. About how many evaluations
does it take to find the local valid optimum in each initialization repeat; about how
many to reliably find the global one across repeats?





2
Four Motivating Datasets

This chapter aims to whet the appetite for modern surrogate modeling technology by
introducing four challenging real-data settings. Each comes with a brief description of
the data and application and a cursory exploratory analysis. Domains span aeronautics,
groundwater remediation, satellite orbit and positioning, and cosmology. A small taste of
“methods-in-action” is offered, focused on one or more of the typical goals in each setting.
Together, these data and domains exhibit features spanning many of the hottest topics in
surrogate modeling.

For example, settings may involve limited or no field data on complicated physical processes,
which in turn must be evaluated with computationally expensive simulation. Simulations
might require evaluation on supercomputers to produce data on a scale adequate for
conventional analysis. Goals might range from understanding, to optimization, sensitivity
analysis and/or uncertainty quantification (UQ). In each case, a pointer to the data files or
archive is provided, or a description of how to build libraries (and run them) to create new
data from live simulations.

These data sets, or their underlying processes, will be revisited throughout subsequent
chapters/homework exercises to motivate and illustrate methods therein. With most of our
early examples being toy in nature, carefully crafted to offer a controlled look at particular
aspects of methodology – and at times combining several ideas interlocked in a complex
weave – these motivating datasets can simultaneously serve as anchors to the real world,
and delicious treats offered up as rewards at the end of a long slog of arduous development
and implementation.

2.1 Rocket booster dynamics

Before the space shuttle program was terminated, the National Aeronautics and Space
Administration (NASA) proposed a re-usable rocket booster that could be recovered after
depositing its payload into orbit. One project was called the Langley Glide-Back Booster
(LGBB). The idea was to have the LGBB glide back to Earth and be cheaply refurbished,
rather than simply plummeting into the ocean and becoming scrap metal. Before building
prototypes, at enormous expense to taxpayers, NASA designed a computer simulation to
explore the dynamics of the booster in a variety of synthesized environments and design
configurations. Simulations entailed solving computational fluid dynamics (CFD) systems
of differential equations, and the primary study regime focused on dynamics upon re-entry
into the atmosphere.

More on the simulations, models, and other details can be found in several publications
(Rogers et al., 2003; Pamadi et al., 2004b,a). The brief description here is a caricature by

31
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comparison, but the data and properties revealed lack no degree of realism or intricacy. The
simulator had three inputs which describe configuration of the booster at re-entry: speed
(mach), angle of attack (alpha) and slide-slip angle (beta). The simulator utilized an Euler
solver via Cart3D1 and, for each input setting, provided six aeronautically relevant outputs
describing forces exerted on the rocket in that configuration: lift, drag, pitching moment,
side-force, yaw and roll. Circa late 1990s, when LGBB simulations were first being performed,
and refined, each input configuration took between five and 20 hours of wall-clock time
to evaluate. Larger experimental designs (i.e., comprising many triples of inputs) required
substantial effort to distribute over nodes of the Columbia supercomputer2.

To build intuition visually, imagine the solver “flying” a virtual rocket booster through a
mesh, and forces accumulating at the boundary between booster and mesh. Figure 2.1 shows
a virtual rocket booster flying through a mesh customized for subsonic (mach < 1) cases.

FIGURE 2.1: Drawing of the LGBB computational fluid dynamics computer model
simulation. Adapted from Rogers et al. (2003); used with permission from the authors.

2.1.1 Data

There are two historical versions of the LGBB data, and one “surrogate” version, recording
collections of input–output pairs gathered on various input designs and under a cascade of
improvements to meshes used by the underlying Cart3D solver. The first, oldest version of the
data was derived from a less reliable code implementing the solver. That code was evaluated
on hand-designed input configuration grids built-up in batches, each offering a refinement
on certain locales of interest in the input space. Researchers at NASA determined, on the
basis of visualizations and regressions performed along the way, that denser sampling was
required in order to adequately characterize input–output relationships in particular regions.
For example, several batches emphasized the region nearby the sound barrier, transitioning
between subsonic and supersonic regimes (at mach=1).

lgbb1 <- read.table("lgbb/lgbb_original.txt", header=TRUE)
names(lgbb1)

## [1] "mach" "alpha" "beta" "lift" "drag" "pitch" "side" "yaw"
## [9] "roll"

1https://www.nas.nasa.gov/publications/software/docs/cart3d/
2https://en.wikipedia.org/wiki/Columbia_(supercomputer)

https://www.nas.nasa.gov/publications/software/docs/cart3d/
https://en.wikipedia.org/wiki/Columbia_(supercomputer)


2.1 Rocket booster dynamics 33

nrow(lgbb1)

## [1] 3167

Observe that inputs reside in the first three columns, with six outputs in subsequent columns.
All together these data record results from 3167 simulations. Figure 2.2 provides a 2d
visual of the first lift response after projecting over the third input beta. Simple linear
interpolation via the akima library on CRAN (Akima et al., 2016) provides a degree of
smoothing onto a regular grid for image plots. Lighter/whiter colors are higher values. Dots
indicate the location of inputs.

library(akima)
g <- interp(lgbb1$mach, lgbb1$alpha, lgbb1$lift, dupl="mean")
image(g, col=heat.colors(128), xlab="mach", ylab="alpha")
points(lgbb1$mach, lgbb1$alpha, cex=0.25, pch=18)
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FIGURE 2.2: Heat plot of the lift response projecting over side-slip angle with design
indicated by dots.

Projecting over beta tarnishes the utility of this visualization; however, note that this
coordinate has relatively few unique values.

apply(lgbb1[,1:3], 2, function(x) { length(unique(x)) })

## mach alpha beta
## 37 33 6

Focused sampling at the sound barrier (mach=1) for large angles of attack (alpha), where
the response is interesting, is readily evident in the figure. But working with grids has its
drawbacks. Despite a relatively large number (3167) of rows in these data, observations
are only obtained for a few dozen unique mach and alpha values, which may challenge
extrapolation or visualization along lower-dimensional slices.
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Numerical stability is also a concern. To illustrate both grid and numerical drawbacks,
consider a subset of these data where alpha == 1. Two variations on that slice are shown
in Figure 2.3, one based on beta == 0 in solid-black and another where beta != 0 in
dashed-red.

a1b0 <- which(lgbb1$alpha == 1 & lgbb1$beta == 0)
a1bn0 <- which(lgbb1$alpha == 1 & lgbb1$beta != 0)
a1b0 <- a1b0[order(lgbb1$mach[a1b0])]
a1bn0 <- a1bn0[order(lgbb1$mach[a1bn0])]
plot(lgbb1$mach[a1b0], lgbb1$lift[a1b0], type="l", xlab="mach",
ylab="lift", ylim=range(lgbb1$lift[c(a1b0, a1bn0)]), lwd=2)

lines(lgbb1$mach[a1bn0], lgbb1$lift[a1bn0], col=2, lty=2, lwd=2)
text(4, 0.3, paste("length(a1b0) =", length(a1b0)))
text(4, 0.25, paste("length(a1bn0) =", length(a1bn0)))
legend("topright", c("beta = 0", "beta != 0"), col=1:2, lty=1:2, lwd=2)
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FIGURE 2.3: Lift slice with angle of attack fixed at 1 and side-slip angle fixed at zero
(solid-black) and one (dashed-red). Counts of grid locations provided as overlayed text.

Clearly there are some issues with lift outputs when beta != 0. Also note the relatively
low resolution, with each “curve” being traced out by just a handful of values – fewer
than fifty in both cases. Consequently the input–output relationship looks blocky in the
subsonic region (mach < 1). A second iteration on the experiment attempted to address
all three issues simultaneously: a) an adaptive design without gridding; b) better numerics
(improvements to Cart3D); and c) paired with an ability to back-out a high resolution
surface, smoothing out the gaps, based on relatively few total simulations.

2.1.2 Sequential design and nonstationary surrogate modeling

The second version of the data summarizes results from that second experiment. Improved
simulations were paired with model-based sequential design (§6.2) under a treed Gaussian
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process (TGP, §9.2.2) in order to obtain a more adaptive, automatic input “grid”. These
data may be read in as follows.

lgbb2 <- read.table("lgbb/lgbb_as.txt", header=TRUE)

A glimpse into the adaptive design of that experiment, which is again projected over the
beta axis, is provided in Figure 2.4.

plot(lgbb2$mach, lgbb2$alpha, xlab="mach", ylab="alpha", pch=18, cex=0.5)
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FIGURE 2.4: Adaptive LGBB design projected over side-slip angle.

In total there were 780 unique simulations (i.e., 780 dots in the figure), or less than 25%
as many as the previous experiment. For reasons to do with the NASA simulation system,
there was a grid underlying candidates for selection in this adaptive design, but one much
finer than that used in the first experiment, particularly in the mach coordinate.

apply(lgbb2[,2:4], 2, function(x) { length(unique(x)) })

## mach alpha beta
## 110 36 9

Since the design was much smaller, slices like the one shown in Figure 2.5, mimicking Figure
2.3 but this time projecting over all beta-values in the design, appear blocky in raw form.

a2 <- which(lgbb2$alpha == 1)
a2 <- a2[order(lgbb2$mach[a2])]
plot(lgbb2$mach[a2], lgbb2$lift[a2], type="l", xlab="mach",
ylab="lift", lwd=2)

text(4, 0.15, paste("length(a2) =", length(a2)))

The adaptive grid has a lower degree of axis alignment. Although deliberate, a downside is
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FIGURE 2.5: Lift versus angle of attack projected over side-slip angle in the adaptive
design; compare to Figure 2.3.

that it’s hard to tell if numerical instabilities are repaired in the update to Cart3D, or if
instead resolution in the 1d slice is simply too low to reveal any issues. For now we’ll have
to suspend disbelief somewhat, at least when it comes to details of how the figures below
were constructed from the 780 simulations. Suffice it to say that the TGP model can provide
requisite extrapolations to reveal a smooth surface, in 3d or along any lower-dimensional slice
desired. For example, Figure 2.6 shows a slice over mach and alpha when beta=1. The data
behind this visual comes from an .RData file containing evaluations of the TGP surrogate,
trained to 780 lift evaluations, on a dense predictive grid in the input space. The contents
of this file represent the third, “surrogate data” source mentioned above.

load("lgbb/lgbb_fill.RData")
lgbb.b1 <- lgbb.fill[lgbb.fill$beta == 1, ]
g <- interp(lgbb.b1$mach, lgbb.b1$alpha, lgbb.b1$lift)
image(g, col=heat.colors(128), xlab="mach [beta=1]", ylab="alpha [beta=1]")

Notice how this view reveals a nice smooth surface with simple dynamics in high-speed
regions, and a more complex relationship near the sound barrier – in particular for low
speeds (mach) and high angles of attack (alpha). A suite of 1d slices shows a similar picture.
Figure 2.7 utilizes the sequence of unique alpha values in the design, showing a prediction
from TGP where each is paired with the full range of mach values.

plot(lgbb.b1$mach, lgbb.b1$lift, type="n", xlab="mach",
ylab="lift [beta=1]")

for(ub in unique(lgbb.b1$alpha)) {
a <- which(lgbb.b1$alpha == ub)
a <- a[order(lgbb.b1$mach[a])]
lines(lgbb.b1$mach[a], lgbb.b1$lift[a], type="l", lwd=2)

}
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FIGURE 2.6: Heat plot slicing the lift response through side-slip angle one, illustrating
an adaptive-grid surrogate version of Figure 2.2.
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FIGURE 2.7: Multi-slice angle of attack analog of Figure 2.6.

This view conveys nuance along the sound barrier more clearly than the previous image
plot did. Apparently it was worthwhile sampling more heavily in that region of the input
space, relatively speaking, compared to say mach > 2 for any angle of attack (alpha). At
the time, building designs that automatically detected the interesting part of the input space
was revolutionary. Actually, the real advance is in modeling. We need an apparatus that’s
simultaneously flexible enough to learn relevant dynamics in the data, but thrifty enough to
accommodate calculations required for inference in reasonable time and space (i.e., computer
memory). Once an appropriate model is in place, the problem of design becomes one of
backing out relevant uncertainty measures, depending on the goal of the experiment(s). In
this case, where understanding dynamics is key, design is a simple matter of putting more
runs where uncertainty is high.
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Now this discussion treated only the lift output – there were five others. A homework
exercise (§2.6) invites the curious reader to create a similar suite of visuals for the other
responses. Later we shall use these data to motivate methodology for nonstationary spatial
modeling and sequential design, and as a benchmark in comparative exercises. Examples are
scattered throughout the latter chapters, with the most complete treatment being in §9.2.2.

2.2 Radiative shock hydrodynamics

Radiative shocks arise from astrophysical phenomena, e.g., supernovae and other high
temperature systems. These are shocks where radiation from shocked matter dominates
energy transport and results in a complex evolutionary structure. See, e.g., McClarren
et al. (2011), and Drake et al. (2011). The University of Michigan’s Center for Radiative
Shock Hydrodynamics (CRASH) is tasked with modeling a particular high-energy laser
radiative shock system. They developed a mathematical model and computer implementation
that simulates a field apparatus, located at the Omega laser facility3 at the University of
Rochester. That apparatus was used to conduct a limited real experiment involving twenty
runs.

The basic setup of the experiment(s) is as follows. A high-energy laser irradiates a beryllium
disk located at the front end of a xenon (Xe) filled tube, launching a high-speed shock wave
into the tube. The left panel in Figure 2.8 shows a schematic of the apparatus. The shock is
said to be a radiative shock if the energy flux emitted by the hot shocked material is equal
to, or larger than, the flux of kinetic energy into the shock. Each physical observation is a
radiograph image, shown in the right panel of the figure, and a quantity of interest is shock
location: distance traveled after a predetermined time.

FIGURE 2.8: Schematic of the CRASH experimental apparatus (left); radiograph image
of a shock as it moves through the Xe filled tube (right). Adapted from Goh et al. (2013)
and used with permission from the American Statistical Association.

3http://www.lle.rochester.edu/omega_facility/

http://www.lle.rochester.edu/omega_facility/
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TABLE 2.1: CRASH experiment parameters.

Design Parameter CE1 CE2 Field Design
Be thick (microns) [18, 22] 21 21
Xe fill press (atm) [1.1, 1.2032] [0.852, 1.46] [1.032, 1.311]
Time (nano-secs) [5, 27] [5.5, 27] 6-values in [13, 28]
Tube diam (microns) 575 [575, 1150] {575, 1150}
Taper len (microns) 500 [460, 540] 500
Nozzle len (microns) 500 [400, 600] 500
Aspect ratio (microns) 1 [1, 2] 1
Laser energy (J) [3600, 3900] [3750, 3889.6]
Effective laser energy (J) [2156.4, 4060]

2.2.1 Data

The experiments involve nine design variables, listed in Table 2.1 along with ranges or values
used in the field experiment in the final column. The first three variables specify thickness of
the beryllium disk, xenon fill pressure in the tube and observation time for the radiograph
image, respectively. The next four variables are related to tube geometry and the shape
of the apparatus at its front end. Most of the physical experiments were performed on
circular shock tubes with a small diameter (in the area of 575 microns), and the remaining
experiments were conducted on circular tubes with a diameter of 1150 microns or with
different nozzle configurations. Aspect ratio describes the shape of the tube: circular or oval.
In the field experiment the aspect ratios are all 1, indicating a circular tube. However there’s
interest in extrapolating to oval-shaped tubes with an aspect ratio of 2. Finally, laser energy
is specified in Joules. Effective laser energy, and its relationship to ordinary laser energy,
requires some back story.

R code below reads in data from the field experiment. Thickness of the beryllium disk was
not recorded in the data file, so this value is manually added in.

crash <- read.csv("crash/CRASHExpt_clean.csv")
crash$BeThickness <- 21
names(crash)

## [1] "LaserEnergy" "GasPressure" "AspectRatio" "NozzleLength"
## [5] "TaperLength" "TubeDiameter" "Time" "ShockLocation"
## [9] "BeThickness"

The field experiment is rather small, despite interest in exploring a rather large number (9)
of inputs.

nrow(crash)

## [1] 20

Two computer experiment simulation campaigns were performed (CE1 and CE2 in Table
2.1) on supercomputers at Lawrence Livermore and Los Alamos National Laboratories. The
second and third columns of the table reveal differing input ranges in the two computer
experiments. CE1 explores small, circular tubes; CE2 investigates a similar input region, but



40 2 Four Motivating Datasets

TABLE 2.2: CRASH calibration parameters.

Calibration Parameter CE1 CE2 Field Design
Electron flux limiter [0.04, 0.10] 0.06
Energy scale factor [0.40, 1.10] [0.60, 1.00]

also varies tube diameter and nozzle geometry. Both input plans were derived from Latin
hypercube samples (LHSs, see §4.1). Thickness of the beryllium (Be) disk could be held
constant in CE2 thanks to improvements in manufacturing in the time between simulation
campaigns.

The computer simulator required two further inputs which could not be controlled in the
field, i.e., two calibration parameters: electron flux limiter and laser energy scale factor,
whose ranges are described in Table 2.2. It’s quite typical for computer models to contain
“knobs” which allow practitioners to vary aspects of the dynamics which are unknown, or
can’t be controlled in the field. In this particular case, electron flux limiter is an unknown
constant involved in predicting the amount of heat transferred between cells of a space–time
mesh used by the code. It was held constant in CE2 because in CE1 the outputs were found
to be relatively insensitive to this input. Laser energy scale factor accounts for discrepancies
between amounts of energy transferred to the shock in the simulations and experiments,
respectively.

In the physical system the laser energy for a shock is recorded by a technician. Things
are a little more complicated for the simulations. Before running CE1, CRASH researchers
speculated that simulated shocks would be driven too far down the tube for any specified
laser energy. So effective laser energy – the laser energy actually entered into the code –
was constructed from two input variables, laser energy and a scale factor. For CE1 these
two inputs were varied over ranges specified in the second column of Table 2.2. CE2 used
effective laser energy directly. R code below reads in the data from these two computer
experiments. Electron flux limiter was miscoded in the data file, being off by a factor of ten.
A correction is applied below.

ce1 <- read.csv("crash/RS12_SLwithUnnormalizedInputs.csv")
ce2 <- read.csv("crash/RS13Minor_SLwithUnnormalizedInputs.csv")
ce2$ElectronFluxLimiter <- 0.06

Using both CE1 and CE2 data sources requires reconciling the designs of the two experiments.
One way forward entails expanding CE2’s design by gridding values of laser energy scale
factor and pairing them with values of laser energy deduced from effective laser energy
values contained in the original design. The gridding scheme implemented in the code
below constrains scale factors to be less than one but no smaller than value(s) which, when
multiplied by effective laser energy (in reciprocal), imply a laser energy of 5000 Joules.

sfmin <- ce2$EffectiveLaserEnergy/5000
sflen <- 10
ce2.sf <- matrix(NA, nrow=sflen*nrow(ce2), ncol=ncol(ce2) + 2)
for(i in 1:sflen) {
sfi <- sfmin + (1 - sfmin)*(i/sflen)
ce2.sf[(i - 1)*nrow(ce2) + (1:nrow(ce2)),] <-
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cbind(as.matrix(ce2), sfi, ce2$EffectiveLaserEnergy/sfi)
}
ce2.sf <- as.data.frame(ce2.sf)
names(ce2.sf) <- c(names(ce2), "EnergyScaleFactor", "LaserEnergy")

Figure 2.9 provides a visualization of that expansion.

plot(ce2.sf$LaserEnergy, ce2.sf$EnergyScaleFactor, ylim=c(0.4, 1.1),
xlab="Laser Energy", ylab="Energy Scale Factor")

points(ce1$LaserEnergy, ce1$EnergyScaleFactor, col=2, pch=19)
legend("bottomleft", c("CE2", "CE1"), col=1:2, pch=c(21,19))

FIGURE 2.9: Expansion of inputs to resolve laser energy with its scale factor.

Subsequent combination with CE1 led to 26,458 input–output combinations.

2.2.2 Computer model calibration

What are typical goals for data/experiments of this kind? One challenge is to identify
a modeling apparatus that can cope with data sizes like those described above, while
maintaining the richness of fidelity required to describe and learn underlying dynamics.
This is a serious challenge because many canonical methods for nonlinear modeling don’t
cope well with big data (i.e., more than a few thousand runs) when input dimensions are
modest-to-large in size (e.g., bigger than 2d). Supposing that first hurdle is surmountable,
some context-specific goals include a) learning settings of the (in this case) two-dimensional
calibration parameter; and b) simultaneously determining the nature of bias in computer
model runs, relative to field data observations, under those setting(s). Some specific questions
might be: Are field data informative about that setting? Is down-scaling of laser energy
necessary in CE1?

One may ultimately wish to furnish practitioners with a high-quality predictor for field
data measurements in novel input conditions. We may wish to utilize the calibrated and
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TABLE 2.3: Linear regression summary for field data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.507e+03 6.275e+03 0.3995 0.6951
LaserEnergy -3.968e-01 1.491e+00 -0.2661 0.7938
GasPressure -1.971e+02 8.477e+02 -0.2325 0.8193
TubeDiameter -3.420e-02 4.068e-01 -0.0842 0.9340
Time 1.040e+11 1.567e+10 6.6406 0.0000

bias-corrected surrogate to extrapolate forecasts to oval-shaped disks, heavily leaning on the
computer model simulations under those regimes and with full UQ.

To demonstrate potential, but also expose challenges inherent in such an enterprise, let’s
consider simple linear modeling of field and computer simulation data. The field dataset is
very small, especially relative to its input dimension. Moreover, only four of the explanatory
variables (i.e., besides the response ShockLocation) have more than one unique value.

u <- apply(crash, 2, function(x) { length(unique(x)) })
u

## LaserEnergy GasPressure AspectRatio NozzleLength TaperLength
## 13 11 1 1 1
## TubeDiameter Time ShockLocation BeThickness
## 2 6 20 1

A linear model indicates that only Time has a substantial main effect. See Table 2.3.

fit <- lm(ShockLocation ~ ., data=crash[, u > 1])
kable(summary(fit)$coefficients,
caption='Linear regression summary for field data.')

This is perhaps not surprising: the longer you wait the farther the shock will progress down
the tube. In fact, Time mops up nearly all of the variability in these data with R2 = 0.97,
which is nicely illustrated by the visualization of data and fit provided in Figure 2.10.

fit.time <- lm(ShockLocation ~ Time, data=crash)
plot(crash$Time, crash$ShockLocation, xlab="time", ylab="location")
abline(fit.time)

It would appear that there isn’t much scope for further information coming from data on
the field experiment alone. Now let’s turn to data from computer simulation. To keep the
exposition simple, consider just CE1 which varied all but four parameters. A homework
exercise (see §2.6) targets data combined from both computer experiments.

ce1 <- ce1[,-1] ## first col is FileNumber
u.ce1 <- apply(ce1, 2, function(x) { length(unique(x)) })
u.ce1
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FIGURE 2.10: Time dominates predictors in a linear model fit to field data alone.

TABLE 2.4: Summary of linear regression fit to CE1.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.601e+02 1.321e+02 -3.483 0.0005
BeThickness -7.595e+01 2.104e+00 -36.101 0.0000
LaserEnergy 3.153e-01 2.150e-02 14.672 0.0000
GasPressure -3.829e+02 8.129e+01 -4.710 0.0000
Time 1.344e+11 4.998e+08 268.844 0.0000
ElectronFluxLimiter 4.126e+02 1.400e+02 2.947 0.0032
EnergyScaleFactor 1.776e+03 1.214e+01 146.249 0.0000

## BeThickness LaserEnergy GasPressure
## 96 96 96
## AspectRatio NozzleLength TaperLength
## 1 1 1
## TubeDiameter Time ElectronFluxLimiter
## 1 24 96
## EnergyScaleFactor ShockLocation
## 96 1723

Recall that actual laser energy in each run was scaled by EnergyScaleFactor, but let’s
ignore this nuance for the time being. In stark contrast to our similar analysis on the field
data, an ordinary least squares fit summarized in Table 2.4 indicates that all main effects
which were varied in CE1 are statistically significant.

fit.ce1 <- lm(ShockLocation ~ ., data=ce1[,u.ce1 > 1])
kable(summary(fit.ce1)$coefficients,
caption="Summary of linear regression fit to CE1.")

These results suggest that the computer simulation data, and subsequent fits, could usefully
augment data and fitted dynamics from the field. Data from CE2 tell a similar story, but for
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a partially disjoint collection of inputs. Focusing back on CE1, consider Figure 2.11 which
offers a view into how shock location varies with time and (scaled) laser energy. The heat
plot in the figure is examining a linear interpolation of raw CE1 data, but alternatively we
could extract a similar surface from predict applied to our fit.ce1 object. It’s apparent
from the image that energy and time work together to determine how far/quickly shocks
travel. That makes sense intuitively, but wasn’t evident in our analysis of the field data
alone. Some sort of hybrid modeling apparatus is needed in order to peruse the potential for
further such synergies.

x <- ce1$Time
y <- ce1$LaserEnergy * ce1$EnergyScaleFactor
g <- interp(x/max(x), y/max(y), ce1$ShockLocation, dupl="mean")
image(g, col=heat.colors(128), xlab="scaled time", ylab="scaled energy")
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FIGURE 2.11: Energy and time interact to determine shock location.

Before delving headlong into that enterprise, it’ll help to first get some of the base modeling
components right. Linear modeling is likely insufficient: physical phenomena rarely covary
linearly. With a wealth of simulation data we should be able to train a much more sophisti-
cated meta-model. Plus even our linear model fits reveal that other variables matter besides
energy and time. Chapter 8 details computer model calibration, combining a surrogate fit
to a limited simulation campaign (Chapter 5) with a suite of methods for estimating bias
between computer simulation and field observation, while at the same time determining
the best setting of calibration parameters in order to “rein in” and correct for bias. With
those elements in hand we’ll be able to build a predictor which combines computer model
surrogate with bias correction in order to develop a meta-model for the full suite of physical
dynamics under study. Coping with a rather large simulation experiment in a modern
surrogate modeling framework will require approximation. Chapter 9 revisits these data
within an approximate surrogate–calibration framework.
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2.3 Predicting satellite drag

Obtaining accurate estimates of satellite drag coefficients in low Earth orbit (LEO) is a
crucial component in positioning (e.g., for scientists to plan experiments: what can be
seen when?) and collision avoidance. Toward that end, researchers at Los Alamos National
Laboratory (LANL) were tasked with predicting orbits for dozens of research satellites, e.g.:

• HST (Hubble space telescope)
• ISS (International space station)
• GRACE (Gravity Recovery and Climate Experiment), a NASA & German Aerospace

Center collaboration
• CHAMP (Challenging Minisatellite Payload), a German satellite for atmospheric and

ionospheric research

Drag coefficients are required to determine drag force, which plays a key role in predict-
ing and maintaining orbit. The Committee for the Assessment of the U.S. Air Force’s
Astrodynamics Standards recently released a report citing atmospheric drag as the largest
source of uncertainty for LEO objects, due in part to improper modeling of the interaction
between atmosphere and object. Drag depends on geometry, orientation, ambient and surface
temperatures, and atmospheric chemical composition in LEO, which depends on position:
latitude, longitude, and altitude. Numerical simulations can produce accurate drag coefficient
estimates as a function of these input coordinates, and up to uncertainties in atmospheric
and gas–surface interaction (GSI) models. But the calculations are too slow for real-time
applications.

Most of the input coordinates mentioned above are ordinary scalars. Satellite geometry how-
ever, is rather high dimensional. Geometry is specified in a mesh file: an ASCII representation
of a picture like the one in Figure 2.12 for the Hubble space telescope (HST).

FIGURE 2.12: Rendering of the Hubble space telescope mesh. Reproduced from Mehta
et al. (2014); used with permission from Elsevier.

A satellite’s geometry is usually fixed; most don’t change shape in orbit. The HST is an
exception: its solar panels can rotate, which is a nuance I’ll discuss in more detail later. For
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TABLE 2.5: Satellite design variables (AC: accommodation coefficient).

Symbol [ascii] Parameter [units] Range
vrel [Umag] velocity [m/s] [5500, 9500]
Ts [Ts] surface temperature [K] [100, 500]
Ta [Ta] atmospheric temperature [K] [200, 2000]
θ [theta] yaw [radians] [−π/2, π/2]
φ [phi] pitch [radians] [−π, π]
αn [alphan] normal energy AC [unitless] [0, 1]
σt [sigmat] tangential momentum AC [unitless] [0, 1]

now, take geometry as a fixed input. Position and orientation inputs make up the design
variables. These are listed alongside their units and ranges, determining the study region of
interest, in Table 2.5.

Atmospheric chemical composition is an environmental variable. At LEO altitudes the
atmosphere is primarily comprised of atomic oxygen (O), molecular oxygen (O2), atomic
nitrogen (N), molecular nitrogen (N2), helium (He), and hydrogen (H) (Picone et al., 2002).
Mixtures of these so-called chemical “species” vary with position, and there exist calculators,
like this one from NASA4, which can deliver mixture weights if provided position and time
coordinates.

2.3.1 Simulating drag

Researchers at LANL developed the Test Particle Monte Carlo (TPMC) simulator in C,
which I wrapped in an R interface called tpm. The entire library, packaging C internals and R
wrapper, may be found on a public Bitbucket repository linked here5. The TPMC C backend
simulates the environment encountered by satellites in LEO under free molecular flow (FMF)
as modulated by coordinates in the set of three input categories (geometry, design and
chemical composition) described above. Since the C simulations are time-consuming, but
ultimately independent for each unique input configuration, the tpm R interface utilizes
OpenMP6 to facilitate symmetric multiprocessing (SMP)7 parallelization of evaluations.
A wrapper routine called tpm.parallel, utilizing an additional message passing interface
(MPI) layer8, is provided to further distribute parallel instances over nodes in a cluster.

The tpm R interface requires a pointer to a single mesh file, a single six-vector chemical
mixture of environmental variables, and a design of as many seven-vector position/orientation
configurations as desired, and over which parallel instances are partitioned. In other words
the overall design, varying mesh file, mixture and configuration inputs, must be blocked over
mesh and mixture. This setup eases distribution of configuration inputs, along which the
strongest nonlinear spatial relationships manifest, over parallel instances.

To illustrate, let’s set up an execution with two replicates on a design of eight runs. Note
that tpm takes inputs on the nominal scale, with ranges indicated in Table 2.5. R code below

4https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
5https://bitbucket.org/gramacylab/tpm
6https://en.wikipedia.org/wiki/OpenMP
7https://en.wikipedia.org/wiki/Symmetric_multiprocessing
8https://en.wikipedia.org/wiki/Message_Passing_Interface

https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php
https://bitbucket.org/gramacylab/tpm
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Message_Passing_Interface
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builds the 7d design X and specifies one of the GRACE meshes. Meshes for over a dozen
other satellites are provided in the "tpm-git/tpm/Mesh_Files" directory.

n <- 8
X <- data.frame(Umag=runif(n, 5500, 9500), Ts=runif(n, 100, 500),
Ta=runif(n, 200, 2000), theta=runif(n, -pi, pi),
phi=runif(n, -pi/2, pi/2), alphan=runif(n), sigmat=runif(n))

X <- rbind(X,X)
mesh <- "tpm-git/tpm/Mesh_Files/GRACE_A0_B0_ascii_redone.stl"
moles <- c(0,0,0,0,1,0)

The final line above sets up the atmospheric chemical composition as a unit-vector isolating
pure helium (He). With input configurations in place, we are ready to run simulations. Code
below loads the R interface and invokes a simulation instance which parallelizes evaluations
over the full suite of cores on my machine.

source("tpm-git/tpm/R/tpm.R")
system.time(y <- tpm(X, moles=moles, stl=mesh, verb=0))

## user system elapsed
## 5160.235 1.808 462.894

What do we see? It’s not speedy despite OpenMP parallelization. I have eight cores on my
machine, and I’m getting about a factor of 6× speedup. That efficiency improves with a
larger design. For example, with n <- 800 runs it’s close to parity at 8×. Also observe that
the output is not deterministic.

mean((y[1:n] - y[(n + 1):length(y)])^2)

## [1] 3.445e-05

Each simulation involves pseudo-random numbers underlying trajectories of particles bom-
barding external facets of the satellite. Despite the stochastic response, variability in runs is
quite low. Occasionally, in about two in every ten thousand runs, tpm fails to return a valid
output (yielding NA) due to numerical issues. When that happens, a simple restart of the
offending simulation usually suffices.

Since calculations underlying TPMC are implemented in C, compiling that code is a
prerequisite to sourcing tpm-git/tpm/R/tpm.R. But this only needs to be done once per
machine. On a Unix-based system, like Linux or Apple OSX, that’s relatively easy with
the Gnu C compiler gcc. Note the default compiler on OSX is clang from LLVM, which at
the time of writing doesn’t support OpenMP out of the box. The C code will still compile,
but it won’t SMP-parallelize. To obtain gcc compilers, visit the HPC for OSX page9. On
Microsoft Windows, the Rtools10 library is helpful, providing a Unix-like environment and
gcc compilers, enabling commands similar to those below to be performed from the DOS
command prompt.

The C code resides in tpm-git/tpm/src, and a shared library (for runtime linking with R)

9http://hpc.sourceforge.net/
10https://cran.r-project.org/bin/windows/Rtools/

http://hpc.sourceforge.net/
https://cran.r-project.org/bin/windows/Rtools/
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can be built using R’s SHLIB command from the Unix (or DOS command) prompt. Figure
2.13 provides a screen capture from a compile performed on my machine.

FIGURE 2.13: Compiling the C source code behind TPM.

The tpm library can be used to estimate new drag coefficients. However considering the
substantial computational expense, it helps to have some pre-run datasets on hand. There
are two suites of pre-run batches: one from a limited pilot experiment performed at LANL
in order to demonstrate the potential value of surrogate modeling; and another far more
extensive suite performed by me using UChicago’s Research Computing Center (RCC)11.
That second suite utilized seventy-thousand core hours (meaning hours you’d have to wait
if only one core of one processor were being used, in serial), distributed over thousands of
cores of hundreds of nodes of the RCC Midway supercomputer12. In fact, when RCC saw
how much computing I was doing they decided to commission a puff piece13 about it.

2.3.2 Surrogate drag

Consider the first suite of runs from LANL’s pilot study. The goal of that study was to
build a surrogate, via Gaussian processes (GPs), such that predictions from GP fits to
tpm simulations were accurate to within 1% of actual simulation output, based on root
mean-squared percentage error (RMSPE). That proved to be a difficult task considering some
of the computational challenges behind GP inference and prediction. My LANL colleagues
quickly realized that the data size they’d need, in the 7d input space described by Table
2.5, would be way bigger than what’s conventionally tractable with GPs. In order to meet
that 1% goal they had to dramatically reduce the input space for training, and consequently
also reduce the domain on which reliable predictions could reasonably be expected (i.e.,
the testing set). The details and other reasoning behind the experiment they ultimately
performed are provided by Mehta et al. (2014); a brief explanation and demonstration follow.

LANL researchers looked at data sets, containing TPMC simulations, that were about
N = 1000 runs in size. You can handle slightly larger N with GPs without getting creative
(e.g., special linear algebra subroutines; see Appendix A) using desktop workstations circa
early 2010’s, but not much. With such a limited number of runs, it was clear that they’d never
achieve the 1% RMSPE goal in the full 7d space. Later in §9.3.6 this is verified empirically in

11https://rcc.uchicago.edu/
12https://rcc.uchicago.edu/docs/using-midway/index.html
13https://rcc.uchicago.edu/simulation-you-never-have-run

https://rcc.uchicago.edu/
https://rcc.uchicago.edu/docs/using-midway/index.html
https://rcc.uchicago.edu/simulation-you-never-have-run
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TABLE 2.6: Reduced angles for small GRACE drag simulation campaigns.

Symbol [ascii] Parameter [units] Ideal Range Reduced Range Percentage
θ [theta] yaw [radians] [−π/2, π/2] [0, 0.06] 1.9
φ [phi] pitch [radians] [−π, π] [-0.06, 0.06] 1.9

a Monte Carlo study. Yet it’s easy to deduce that outcome from the simpler experiment our
LANL colleagues ultimately decided to entertain instead. And that variation is as follows:
they focused on a narrow, yet realistically representative, band of yaw (θ) and pitch (φ)
angles. For the GRACE satellite, that reduction may be characterized approximately as
outlined in Table 2.6.

A narrower range of angles, leading to an input space of smaller volume, has the effect
of making the N = 1000 points closer together. This makes fitting and prediction in the
reduced space easier, and more accurate. Covering the full range of angles, at the density
implied by a space-filling set of N = 1000 inputs, would require about 4 million points: well
beyond the capabilities that could be provided by a GP-based method – at least any known
at the time.

Let’s look at LANL’s GRACE runs for pure He, reproducing the essence of their GP training
and testing exercise. A N = 1000-sized training set, and N ′ = 100-sized testing set, was
generated independently as a LHS (§4.1). GP predictions derived on the former for the latter
were evaluated for out-of-sample accuracy with RMSPE.

train <- read.csv("tpm-git/data/GRACE/CD_GRACE_1000_He.csv")
test <- read.csv("tpm-git/data/GRACE/CD_GRACE_100_He.csv")
r <- apply(rbind(train, test)[,1:7], 2, range)
r

## Umag Ts Ta theta phi alphan sigmat
## [1,] 5502 100.0 201.2 0.0000127 -0.06978 0.0008822 0.0007614
## [2,] 9498 499.8 2000.0 0.0697831 0.06971 0.9999078 0.9997902

As you can see above, the range of theta (yaw) and phi (pitch) are reduced compared
to their ideal range. Exact ranges depend on the satellite and pure-species in question,
and may not line up perfectly with either of the tables above. In particular notice that
yaw- and pitch-angle reduced ranges slightly exceed those from Table 2.6. Columns eight
and nine in the files provide estimated coefficients of drag, Cd. The ninth column, labeled
Cd_old, provides a legacy estimate based on an older tpm simulation toolkit. These values
are internally compatible with Cd_old values from other files in that data/GRACE directory,
but may not match bespoke simulations from the latest tpm library. In the particular case of
GRACE simulations, differences between Cd and Cd_old are slight.

Before fitting models, it helps to first convert to coded inputs.

X <- train[,1:7]
XX <- test[,1:7]
for(j in 1:ncol(X)) {
X[,j] <- X[,j] - r[1,j]
XX[,j] <- XX[,j] - r[1,j]
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X[,j] <- X[,j]/(r[2,j] - r[1,j])
XX[,j] <- XX[,j]/(r[2,j] - r[1,j])

}

Now we can fit a GP to the training data and make predictions on a hold-out testing set.
Suspend your disbelief for now; details of GP fitting and prediction are provided in gory
detail in Chapter 5. The library used here, laGP (Gramacy and Sun, 2018) on CRAN, is the
same as the one used in our introductory wing weight example from §1.2.1.

library(laGP)

The fitting code below is nearly cut-and-paste from that example.

fit.gp <- newGPsep(X, train[,8], 2, 1e-6, dK=TRUE)
mle <- mleGPsep(fit.gp)
p <- predGPsep(fit.gp, XX, lite=TRUE)
rmspe <- sqrt(mean((100*(p$mean - test[,8])/test[,8])^2))
rmspe

## [1] 0.672

Just as Mehta et al. found: better than 1%. Now that was for just one chemical species, pure
He. In a real forecasting context there would be a mixture of elements in LEO depending on
satellite position. LANL researchers address this by fitting six, separate GP surrogates, one
for each pure species. The data directory provides these files:

list.files("tpm-git/data/GRACE", "1000*_[A-Z].csv")

## [1] "CD_GRACE_100_H.csv" "CD_GRACE_100_N.csv" "CD_GRACE_100_O.csv"
## [4] "CD_GRACE_1000_H.csv" "CD_GRACE_1000_N.csv" "CD_GRACE_1000_O.csv"

A similar suite of files with .dat extensions contain legacy data, duplicated in the Cd_old
column of *.csv analogs. Designs in these files are identical up to a column reordering.

Once surrogates have been fit to pure-species data, their predictions may be combined for
any mixture as

CD =
∑6
j=1 CDj · χj ·mj∑6

j=1 χj ·mj

,

where χj is the mole fraction at a particular LEO location in the atmosphere, and mj are
particle masses. For example, NASA’s calculator14 gives the following at 1/1/2000 0h at 0
deg L&L, and 550km altitude:

mf <- c(O=0.83575679477, O2=0.00004098807, N=0.01409589809,
N2=0.00591827778, He=0.13795985368, H=0.00622818760)

14https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php

https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php


2.3 Predicting satellite drag 51

A periodic table provides the masses which, in relative terms, are proportional to the
following.

pm <- c(O=2.65676, O2=5.31352, N=2.32586, N2=4.65173,
He=0.665327, H=0.167372)

LANL went on to show that the six independently fit “pure emulators”, when suitably
combined, were still able to give RMSPEs out-of-sample that were within the desired
1% tolerance. A homework exercise (§2.6) asks the reader to duplicate this analysis by
appropriately collating predictions for other species and comparing, out of sample, to results
obtained directly under a mixture-of-species simulation.

Our LANL colleagues provided similar proof-of-concept runs and experiments for the Hubble
Space Telescope (HST).

list.files("tpm-git/data/HST", "Satellite.*.csv")

## [1] "Satellite_H.csv" "Satellite_He.csv" "Satellite_N.csv"
## [4] "Satellite_N2.csv" "Satellite_O.csv" "Satellite_O2.csv"
## [7] "Satellite_TS_H.csv" "Satellite_TS_He.csv" "Satellite_TS_N.csv"
## [10] "Satellite_TS_N2.csv" "Satellite_TS_O.csv" "Satellite_TS_O2.csv"

A slightly different naming convention was used here compared to the GRACE files: “TS”
means “test set”. Analog files without the .csv extension contain legacy LANL simulation
output. These legacy outputs differ substantially from the revised analog for reasons that
have to do with special handling of its solar panels. HST is specified by a suite of mesh files,
one for each of ten panel angles, resulting in an extra input column (i.e., 8d inputs). Efficient
simulation requires additional blocking of tpm simulations, iterating over the ten meshes,
each with 1/10th of the space-filling settings of the other inputs.

list.files("tpm-git/tpm/Mesh_Files", "HST")

## [1] "HST_0.stl" "HST_10.stl" "HST_20.stl" "HST_30.stl" "HST_40.stl"
## [6] "HST_50.stl" "HST_60.stl" "HST_70.stl" "HST_80.stl" "HST_90.stl"

Finally, Mehta et al. reported on a similar experiment with the International Space Station
(ISS). These files have not been updated from their original format and legacy output.

list.files("tpm-git/data/ISS", "_")

## [1] "ISS_H.dat" "ISS_He.dat" "ISS_N.dat" "ISS_N2.dat" "ISS_O.dat"
## [6] "ISS_O2.dat"

Although the ISS has many “moving parts”, only one representative mesh file is provided.

list.files("tpm-git/tpm/Mesh_Files", "ISS")

## [1] "ISS_ascii.stl"
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2.3.3 Big tpm runs

To address drawbacks of that initial pilot study, particularly the narrow range of input
angles, I compiled a new suite of TPMC simulations using tpm for HST and GRACE. HST
simulations were collected for N = 1M and N = 2M depending on the species. A testing set
of size N ′ = 1M was gathered under an ensemble of species for out-of-sample benchmarking.
The designs were LHSs divided equally between the ten panel angles. For GRACE, which is
easier to model, LHSs with N = N ′ = 1M is sufficient throughout. This is fortunate since
GRACE simulations are more than 10× slower than HST.

c(list.files("tpm-git/data/HST", "hst.*dat"),
list.files("tpm-git/data/GRACE", "grace.*dat"))

## [1] "hstA_05.dat" "hstA.dat" "hstEns.dat" "hstH.dat"
## [5] "hstHe.dat" "hstHe2.dat" "hstN.dat" "hstN2.dat"
## [9] "hstO.dat" "hstO2.dat" "hstQ_05.dat" "hstQ.dat"
## [13] "graceA_05.dat" "graceEns.dat" "graceH.dat" "graceHe.dat"
## [17] "graceN.dat" "graceN2.dat" "graceO.dat" "graceO2.dat"
## [21] "graceQ_05.dat" "graceQ.dat"

Files named with Ens correspond to chemical ensembles which were calculated using mole
fractions quoted in §2.3.2. All together these took about 70K service units (SUs). An SU is
equivalent to one CPU core-hour. Runs were distributed across dozens of batches farmed
out to 32 16-core nodes for about 18 hours each, depending on the mesh being used and
the size of the full design. Although the files have a .dat extension, matching the naming
scheme of files containing legacy runs, this larger suite was performed with the latest tpm.

Divide-and-conquer is key to managing data of this size with GP surrogates. One option
is hard partitioning, for example dividing up the input space by its angles, iterating the
Mehta et al. idea. But soft partitioning works better in the sense that it’s simultaneously
more accurate, computationally more efficient, and utilizes a smaller training data set. (I
needed only N = 1-2M runs, as described above.) The method of local approximate Gaussian
processes (LAGP), introduced in §9.3, facilitates one such approach to soft partitioning
having the added benefit of being massively parallelizable, a key feature in the modern
landscape of ubiquitous multicore SMP computing. Our examples above leverage full-GP
features from the laGP package; local approximate enhancements will have to wait for §9.3.6.

2.4 Groundwater remediation

Worldwide there are more than 10,000 contaminated land sites (Ter Meer et al., 2007).
Environmental cleanup at these sites has received increased attention in the last few decades.
Preventing migration of contaminant plumes is vital to protect water supplies and prevent
disease. One approach is pump-and-treat remediation, in which wells are strategically placed
to pump out contaminated water, purify it, and inject treated water back into the system to
prevent contaminant spread.

A case study of one such remediation effort is the 580-acre Lockwood Solvent Groundwater
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Plume Site15, an EPA Superfund site near Billings Montana. As a result of industrial
practices, groundwater at this site is contaminated with volatile organic compounds that
are hazardous to human health. Figure 2.14 shows the location of the site and provides a
simplified illustration of the contaminant plumes that threaten a valuable water source: the
Yellowstone River.

FIGURE 2.14: Lockwood site via map (left) and plume diagram (right). Captured from
Gramacy et al. (2016) and used with permission from the American Statistical Association.

To prevent further expansion of these plumes, six pump and treat wells have been proposed.
These are shown in sets of two and four in the right panel of Figure 2.14. The amount
of contaminant exiting the boundaries of the system – entering the river in particular –
depends on placement of the wells and their pumping rates. Here we treat placement as
fixed, roughly at the locations shown in the diagram, and focus on determining appropriate
pumping rates. An analytic element method (AEM)16 groundwater model and solver was
developed to simulate the amount of contaminant exiting the two boundaries under different
pumping regimes (Matott et al., 2006).

Code implementing the solver takes a positive six-vector as input, specifying pumping rates
for each of the six wells: x ∈ [0, 2 · 104]6. It returns two outputs: 1) a quantity proportional
to the cost of pumping, which is just

∑
j xj ; and 2) a two-vector, indicating the amount of

contaminant exiting the boundaries. The goal is to explore pumping rates where both entries
of the contaminant vector are zero, indicating no contaminant spread. If the contaminant
output vector is positive in either coordinate then that’s bad (the larger the badder), because
it means that some contaminant has escaped. Note that the contaminant vector output is
never negative as long as input x is in the valid range, as described above.

The groundwater solver implementation is delicate, owing to the hodgepodge of C++ libraries
that were weaved together to obtain the desired calculation(s).

• One was (at the time it was developed) called Bluebird, but now goes by VisualAEM17.
• The other is called Ostrich18.
• A shell script called RunLock acts as glue and provides the appropriate configuration

files.
• An R wrapper (written by me) runlock.R enables Runlock to be invoked from R.

The underlying C++ programs, which read and write files with absolute paths, require runs
be performed within the runlock directory (after you’ve run the build.sh script to compile

15https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0801709
16https://en.wikipedia.org/wiki/Analytic_element_method
17http://www.civil.uwaterloo.ca/jrcraig/visualaem/main.html
18http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html

https://cumulis.epa.gov/supercpad/cursites/csitinfo.cfm?id=0801709
https://en.wikipedia.org/wiki/Analytic_element_method
http://www.civil.uwaterloo.ca/jrcraig/visualaem/main.html
http://www.eng.buffalo.edu/~lsmatott/Ostrich/OstrichMain.html
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all the C++ code). Note that the makefiles used by the build scripts assume g++ compilers,
which is the default on most systems but not OSX. OSX uses LLVM/clang with aliases to
g++ and doesn’t work with the runlock back-end. This is similar to the issue mentioned
above for tpm nearby Figure 2.13, except in this case a true g++ compiler is essential. See
the HPC for OSX page19 to obtain a GNU C/C++ compiler for OSX. At this time, this
setup is not known to work on Windows systems. Binary Bluebird and Ostrich executables
may be compiled for Windows with slight modification to the source code, but the shell
scripts which glue them together assume a Unix environment.

setwd("runlock")

Here’s how output looks on a random input vector.

source("runlock.R")
x <- runif(6, 0, 20000)
runlock(x)

## $obj
## [1] 60220
##
## $c
## [1] 0.3498 0.0000

Both outputs are derived from deterministic calculations. As described above, the $obj
output is

∑
j xj , the sum of the six pumping rates. The $c output is a two-vector indicating

how much contaminant exited the system. About one in ten runs with random inputs,
x ∼ Unif(0, 20000)6, yield output $c at zero for both boundaries. The second boundary is
less likely to suffer contaminant breach. One “good” pumping rate is known, but it implies a
fair amount of pumping.

runlock(rep(10000, 6))

## $obj
## [1] 60000
##
## $c
## [1] 0 0

Here’s a run on one hundred random inputs.

runs <- matrix(NA, nrow=100, ncol=9)
runs[,1:6] <- matrix(runif(6*nrow(runs), 0, 20000), ncol=6)
tic <- proc.time()[3]
for(i in 1:nrow(runs)) {
runs[i,7:9] <- unlist(runlock(runs[i,1:6]))

}
toc <- proc.time()[3]
toc - tic

19http://hpc.sourceforge.net/

http://hpc.sourceforge.net/
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## elapsed
## 115.5

As you can see, simulations are relatively quick (about 1.2s/run), but not instantaneous.
More than a decade ago, when this problem was first studied, the computational cost was
more prohibitive, being upwards of ten or so seconds per run. Improvements in processing
speed and compiler optimizations have combined to provide about a tenfold speedup.

success <- sum(apply(runs, 1, function(x) { all(x[8:9] == 0) }))
success

## [1] 18

Above, 18% of the random inputs came back without contaminant breach. Before changing
gears let’s remember to back out of the runlock directory.

setwd("../")

2.4.1 Optimization and search

Mayer et al. (2002) proposed casting the pump-and-treat setting as a constrained “blackbox”
optimization. For the version of the Lockwood problem considered here, pumping rates x can
be varied to minimize the cost of operating wells subject to constraints on the contaminant
staying within plume boundaries, whose evaluations require running groundwater simulations.
This led to the following blackbox optimization problem, a so-called nonlinear mathematical
program.

min
x

f(x) =
6∑
j=1

xj : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 2 · 104]6


The term blackbox means that inner-workings of the program are largely opaque to the
optimizer. Objective f is linear and describes costs required to operate the wells; this matches
up with output $obj from runlock above. Absent constraints c (via $c from runlock), which
are satisfied when both components are zero, the solution is at the origin and corresponds
to no pumping and no remediation. But this unconstrained solution is of little interest. We
desire a pumping rate just low enough, minimizing costs of operating the wells, to accomplish
the remediation goal: clean drinking water.

Matott et al. (2011) compared MATLAB® and Python optimizers, treating constraints
with the additive penalty method (reviewed in more detail in §7.3.4), all initialized at the
known-valid input x1

j = 104. These results are shown in Figure 2.15. Many of the optimizers,
such as “Newton”, “Nelder-Mead” and “BFGS” may be familiar. Several are implemented
as options in the optim function for R and have their own Wikipedia pages. More detail will
be provided in Chapter 7.

bvv <- read.csv("runlock/pato_results.csv")
cols <- 3:14
nc <- length(cols)
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matplot(bvv[1:1000,1], bvv[1:1000,cols], xlim=c(1,1500), type="l", bty="n",
xlab="number of evaluations", ylab="pump-and-treat cost to remediate")

legend("topright", names(bvv)[cols], lty=1:nc, col=1:nc, bty="n")
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FIGURE 2.15: Best valid values found by MATLAB and Python APM optimizers over
the course of 1000 expensive simulations; rebuild of a figure from Matott et al. (2011) using
original data.

Observe from Figure 2.15 that there’s great diversity in success of the methods deployed to
solve the Lockwood constrained optimization. The goal is to obtain a value on the y-axis
in that plot, indicating the best valid pumping rate, that’s as low as possible as a function
of the number of runlock evaluations, indicated on the x-axis. Better methods “hug the
origin”, with lines closer to the lower-left corner of the plot. The very best methods by this
metric are “Hooke–Jeeves” and “DDS”.

Looking at the results from that study, the following questions emerge. What makes good
methods good, and why do bad methods fail so spectacularly? And by the way, how are
statistics and surrogates involved? As a window to potential insight, consider the following
random iterative search involving objective improving candidates, or OICs. Algorithm 2.1
shows how to obtain the next OIC given n runs of the simulator, collecting evaluations of f
and c with rejection sampling20. Importantly, no expensive blackbox evaluations of f(·) are
called for in the pseudocode. With xn+1 in hand, we can evaluate f(xn+1) and c(xn+1) and
repeat, which might yield an improved x? and thus result in a narrower subsequent search
for the next OIC.

Figure 2.16 shows how such OICs fare on the Lockwood problem. Thin gray lines in the figure
are extracted from the first 500 iterations from Matott et al. (2011)’s experiment. A thicker
black line added to the plot shows average progress (best valid value, i.e., f(x?) over the
iterations, n) from thirty repeated runs of sequential selection of OICs, from n = 2, . . . , 500,
initialized with the same high pumping rate x1 = (104)6 used by all other methods. Note

20https://en.wikipedia.org/wiki/Rejection_sampling

https://en.wikipedia.org/wiki/Rejection_sampling
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Algorithm 2.1 Next Objective Improving Candidate

Assume the search region is B, perhaps a unit hypercube.

Require input settings x1, . . . , xn at which the objective f and constraints c have
already been evaluated.

Then
1. Find the current best valid input, x?, using discrete search over the existing runs
x? = arg mini=1,...,n{f(xi) : cj(xi) ≤ 0,∀j}.

2. Draw xn+1 uniformly from {x ∈ B : f(x) < f(x?)}, for example by rejection
sampling.

Return xn+1, the next objective improving candidate.

that these are the first R results in the book which don’t originate in Rmarkdown, owing
to the substantial computational effort involved in evaluating runlock 500 × 30 = 1500
times. Output file oic_prog.csv is deliberately omitted from the supplementary material.
Reproducing these results is the subject of a homework exercise in §2.6.

prog <- read.csv("oic_prog.csv")
matplot(bvv[,cols], col="gray", type="l", lty=1, xlim=c(1,500),
xlab="evaluations (n)", ylab="best valid value")

lines(rowMeans(prog), lty=1, lwd=2)
legend("topright", "average OIC", lwd=2)
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FIGURE 2.16: Objective improving candidates versus Matott optimizers. Rebuild of a
figure from Gramacy and Lee (2011) with novel OIC simulations.

What do we notice from the OIC results in the figure? Half of the MATLAB/Python methods
are not doing better (on average) than a slightly modified “random search”, as represented
by OICs. Those inferior methods are getting stuck in a local minima and failing to explore
other opportunities. Now stochastic search, whether via OICs or purely at random, doesn’t
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represent a compelling practical alternative in this context because of the chance of poor
results in any particular run, even though average behavior out of thirty repetitions is
pretty good. But those average results, which suggest that a more careful balance between
exploration and exploitation could be beneficial, do indicate that a statistical decision process
– where striking such balances is routine – could be advantageous. Statistical response surface
methods, through suitably flexible surrogate models paired with searching criteria that can
trade-off reward and uncertainty, have been shown to be quite effective in this context. These
are the subject of Chapter 7.

As a taste of what’s to come, surrogate Gaussian process (GP) models can be fitted to
blackbox function evaluations, from the objective and/or from constraints, and sequential
design criteria can be derived – acquisition functions in machine learning (ML) jargon
– that leverage the full uncertainty of predictive equations (i.e., mean and variance) to
decide where to sample next. These so-called Bayesian optimization (BO)21 procedures
have been shown empirically to lead to more global searches, finding better solutions with
fewer evaluations, compared to conventional optimizers like those deployed in the Matott
et al. (2011) study. The term “Bayesian optimization” is somewhat of a misnomer, because
Bayesian methodology/thinking isn’t essential. However the term has caught on owing
to excitement in Bayesian updating, of which many sequential statistical calculations are
an example. Although work on BO in ML is feverish at the moment – for example, to
tune the hyperparameters of deep neural networks – the roots of these methods lie in
industrial statistics under the moniker of statistical/surrogate-assisted optimization. In the
mathematical programming world, surrogate assisted methods for blackbox optimization
falls generically under the class of derivative-free methods22 (Larson et al., 2019). They
utilize only function evaluations, requiring little knowledge of how codes implementing those
functions are comprised, in particular not requiring derivatives. However use of derivative-like
information, often through a surrogate, can be both explicit and implicit in such enterprises.

2.4.2 Where from here?

Once we nail down surrogate models (e.g., via GPs) we’ll be able to address sequential design
and optimization problems on both more general and more specific terms. The process of using
surrogate model fits to further data collection, updating the design to maximize information
or reduce variance, say, has become fundamental to computer simulation experiments. It’s
also popular in ML where it goes by the name active learning, where the learner gets to
choose the examples it’s trained on. Extending that idea to more general optimization
problems, with appropriate design/acquisition criteria – the most popular of which is called
expected improvement (EI) – is relatively straightforward. The setting becomes somewhat
more challenging when constraints are involved, or when targets are more nuanced: a
search for level sets or contours, classification boundaries, etc. We’ll expound upon blackbox
constrained optimization in some detail. The others are hot areas at the moment and I
shall refer to the literature for many of those in order to keep the exposition relatively
self-contained.

Everyone knows that modern statistical learning benefits from optimization methodology.
Just think about the myriad numerical schemes for maximizing log likelihoods, or convex
optimization in penalized least squares. Throughout the text we’ll make liberal use of
optimization libraries as subroutines, ones which over the years have been engineered to

21https://en.wikipedia.org/wiki/Bayesian_optimization
22https://en.wikipedia.org/wiki/Derivative-free_optimization

https://en.wikipedia.org/wiki/Bayesian_optimization
https://en.wikipedia.org/wiki/Derivative-free_optimization
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the extent that they’ve become so robust that we take their good behavior for granted.
But in the spectrum of problems from the mathematical programming literature, which
is where optimization experts play, these represent relatively easy examples. The harder
ones, like with blackbox objectives and constraints, could benefit from a fresh perspective.
Mathematical programmers are learning from statisticians in a big way, porting robust
surrogate modeling and decision theoretic criteria to aid in search for global optima. Perhaps
a virtuous cycle is forming.

2.5 Data out there

The examples in this chapter are interesting because each involves several facets of modern
response surface methods, via surrogates, and sequential design. Yet it’ll be useful to draw
from a cache of simpler – you might say toy – examples for our early illustrations, isolating
particular features common to real data and real-world simulation experiments and methods
which have been designed to suit. Synthetic experiments on simple data, as a first pass on
demonstrating and benchmarking new methodology, abound in the literature.

There are several good outposts offering libraries of toy problems, curated and regularly
updated. My new favorite is the Virtual Library of Simulation Experiments (VLSE)23 out
of Simon Fraser University. Several homework exercises throughout the book feature data
pulled from that site. Good optimization-oriented virtual libraries can be found on the
world wide web, although for our purposes the VLSE is sufficient – containing a specifically
optimization-oriented tab of problems. An impressive exception is the Decision Tree for
Optimization Software24 out of Arizona State University which not only provides examples,
but also sets of live benchmarks offering a kind of unit testing25 of updated implementations
submitted to the site. Two other cool examples get their own heading.

Fire modeling and bottle rockets

I came across a page on Fire Modeling Software26 when browsing Santner et al. (2003),
first edition. That text contains an example in the introductory chapter involving an old
FORTRAN/BASIC program called ASET, which is one of the ones listed on that page.
Others from that page could offer a source of pseudo-synthetic examples with real code (i.e.,
real computer model simulations like TPMC), assuming they could be made to compile and
run. I couldn’t get ASET-B to compile, but it’s been such a long time since I’ve looked at
BASIC. Some of the newer codes are more involved, but potentially more exciting.

Ever do a bottle rocket project in middle school? I certainly did. Folks have written calculators
that estimate the height and distance traveled, and other outputs, as a function of bottle
geometry, water pressure, etc. There’s an entire web page dedicated to simulators for flying
bottle rockets27, but sadly the site is old and many links therein are now broken. NASA
thinks bottle rockets are pretty cool too, in addition to the real kind. They offer two

23http://www.sfu.ca/~ssurjano/
24http://plato.asu.edu/guide.html
25https://en.wikipedia.org/wiki/Unit_testing
26http://www.nist.gov/el/fire_protection/buildings/fire-modeling-programs.cfm
27http://cjh.polyplex.org/rockets/simulation/

http://www.sfu.ca/~ssurjano/
http://plato.asu.edu/guide.html
https://en.wikipedia.org/wiki/Unit_testing
http://www.nist.gov/el/fire_protection/buildings/fire-modeling-programs.cfm
http://cjh.polyplex.org/rockets/simulation/
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simulators: a simpler one called BottleRocketSim28 and a more complex alternative called
RocketModeler III29. Both have somewhat dated web interfaces but could easily work in a
lab/field experiment or “field trip” setting. Students could collect data on real rockets and
calibrate simulations (§8.1) in order to improve accuracy of predictions for future runs.

2.6 Homework exercises

These exercises give the reader an opportunity to play with data sets and simulation codes
introduced in this chapter and to help head off any system dependency issues in compiling
codes required for those simulations.

#1: The other five LGBB outputs

Our rocket booster example in §2.1 emphasized the lift output. Repeat similar slice visuals,
for example like Figure 2.6, for the other five outputs. In each case you’ll need to choose a
value of the third input, beta, to hold fixed for the visualization.

a. Begin with the choice of beta=1 following the lift example. Comment on any trends
or variations across the five (or six including lift) outputs.

b. Experiment with other beta choices. In particular what happens when beta=0 for the
latter three outputs: side, yaw and roll? How about with larger beta settings for those
outputs? Explain what you think might be going on.

#2: Exploring CRASH with feature expanded linear models

Revisit the CRASH simulation linear model/curve fitting analysis nearby Figure 2.10 by
expanding the data and the linear basis.

a. Form a data.frame combing CE1 data (ce1) and scale factor expanded CE2 data
(ce2.sf), and don’t forget to drop the FileNumber column.

b. Fit a linear model with ShockLocation as the response and the other columns as
predictors. Which predictors load (i.e., have estimated slope coefficients which are
statistically different from zero)?

c. Consider interactions among the predictors. Which load? Are there any collinearity
concerns? Fix those if so. You might try stepwise regression.

d. Consider quadratic feature expansion (i.e., augment columns with squared terms) with
and without interactions. Again watch out for collinearity; try step and comment on
what loads.

e. Contemplate higher-order polynomial terms as features. Does this represent a sensible,
parsimonious approach to nonlinear surrogate modeling?

28http://www.grc.nasa.gov/WWW/K-12/bottlerocket/
29http://www.grc.nasa.gov/WWW/K-12/rocket/rktsim.html

http://www.grc.nasa.gov/WWW/K-12/bottlerocket/
http://www.grc.nasa.gov/WWW/K-12/rocket/rktsim.html
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#3: Ensemble satellite drag benchmarking

Combine surrogates for pure species TPMC simulations to furnish forecasts of satellite drag
under a realistic mixture of chemical species in LEO.

a. Get familiar with using tpm to calculate satellite drag coefficients. Begin by compiling the
C code to produce a shared object for use with the R wrapper in tpm-git/tpm/R/tpm.R.
Run R CMD SHLIB -o tpm.so *.c in the tpm-git/tpm/src directory. Then double-
check you have a working tpm library by trying some of the examples in §2.3.2. You only
need to do this once per machine; see note nearby Figure 2.13 about OSX/OpenMP.

b. Generate a random one-hundred run, 7d testing design uniformly in the ranges provided
by Table 2.5 with restricted angle inputs as described in Table 2.6. Evaluate these inputs
for GRACE under the mole fractions provided in §2.3.2 for a particular LEO position.

c. Train six GP surrogates on the pure species data provided in the directory
tpm-git/data/GRACE. A few helpful notes: pure He was done already (see §2.3.2), so
there are only five left to do; be careful to use the same coding scheme for all six sets of
inputs; you may wish to double-check your pure species predictors on the pure species
testing sets provided.

d. Collect predictions from all six GP surrogates at the testing locations from #a. Combine
them into a single prediction for that LEO position and calculate RMSPE to the true
simulation outputs from #a. Is the RMSPE close to 1%?

e. Repeat #b–d for HST with an identical setup except that you’ll need to augment your
design with 100 random panel angles in {0, 10, 20, . . . , 80, 90} and utilize the appropriate
mesh files in your simulations.

#4: Objective improving candidates

Reproduce the OIC comparison for the Lockwood problem summarized in Figure 2.16.

a. Compile the runlock back-end using the build.sh script provided in the root lockwood
directory. Double-check that the compiled library works with the R runlock interface
by trying the code in §2.4.

b. Implement a rejection sampler for generating OICs or figure out how to use
laGP:::rbetter from laGP on CRAN.

c. Starting with the known valid setting, x? ≡ x1 = (104)6, implement 100 iterations of
constrained optimization with OICs as described in Algorithm 2.1. Be sure to save your
progress in terms of the best valid value found over the iterations. Plot that progress
against the MATLAB/Python optimizers.

d. Repeat #c 30 times and plot the average progress against the MATLAB/Python
optimizers.





3
Steepest Ascent and Ridge Analysis

This chapter offers a fly-by of classical methods for response surfaces, focusing on local
linear modeling. Development closely follows Chapters 5-6 of Myers et al. (2016), however
with rather less on design and greater emphasis on implementation in R. Some of the
examples/data are taken verbatim, although with less back-story. Readers who are keen on
a more in-depth treatment of the subjects in this chapter will find the Myers text far more
satisfying. Of course neither treatment is complete. There are a wealth of texts and modern
surveys on the topic.

The goal here is to offer some historical context, in order to facilitate comparisons and
contrasts to more modern methodology introduced in subsequent chapters. That said, the
methods herein are far better understood, and more widely deployed in practice, particularly
in industrial settings. One can argue that they offer more control and potential for insight to
the experienced modeler, who deeply understands potential limitations and pitfalls. However,
as will become clear as topics progress, many rigid assumptions are embedded in this
framework, primarily for analytical tractability. These may be difficult to justify in practice,
especially in settings where the goal is to produce an autonomous framework that can
operate without constant (expert) human oversight.

What is this chapter about, more specifically? At a high level it’s about collecting and
learning from data. Since that’s perhaps too generic, a better question entails not what but
why. One reason for data collection and modeling is to develop understanding or to make
predictions under novel conditions. Such understanding and predictions could facilitate many
aims. But sometimes that’s too ambitious, especially when experimentation (obtaining the
“runs” that make up the data) is expensive, and it usually is, or when the ideal modeling
apparatus is data hungry. A more humble goal is to make things a little better, which may
require less data and where cruder models may be sufficient. That’s what this chapter is
about. We’ll return to bigger models and bigger data in subsequent chapters.

The choice of data – the experimental design – and models is supremely important. The two
are intimately linked. Yet simple choices work well when focused locally in the input domain,
appealing to Taylor’s theorem1 from calculus. Tools outlined in this chapter are canonical in
process optimization or process improvement. Although the goal is to find a configuration of
inputs providing a point of optimum response, one more pragmatically settles for simply
making an improvement on a previously utilized input setting. Imagine a manufacturing
process whose current operating conditions are good, but could potentially be better. Some
data could be collected nearby the current regime which, through model fitting and analysis,
leads to a potentially new operating regime that may be more efficient. Then the process
might iterate, potentially leading to even greater efficiencies, if experimental budgets allow.

The underlying methodology deployed in each iteration is compartmentalized by whether a
first-order or second-order model is being entertained. First-order methods fall under the
heading of steepest ascent, and these are rather straightforward to anyone with experience in

1https://en.wikipedia.org/wiki/Taylor’s_theorem
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statistical modeling and optimization. Second-order methods are more involved owing to the
many shapes a second-order surface can take on (see, e.g., §1.1.2), leading to so-called ridge
analysis. Here decisions about how to refine or improve the experiment are nuanced, leaning
on careful analysis of standard errors of coefficients whose values determine the nature of the
surface (local maxima, rising ridge, saddle, etc.) and thereby what to do in the next stage.
Both steepest ascent and ridge analysis compartments share an intimate relationship with
experimental design and benefit from a human-in-the-loop throughout stages of iterative
refinement. That’s in stark contrast to Bayesian optimization (BO) methods (Chapter 7)
which are rather more hands-off, intended for autonomous/automatic implementation.

3.1 Path of steepest ascent

Our presentation here privileges maximization of input–output relationships – in keeping with
classical RSM tradition – as measured by data collected on a certain process. Adaptations for
minimization, which is more common in modern BO settings, are straightforward. Emphasis
is more on modeling and decision making and less on appropriate choices of design. For more
details on design(s) such as orthogonal, factorial or central composite design, see Myers
et al. (2016). Throughout we shall work with coded variables, unless otherwise prefaced, and
assume designs centered at xj = 0 in [−1,+1], for j = 1, . . . ,m. Some designs, such as those
named above, would have xj take on only these values {−1, 0, 1}. Finally, we presume to
be working in a highly localized subset of the input domain on the natural scale, perhaps
centering around a setting of inputs representing current operating conditions on which we
plan to improve.

The method of steepest ascent involves a first-order model, sometimes fitted with interactions.
Predictive equations emitted from a fitted first-order model depend upon estimated regression
coefficients β̂j ≡ bj . Therefore, ignoring their standard errors sbj for the moment (see §3.2.3),
it’s perhaps not surprising that coordinates along the path of steepest ascent depend on
those values. Coordinate directions are determined by the sign of bj ; step sizes depend
proportionally on their magnitude |bj |.

3.1.1 Signs and magnitudes

To begin with an example, suppose an experiment in two input variables produces the
following fitted first-order model. So we’re skipping design and fitting stages here and going
right to equations defining fitted values and predictive means.

ŷ = 20 + 3x1 − 1.5x2 (3.1)

In R:

first.order <- function(x1, x2)
{
20 + 3*x1 - 1.5*x2
}
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Signs and magnitudes of estimated coefficients, b1 = 3 and b2 = −1.5, determine the path of
steepest ascent and result in x1 moving in a positive direction, twice as fast as x2 moving in
a negative direction. Evaluating first.order as yhat (ŷ) over a grid x1 × x2 in the input
space . . .

x1 <- x2 <- seq(-2, 3.5, length=1000)
g <- expand.grid(x1, x2)
yhat <- matrix(first.order(g[,1], g[,2]), ncol=length(x2))
D <- rbind(c(-1,-1), c(-1,1), c(1,-1), c(1,1))

. . . facilitates the graphical depiction provided in Figure 3.1: contours of yhat values
overlayed on a heat plot. Hypothetical design locations are shown as filled dots outlining a
square in the input space.

cols <- heat.colors(128)
image(x1, x2, yhat, col=cols)
contour(x1, x2, yhat, add=TRUE)
points(D, pch=19)
points(0, 0)
arrows(0, 0, 3, -1.5)

FIGURE 3.1: Example first-order response surface and direction of steepest ascent.

The arrow in the figure, emitting from the center of the design at (0, 0), gets its slope from
(b1, b2). Theoretically the arrow, outlining the path of steepest ascent, runs perpendicular to
the contours. However peculiarities in Rmarkdown’s handling of graphical device specifi-
cations can introduce skew. If we’re careful, acknowledging that the fitted surface isn’t a
perfect representation of the actual surface (presumably getting worse away from the design
center), and take baby steps along the path, we may expect to find inputs that improve
upon the actual output of the system. So an important question is: how far to explore along
the path?

Backing up a bit from the example, let’s now examine the setup more generically in order to
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formally establish the basic calculations involved in the method of steepest ascent. Consider
the fitted first-order regression model

ŷ(x) = b0 + b1x1 + b2x2 + · · ·+ bmxm.

The path of steepest ascent is one which produces a maximum estimated response, with the
constraint that all coordinates are a fixed distance, say radius r, away from the center of the
design. That definition is captured mathematically by the program

max
x

ŷ(x) subject to
m∑
j=1

x2
j = r2.

The constraint serves two purposes. One: it’s clearly folly to venture too far away from the
origin of the original design, as the fitted surface can only be trusted nearby. Two: in this
first-order linear formulation the unconstrained fitted surface is maximized out at infinity,
which is an impractical input setting for most purposes.

Solving this optimization problem proceeds by straightforward application of Lagrange
multipliers2.

L = b0 + b1x1 + b2x2 + · · ·+ bmxm − λ

 m∑
j=1

x2
j − r2


Differentiating and setting to zero leads to specifications for each xj on the path of steepest
ascent,

xj = bj
2λ ≡ ρbj , where ρ = 1

2λ

may be viewed as a constant of proportionality. For ascent, our default, ρ is positive; for
descent it’s negative. The parameter ρ, which is related to λ and thus to radius r, determines
the distance from the design center where the resulting (new) point would reside, which
ultimately must be specified by the practitioner.

Extending Figure 3.1, Figure 3.2 shows two potential radiuses r1 = 1 and r2 = 1.75 as circles
in the plane.

image(x1, x2, yhat, col=cols)
contour(x1, x2, yhat, add=TRUE)
points(D, pch=19)
points(0, 0)
arrows(0, 0, 3, -1.5)
library(plotrix)
draw.circle(0, 0, 1)
text(1, 0, "r1")
draw.circle(0, 0, 1.75)
text(1.75, 0, "r2 > r1")

Input coordinates of new runs can be determined by the intersection between the circle(s)

2https://en.wikipedia.org/wiki/Lagrange_multiplier

https://en.wikipedia.org/wiki/Lagrange_multiplier
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FIGURE 3.2: Radii along paths of steepest ascent.

and the path, depicted by the arrow. That enterprise is more simply carried out via choice
of ρ and estimated coefficients bj . An example follows.

Example: plasma etch process

Plasma etching3 is a process involved in the fabrication of integrated circuits where a
high-speed stream of plasma, the source of which is called an etch species, is shot at a
sample. Here we’re interested in etch rate, our response, measured in units of Å/min, as a
function of two inputs describing the process: anode-cathode gap (ξ1), with natural units of
centimeters, and the power applied to the cathode (ξ2) in watts. The data in plasma.txt4,
quoted in Table 3.1, are derived from a 22 factorial design with four center points.

plasma <- read.table("plasma.txt", header=TRUE)
kable(plasma, caption="Plasma etching data.")

Observe that the data file contains both natural and coded inputs. We wish to move to
a region of the input space where etch rate is increased. A goal of the experiment from
which these data were derived was to move to a region where etch rate is close to 1000
Å/min. Begin by fitting a first-order model. The code below, with summary.lm output in
Table 3.2, first tries a variation with interactions, mostly with the aim of illustrating that
the interaction term is unnecessary.

fit.int <- lm(etch ~ x1*x2, data=plasma)
s <- summary(fit.int)$coefficients
kable(s, caption="Summary of first-order model fit with interactions.")

3https://en.wikipedia.org/wiki/Plasma_etching
4http://bobby.gramacy.com/surrogates/plasma.txt

https://en.wikipedia.org/wiki/Plasma_etching
http://bobby.gramacy.com/surrogates/plasma.txt


68 3 Steepest Ascent and Ridge Analysis

TABLE 3.1: Plasma etching data.

gap power x1 x2 etch
1.2 275 -1 -1 775
1.6 275 1 -1 670
1.2 325 -1 1 890
1.6 325 1 1 730
1.4 300 0 0 745
1.4 300 0 0 760
1.4 300 0 0 780
1.4 300 0 0 720

TABLE 3.2: Summary of first-order model fit with interactions.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 758.75 8.604 88.189 0.0000
x1 -66.25 12.168 -5.445 0.0055
x2 43.75 12.168 3.596 0.0228
x1:x2 -13.75 12.168 -1.130 0.3216

Since the x1:x2 coefficient isn’t statistically significant, re-fit with an ordinary first-order
model as follows . . .

fit <- lm(etch ~ x1 + x2, data=plasma)
coef(fit)

## (Intercept) x1 x2
## 758.75 -66.25 43.75

. . . yielding the following fit which we shall use as the basis for constructing a path of
steepest ascent.

ŷ = 758.75− 66.25x1 + 43.75x2

The sign of x1 is negative and the sign of x2 is positive, so we shall seek improvements in
etch rate by decreasing gap and increasing power. For every unit change in gap (x1), the
corresponding change in power (x2) may be calculated as follows.

b1 <- coef(fit)[2]
b2 <- coef(fit)[3]
delta2 <- abs(b2/b1)
delta2

## x2
## 0.6604

If we choose the gap step size (in coded units) to be ∆x1 = −1, then the power step size
is delta2 = 0.6604. All right, let’s consider three potential new runs along that path with
∆x1 ∈ {−1,−2,−3}, stored in an R data.frame as follows.
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Dnew <- data.frame(x1=(-1):(-3), x2=(1:3)*delta2)

To aid in visualization, code below first evaluates the fitted model, through its predictive
equations, on a grid for image/contour plotting.

x1 <- seq(-4, 1.5, length=100)
x2 <- seq(-1.5, 4*delta2, length=100)
g <- expand.grid(x1=x1, x2=x2)
yhat <- matrix(predict(fit, newdata=g), ncol=length(x2))

Figure 3.3 shows that surface, again via contours overlayed on a heat plot and design
indicated as filled dots. An arrow outlines the path of steepest ascent, and three open circles
along that path are derived from Dnew, calculated above.

image(x1, x2, yhat, col=cols)
contour(x1, x2, yhat, add=TRUE)
points(plasma$x1, plasma$x2, pch=19)
points(0, 0)
arrows(0, 0, -3.5, 3.5*delta2)
points(Dnew)

-4 -3 -2 -1 0 1

-1
0
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FIGURE 3.3: Steps along the path of steepest ascent for plasma etch data.

Steepest ascent path in hand, including particular input settings, the next step is to
perform new runs at those settings. Doing that requires inputs in natural units, which
can be derived one point at a time or for the path at large. The latter in our case is
(∆gap,∆power) = (−0.2cm, 16.5W ), and the file plasma_delta.txt5 contains inputs and
responses for three runs along this path, i.e., via ∆ = {1, 2, 3}. These are shown in Table 3.3.

5http://bobby.gramacy.com/surrogates/plasma_delta.txt

http://bobby.gramacy.com/surrogates/plasma_delta.txt
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TABLE 3.3: Plasma observations along the path of steepest ascent.

Delta gap power x1 x2 etch p.etch
1 1.2 316.5 -1 0.66 845 853.9
2 1.0 333.0 -2 1.32 950 949.0
3 0.8 349.5 -3 1.98 1040 1044.1

plasma.delta <- read.table("plasma_delta.txt", header=TRUE)
plasma.delta$p.etch <- predict(fit, newdata=plasma.delta[,4:5])
kable(plasma.delta,
caption="Plasma observations along the path of steepest ascent.")

In the jargon, the first run, corresponding to ∆ = 1, is called a confirmation test. It’s
reassuring to observe that the output (about 845) is close to our prediction (854). This
output, assuming we haven’t seen/performed the other two runs yet, suggests we’re moving
in the right direction. However, 845 and 854 are not better than the best run on our original
design.

max(plasma$etch)

## [1] 890

Therefore it stands to reason (with caution) that we could go a little farther along the path
of steepest ascent and expect further gains. Indeed that is the case, and again our predicted
and observed outputs farther along the path are in remarkable agreement. The response
from the last run, corresponding to ∆ = 3, indicates that the experimental objective of an
etch rate of 1000 Å/min has been met. Note that the actual etch response (1040) is slightly
lower than our predicted one (1044.125).

Considering our success, it might be tempting to explore farther along the path. Actually,
the conventional wisdom here – once substantially outside the original experimental region –
would be to re-design an experiment centered at the new best value in order to allow for a
potential mid-course correction, i.e., to better align the estimated and actual path of steepest
ascent. Before turning to another, bigger example, let’s take a moment to codify the method
in terms of an easy-to-find (and follow) algorithm, say for help on homework exercises (§3.3).
The description in Algorithm 3.1 is liberally cribbed from Myers et al. (2016).

A bigger example: shrinkage

To accommodate for shrinkage6 in injection-molding processes it’s common for dies for parts
to be built larger than their nominal, or desired size. In order to minimize the amount of
shrinkage for a particular part, an experiment was conducted varying four factors known to
impact shrinkage. The experiment consisted of an un-replicated 24 factorial design using the
factors outlined in Table 3.4.

Let’s extract those ranges as an R matrix so that they may be used by the implementation
to follow.

6http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/process/physics/b3500001.htm

http://www.dc.engr.scu.edu/cmdoc/dg_doc/develop/process/physics/b3500001.htm
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Algorithm 3.1 Steepest Ascent for First-Order Models

Assume that the point x1 = x2 = · · · = xm = 0 is the base or origin point.

Require fitted first-order model with coefficients b1, . . . , bm.

Then
1. Choose a reference variable index j ∈ {1, . . . ,m}. It doesn’t matter which; common

choices include:
a. the variable with the largest absolute coefficient |bj |, possibly adjusted by

standard error |bj |/sbj ;
b. the input most familiar to the practitioner;
c. the variable with the widest (relative) range as measured in natural units.

2. Choose a step size ∆xj in coded units.
3. Calculate the step size in the other variables relative to xj .

∆xk = bk
bj/∆xj

, k 6= j

Return ∆xk, for k = 1, . . . ,m, possibly after first mapping from coded back to natural
variables.

TABLE 3.4: Mapping of shrinkage inputs.

Factor Name (natural units) -1 +1
x1 Injection velocity (ft/sec) 1.0 2.0
x2 Mold temperature (°C) 100 150
x3 Mold pressure (psi) 500 1000
x4 Back pressure (psi) 75 120

r <- cbind(c(1,2), c(100, 150), c(500,1000), c(75,120))
colnames(r) <- c("vel", "temp", "mpress", "bpress")

The center of the space, representing our baseline setting, is . . .

base <- r[1,] + (r[2,] - r[1,])/2
base

## vel temp mpress bpress
## 1.5 125.0 750.0 97.5

. . . in natural units. This corresponds to the zero vector on the coded scale. Unfortunately
we don’t have access to the actual observed responses (which are measured in units of 10−4

as deviations from nominal) at each input combination, but we do have a first-order model
fit to that data (in coded units):

ŷ = 80− 5.28x1 − 6.22x2 − 1.21x3 − 1.07x4.

Following Step 1 in Algorithm 3.1, suppose that we were to select x1 as the reference variable
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TABLE 3.5: Steps along path of steepest ascent for shrinkage example.

x1 x2 x3 x4 ft/sec °C psi psi
Base +0∆ 0 0.000 0.0000 0.0000 1.5 125.0 750.0 97.5
Base +1∆ 1 1.178 0.2292 0.2026 2.0 154.5 807.3 102.1
Base +2∆ 2 2.356 0.4583 0.4053 2.5 183.9 864.6 106.6
Base +3∆ 3 3.534 0.6875 0.6079 3.0 213.4 921.9 111.2
Base +4∆ 4 4.712 0.9167 0.8106 3.5 242.8 979.2 115.7

defining the step size. In Step 2 choose ∆x1 = 1, corresponding to a 0.5 ft/sec injection
velocity. Then, relative to that choice we have the following adjustments ∆.

b <- c(-5.28, -6.22, -1.21, -1.07)
delta <- b/b[1]
delta

## [1] 1.0000 1.1780 0.2292 0.2027

R code below gathers input settings, collected into a data.frame, along the path of steepest
descent up to 4∆ in coded units.

path <- rbind(0,
apply(matrix(rep(delta, 4), ncol=4, byrow=TRUE), 2, cumsum))

colnames(path) <- paste0("x", 1:4)
rownames(path) <- paste0("Base +", 0:4, "∆")

Before displaying coordinates on the path, let’s convert to natural units. The corresponding
changes on that scale are . . .

dnat <- delta*(r[2,] - r[1,])/2
dnat

## vel temp mpress bpress
## 0.50 29.45 57.29 4.56

. . . augmenting our data.frame as shown in Table 3.5.

pnat <- rbind(base, matrix(rep(base, 4), ncol=4, byrow=TRUE) +
apply(matrix(rep(dnat, 4), ncol=4, byrow=TRUE), 2, cumsum))

colnames(pnat) <- c("ft/sec", "°C", "psi", "psi")
rownames(pnat) <- rownames(path)
kable(cbind(path, pnat), digits=5,
caption="Steps along path of steepest ascent for shrinkage example.")

Then it’s simply a matter of convincing whomever manages the process to tinker with
settings along that schedule. Sometimes that’s easier said than done. It could help to give
them an inkling of the likelihood of success, especially when it comes to exploring 4∆ away
from the center point, which may be well outside the bounding box of the original experiment.
Besides eliminating statistically useless predictors, so far the procedure lacks a fundamental
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– some may say hallmark – aspect of statistical decision making: an acknowledgment of
sampling variability. So far it’s just least squares and calculus.

3.1.2 Confidence regions

Understanding uncertainty is key to effective analysis, and incorporating that uncertainty
into decision making is a recurring theme in this text. Doing so isn’t always an easy task,
sometimes involving many shortcuts or conversely requiring Monte Carlo to obtain a rough
accounting of prevailing variabilities. Fortunately, in the case of linear/first-order models
the process is rather straightforward thanks to a high degree of analytical tractability in
requisite calculations. The resulting uncertainty set, which is actually a range of angles
tracing out a cone around the path of steepest ascent, can be of great value to practitioners.
A tight region around the path (narrow set of angles) indicates promise for success; a looser
set may suggest any new runs are speculative and may not be worth the cost.

An underlying theme in our presentation here is one of propagating uncertainty. The path
of steepest ascent is based on estimated regression coefficients, which in turn have sampling
distributions whose standard errors are readily available in output summaries from software.
Introductory regression texts would have a section explaining how that variability propagates
to predictive equations, leading to predictive intervals. Here we show how they may be
propagated to the path of steepest ascent.

We have seen how m least squares estimated slope coefficients b1, b2, . . . , bm determine
the path of steepest ascent in an m-dimensional design space, via movement relative to
a reference coordinate xj . Standard errors for those coefficients are derived, in a classical
linear modeling setup, by comparing estimated bj coefficients to their true but unknown
values βj . Specifically, if tνb is the standard (mean zero, scale one) Student-t distribution7

with νb degrees of freedom (DoF), then

bj − βj
sbj

∼ tn−m−1, for j = 1, . . . ,m. (3.2)

The shorthand bj ∼ tνb(βj , s2
bj

), mimicking the parameterization of a Gaussian distribution,
is common. Here DoF νb = n−m− 1 is the same for all j. Sampling distribution scales s2

bj
,

whose formulas can be found in most regression texts (more in §3.2.3), are usually unique to
each coordinate j. However it turns out that in the case of a standard two-level orthogonal
design on coded inputs they’re constant across j. That is, s2

bj
≡ s2

b for all j ∈ {1, . . . ,m}, a
fact which we shall leverage shortly in order to simplify calculations.

Now recall that one moves along the path of steepest ascent as xj = ρbj , so reversing that
logic a bit and assuming the first-order model is correct (at least locally), we have

βj = γXj , j = 1, . . . ,m.

In other words, the true path may be traced via true but unknown coefficients βj and unob-
served constants Xj , called direction cosines. Direction cosines are merely a mathematical
device that allows one to ask about the chance, according to the sampling distribution, that
particular coordinates are on the true path. Now γ, another unknown quantity, is the analog

7https://en.wikipedia.org/wiki/Student’s_t-distribution

https://en.wikipedia.org/wiki/Student's_t-distribution
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of ρ for true coefficients βj and direction cosines Xj . This setup suggests a mechanism for
pinning down γ through the following regression model without an intercept:

bj = γXj + εj , j = 1, . . . ,m,

leading to ordinary least squares solution

γ̂ =
∑m
j=1 bjXj∑m
j=1X

2
j

.

The usual residual sum of squares estimate of the variance of εj is

s2∗
b = 1

m− 1

m∑
j=1

(bj − γ̂Xj)2 on m− 1 DoF.

Since s2
b (our common variance for bj from the sampling distribution under a certain two-

level orthogonal design) and s2∗
b are scaled residual sums of squares, they’re χ2 distributed.

Moreover they’re independent, so their ratio has an F distribution8,

s2∗
b

s2
b

∼ Fm−1,νb

which can be used to outline a confidence region for direction cosines Xj . A 100(1− α)%
confidence region is defined as the central set of X1, . . . , Xm-values for which

m∑
j=1

(bj − γ̂Xj)2/(m− 1)
s2
b

≤ Fαm−1,νb ,

where Fαm−1,vb is the 100(1− α)% point of the F distribution with m− 1 numerator and νb
denominator DoF.

This region turns out to be a cone, or a hypercone in more than three variables. The
apex of the hypercone is at the design origin. (Remember these are coded variables!) After
expanding out γ̂ and considering, say, all points at unit distance from the origin, i.e.,
satisfying

∑
j X

2
j = 1, one obtains the following confidence hyper-ring:

m∑
j=1

b2j −

(∑m
j=1 bjXj

)2

(m− 1)
∑m
j=1X

2
j

≤ s2
bF

α
m−1,νb .

To see how to use that result, consider our earlier example (3.1) where b1 = 3 and b2 = −1.5.
Since that example didn’t use actual data, we don’t have estimates of standard error to
work with, so let’s further suppose here that the variances of the coefficients were s2

b = 1
4 ,

under νb = 4 DoF. Given those values and . . .

qf(0.95, 1, 4)

## [1] 7.709

8https://en.wikipedia.org/wiki/F-distribution

https://en.wikipedia.org/wiki/F-distribution
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. . . the 95% confidence region for the path of steepest ascent at a fixed distance X2
1 +X2

2 = 1.0
is determined by solutions (X1, X2) to

9 + 2.25− (3X1 − 1.5X2)2 ≤ 1
4(7.71),

or (3X1 − 1.5X2)2 ≥ 9.3225.

Well that’s neat, but what can we do with that? One option is to simply plug-in Xj-values
and see if they’re “in there”. If they are, then we can (loosely) say that we have a high
confidence that they could be on the true path of steepest ascent. The correct interpretation
is that we can’t reject the null hypothesis, at the 5% level, that they’re on the path of
steepest ascent. In 2d and maybe 3d you can plot, but such graphics are prettier than they
are useful. Figure 3.4 captures the confidence set above visually by extending Figure 3.1.
Green dots are inside and red dots, as well as all points in the left quadrants, are outside.

x1 <- seq(0, 1, length=1000)
x2 <- sqrt(1 - x1^2)
x1 <- c(x1, x1)
x2 <- c(x2, -x2)
ci95 <- (3*x1 - 1.5*x2)^2 >= 9.3225
plot(0, type="n", xlim=c(-2,3.5), ylim=c(-2,3.5), xlab="x1", ylab="x2")
points(D, pch=19)
points(0, 0)
arrows(0, 0, 3, -1.5)
points(x1, x2, col=2 + ci95, pch=19, cex=0.5)

-2 -1 0 1 2 3
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1
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FIGURE 3.4: Confidence region along the path of steepest ascent, extending Figure 3.1.

Tracing out a full confidence hypercone, i.e., for non-unit distances from the origin, is left
to an exercise in §3.3. The width of the hypercone – size of the green area in Figure 3.4 –
increases as distance (X1 +X2)2 increases from the center of the design region. The rate of
that increase can be depicted by an angle θ indicating directions included in (or excluded
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from) the 95% confidence region, giving a sense of the tightness of the region. It turns out
that

θ = arcsin
{

(m− 1)s2
bF

α
m−1,νb∑m

j=1 b
2
j

}1/2

.

Returning back to our simple example (3.1), we have the following.

theta <- asin(sqrt(0.25*7.71*(1/11.25)))
theta

## [1] 0.4268

So the interpretation is that angles lower than around 0.43 radians, or 24◦, are within the
confidence region for any particular fixed distance from the center of the design. Larger
angles are outside. Since this simple example is two-dimensional, this means that the green
arc in Figure 3.4 traces out about 48◦ which is 100× 48/360 = 13.33% of the input space,
i.e., excluding 86.67 degrees. Obviously the larger the amount excluded the better, indicating
greater knowledge about the computed path of steepest ascent.

3.1.3 Constrained ascent

It can happen that a steepest ascent path moves into an impermissible region of the design
space, for one or more variables. The simplest example of this is where an input exceeds
the practical limits of the apparatus involved in the process or experiment. In such cases,
we desire a modified path of ascent with a constraint imposed. Here focus is on constraints
which may be coded in linear combination, nesting bound constraints as a special case.
Extensions for multiple linear constraints are a matter of repeated application, which may
be easier said than done. The presentation here is provided primarily as a precursor to
our later, far more generic treatment of constrained Bayesian optimization in §7.3.1 where
multiple (even nonlinear and unknown) constraints are handled in a unifying framework.

Consider a boundary constraint of the form

c0 +
m∑
j=1

cjxj ≤ 0,

where possibly some cj = 0, indicating that variable j is unconstrained. Usually the constraint
is formulated in the natural (uncoded) variable, in which case it must first be written in
coded form for manipulation.

How do we go about finding the path of steepest ascent subject to a constraint? The recipe
is pretty simple if the starting point is within the constraint satisfaction region. Begin by
proceeding along the path of steepest ascent, starting at the center of the design, until the
path meets the constraint boundary, which is a line when m = 2 or a (hyper) plane for
m > 2. Let O denote the intersection point between steepest ascent path and constraint
boundary. From O follow a modified path that modulates steepest ascent in light of the
constraint, the description of which will be provided shortly.

As a warm-up example, consider the following setup in m = 2 input dimensions. Suppose the
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unconstrained path of steepest ascent is defined as x2 = 2x1 and the constraint boundary
follows the formula above, with equality, using constants (c0, c1, c2) = (4, 1,−2) such that

0 = c0 + c1x1 + c2x2

x2 = −c0
c2
− c1
c2
x1

= 2 + 0.5x1.

Those two lines intersect when

2x1 = 2 + 0.5x1 → (x1, x2) = (4/3, 8/3),

defining the point O = (4/3, 8/3).

O <- c(4/3, 8/3)

Figure 3.5 shows the path of steepest ascent in red, originating from (0, 0) and proceeding
until O is reached. Once at O a modified path proceeds along the constraint boundary shown
in green, following the direction best aligned with that of steepest ascent.

plot(0,0, type="n", xlab="x1", ylab="x2", xlim=c(0,4), ylim=c(0,5))
arrows(0, 0, O[1], O[2], col=2, lwd=3)
arrows(O[1], O[2], 3, 2 + 3/2, col=3, lwd=3)
text(O[1] - 0.1, O[2] + 0.2, "O")
abline(0, 2, lty=2)
abline(2, 0.5, lty=3)
text(1.5, 1, "steepest ascent", col=2)
text(2.5, 2.7, "constrained", col=3)
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FIGURE 3.5: Modified path under constrained steepest ascent.

Although visually intuitive in two dimensions, the scheme requires a bit of math to opera-
tionalize more generally. That is, to determine the vector (in particular the direction) of
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ascent once the intersection point O is reached. Observe that the modified path can be
parameterized by the vector bj − dcj , for j = 1, . . . ,m, for which

m∑
j=1

(bj − dcj)2 is minimized.

In other words, the direction along the constraint line (or plane) is taken so as to be the
closest to the original path. Just like with our confidence region calculations above, this
is another “funny regression” situation in which bj are being regressed against cj , without
an intercept, through which we calculate a coefficient d, playing here the role of regression
slope. Ordinary least squares calculations give

d =
∑m
j=1 bjcj∑m
j=1 c

2
j

.

Using that value, the modified portion of the path would begin at O and proceed in the
direction described by an m-vector with components bj − dcj , for j = 1, . . . ,m. How to
find the intersection point O? In our simple example we expressed the steepest ascent and
constraint relationships as x2 in terms of x1. Setting the two x2 expressions equal to one
another allowed us to solve for x1. That’s made more general as follows. We know that a
steepest ascent path is given by xj = ρbj , for j = 1, . . . ,m and that c0 +

∑m
j=1 cjxj = 0

must also hold. Therefore, they collide at ρ0 satisfying

c0 +

 m∑
j=1

cjbj

 ρo = 0. Solving gives ρo = −c0∑m
j=1 cjbj

.

Using that calculation, coordinates of the intersection point are given as O = (xo1, . . . , xom)
where xoj = ρobj , for j = 1, . . . ,m. One may then move along the modified portion of the
path, starting at O, following

xj = xoj + λ(bj − dcj),

where d is determined by the least squares solution, above, and λ ≥ 0 is chosen by the
practitioner. In this way the process for following the modified path is identical to that in
Algorithm 3.1 except that the starting point is O rather than the zero-vector, and coefficient
bj is replaced by bj − dcj .

Example: fabric strength

This example concerns the breaking strength in grams per square inch of a certain type of
fabric as a function of three components ξ1, ξ2, ξ3. Raw data is unavailable, but Table 3.6
provides ranges from an experiment involving three input variables which are measured in
grams.

Consider a constraint on the first two variables, ξ1 and ξ2, as follows:

ξ1 + ξ2 ≤ 500.

The first step is to transform to coded variables, in particular mapping the constraint to
coded variables. R code below derives constants involved in that enterprise.
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TABLE 3.6: Summarizing fabric strength data.

Material -1 +1
1 100 150
2 50 100
3 20 40

upper <- c(150, 100, 40)
lower <- c(100, 50, 20)
scale <- (upper - lower)/2
shift <- scale + lower
toxi <- data.frame(scale=scale, shift=shift)
toxi

## scale shift
## 1 25 125
## 2 25 75
## 3 10 30

That results in the following mapping,

x1 = ξ1 − 125
25 x2 = ξ2 − 75

25 x3 = ξ3 − 30
10 ,

whose inverse is straightforward and will be provided below. Under this mapping the
constraint reduces to

25x1 + 25x2 ≤ 300,

which leads to the following constants c0, c1, c2, c3:

c <- c(-300, 25, 25, 0)

Since we don’t have the data we can’t perform a fit, but suppose we have the following from
an off-line analysis,

ŷ = 150 + 1.7x1 + 0.8x2 + 0.5x3,

represented in R as b below.

b <- c(150, 1.7, 0.8, 0.5)

Now ρo can be calculated as . . .

rhoo <- -c[1]/sum(c[-1]*b[-1])
rhoo

## [1] 4.8



80 3 Steepest Ascent and Ridge Analysis

. . . and as a result the modified path starts at:

xo <- rhoo*b[-1]
xo

## [1] 8.16 3.84 2.40

Ordinary least squares provides d.

d <- as.numeric(coef(lm(b[-1] ~ c[-1] - 1)))
d

## [1] 0.05

Then the coordinates of the hybrid path, including ordinary steepest ascent up to O and
modified thereafter, are given by the following function of the quantities above. Step sizes
are controlled with scale parameter (vector) λ specified by the practitioner.

hpath <- function(lambda, b, c, rhoo, d)
{
## steepest ascent up to one step past the constraint boundary
delta <- b/b[1]
path <- matrix(0, ncol=length(b), nrow=1)
while(1) {
lpath <- nrow(path)
path <- rbind(path, path[lpath,] + delta)
if(c[1] + sum(path[lpath + 1,]*c[-1]) > 0) break

}

## intersection point plus steps along the modified portion
cpath <- rhoo*b
for(i in 1:length(lambda)) {
cpath <- rbind(cpath, rhoo*b + lambda[i]*(b - d*c[-1]))

}

## pasting the hybrid path together and naming the rows and columns
path <- rbind(path[1:lpath,], cpath)
colnames(path) <- paste("x", 1:length(b), sep="")
rownames(path) <- c(rep("u", lpath), "o", rep("c", length(lambda)))
return(path)
}

Notice that the function makes several assumptions, including

• lambda should not contain zero, but the zero setting (corresponding to intersection O)
is automatically calculated and included in the hybrid path;

• the steepest ascent path must eventually violate the constraint, otherwise there’s an
infinite loop;

• the baseline variable is x1, corresponding to j = 1 in Algorithm 3.1.

Evaluating hpath with a sequence of lambda values, chosen somewhat arbitrarily, provides
coordinates along the hybrid steepest ascent and modified path.
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TABLE 3.7: Coordinates on hybrid path.

xi1 xi2 xi3
u 125.0 75.00 30.00
u 150.0 86.76 32.94
u 175.0 98.53 35.88
u 200.0 110.29 38.82
u 225.0 122.06 41.76
u 250.0 133.82 44.71
u 275.0 145.59 47.65
u 300.0 157.35 50.59
u 325.0 169.12 53.53
o 329.0 171.00 54.00
c 340.2 159.75 59.00
c 351.5 148.50 64.00
c 362.8 137.25 69.00
c 374.0 126.00 74.00

lambda <- c(1,2,3,4)
path <- hpath(lambda, b[-1], c, rhoo, d)

Finally, we may use toxi to map the hybrid path to the natural scale before formatting it
for display in Table 3.7.

A <- matrix(rep(toxi[,1], nrow(path)), ncol=ncol(path), byrow=TRUE)
B <- matrix(rep(toxi[,2], nrow(path)), ncol=ncol(path), byrow=TRUE)
pathxi <- A * path + B
colnames(pathxi) <- paste("xi", 1:3, sep="")
kable(pathxi, caption="Coordinates on hybrid path.")

The first row is the center of the design region, and the tenth records point O, both on the
natural scale. Observe that most of the coordinates on the hybrid path are well outside of
the bounding box of the original design. Perhaps it’s unwise to venture out into that region
before performing a new experiment – potentially leading to a course correction – part way
between the edge of that box and O. With that logic, a good candidate for the center point
of the new design may be the fourth or fifth step along the hybrid path:

pathxi[4:5,]

## xi1 xi2 xi3
## u 200 110.3 38.82
## u 225 122.1 41.76

What to do if we encounter runs in a follow-up experiment that don’t show improvement in
the response? This may indicate that the first-order model isn’t a good approximation. A
notion of “locale” might not be appropriate in this wider design space. Higher-order modeling
could help, motivating the methods in the next section.
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3.2 Second-order response surfaces

We can only get so far with steepest ascent on first-order fits, even with interactions.
Linear models only offer decent approximation locally. That local scope may in practice
be exceedingly small, especially near the optimal input configuration. Eventually observed
responses will systematically diverge from estimated ones along the steepest ascent path, at
least for most interesting problems. Divergence could be substantial. When that happens it’s
worth entertaining a richer class of models, the simplest of which is a second-order (linear)
model.

As a reminder, the second-order model is characterized by the following linear equation.

y = β0 +
m∑
j=1

βjxj +
m∑
j=1

βjjx
2
j +

∑ m∑
j<k

βjkxjxk + ε

I won’t spend much time on appropriate designs for second-order models. However it’s worth
noting that, since the model contains 1 + 2m+m(m− 1)/2 parameters, the design must
therefore contain at least as many distinct locations in order for all unknown regression
coefficients β to be estimable via least squares/likelihood-based methods. Moreover the
design must contain at least three levels of each variable to estimate any pure quadratic
terms. For more details on design for second-order models see Chapters 8–9 of Myers et al.
(2016).

3.2.1 Canonical analysis

All second-order response surface models have a stationary point which, as shown visually
in Figures 1.5–1.8, may be a maximum, minimum, or a saddle point. When the stationary
point is a saddle point, the model is sometimes called a saddle or minimax system. Detecting
the nature of the system with a design focused around nearby operating conditions, and
determining the location of the stationary point, represent an integral first step in second-
order analysis. As in the direction of the path of steepest ascent, the nature and location
of a stationary point depends on the signs and magnitudes of estimated coefficients. In
particular, estimated interaction/pure quadratic effects play a vital role, and their standard
errors convey uncertainty about local behavior of the system.

As a simple example to fix ideas before delving deeper, consider a fitted second-order model
given by

ŷ = 100 + 5x1 + 10x2 − 8x2
1 − 12x2

2 − 12x1x2. (3.3)

Because m = 2, simple graphics can help determine the location and nature of the stationary
point. The code chunk below defines the fit, and then evaluates it on a grid in a rectangular
input domain.

second.order <- function(x1, x2)
{
100 + 5*x1 + 10*x2 - 8*x1^2 - 12*x2^2 - 12*x1*x2
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}

x1 <- x2 <- seq(-4, 4, length=100)
g <- expand.grid(x1, x2)
y <- matrix(second.order(g[,1], g[,2]), ncol=length(x2))

Figure 3.6 shows the fit in perspective (left) and image/contour (right) formats. Recall that
lighter colors correspond to higher values.

par(mfrow=c(1,2))
persp(x1, x2, y, theta=30, phi=30, zlab="eta", expand=0.75, lwd=0.25)
image(x1, x2, y, col=cols)
contour(x1, x2, y, add=TRUE)
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FIGURE 3.6: Simple maximum second-order response surface following Eq. (3.3).

By inspection, the response surface is concave down, a simple maximum like in Figure 1.5.
Evidently it’s maximized near the origin, perhaps with x2 a little above zero. No need to
ballpark it when we can find coordinates precisely. Calculus says that the stationary point is
the solution to

∂ŷ

∂x1
= 0 and ∂ŷ

∂x2
= 0.

This results in a system of linear equations . . .

16x1 + 12x2 = 5
12x2 + 24x2 = 10,

. . . which can be solved in R as follows.
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dy <- rbind(c(16, 12), c(12, 24))
xh <- solve(dy, c(5,10))
yh <- 100 + 5*xh[1] + 10*xh[2] - 8*xh[1]^2 - 12*xh[2]^2 - 12*xh[1]*xh[2]
c(x1=xh[1], x2=xh[2], y=yh)

## x1 x2 y
## 0.0000 0.4167 102.0833

Therefore, the stationary point is at (x̂1, x̂2) = (0, 0.42), and the response value at that
location is ŷ(x̂) = 102.1. To abstract a bit, towards obtaining a more generic recipe, it helps
to write the fitted model in matrix notation as follows.

ŷ = b0 + x>b+ x>Bx

Above, the scalar b0, m-vector b, and m×m matrix B are estimates of intercept, linear (or
main effects), and second-order coefficients, respectively. Specifically, B is the symmetric
matrix

B =


b11 b12/2 · · · b1m/2

b22 · · · b2m/2
. . .

...
sym. bmm


containing all coefficients in front of features which are derived from original inputs (§3.2)
through products xjxk giving

x>Bx =
m∑
j=1

bjjx
2
j +

∑ m∑
j<k

bjkxjxk.

The 1/2 term arises due to the symmetry of B, so that two contributions add up to one in
the final sum. Setting up those quantities for our toy 2d example visualized in Figure 3.6
proceeds as follows in R.

b0 <- 100
b <- c(5, 10)
B <- matrix(c(-8, -12/2, -12/2, -12), ncol=2, byrow=TRUE)
B

## [,1] [,2]
## [1,] -8 -6
## [2,] -6 -12

At first this representation (especially the B matrix) seems too clever by half. Are double-
sums really that bad? But the investment is worth its weight in implementation simplicity,
and in off-loading to matrix properties for interpretation. For example, in this formulation
it’s straightforward to give a general expression for the location of the stationary point, xs.
One can differentiate ŷ with respect to x to obtain
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∂ŷ

∂x
= b+ 2Bx,

giving xs = −1
2B
−1b

after setting equal to zero and solving. The predicted response at the stationary point is
obtained by plugging xs back into the quadratic form for ŷ:

ŷs = b0 + x>s b+ x>s Bxs

= b0 + x>s b−
1
2b
>B−1Bxs

= b0 + 1
2x
>
s b.

Double-checking those formulas in R with our results above for the toy 2d example (3.3)
indicates success.

xs <- - 0.5*solve(B) %*% b
ys <- b0 + 0.5*t(xs) %*% b
sols <- rbind(h=c(xh, yh), s=c(xs, ys))
colnames(sols) <- c("x1", "x2", "y")
sols

## x1 x2 y
## h 0 0.4167 102.1
## s 0 0.4167 102.1

Now the nature of the stationary point is determined from the signs of the eigenvalues of the
matrix B, the relative magnitudes of which are key to interpretation. Such is the real value
in investing in a matrix representation. Technically, location of the stationary point and its
predicted response are not material to analysis of B. However re-centering the system at xs
does aid interpretation. Translation and rotation of the axes, and inspection of eigenvalues
described below, is referred to as the canonical analysis of the response system.

Toward that end, let z = x− xs so that

ŷ = b0 + (z + xs)>b+ (z + xs)>B(z + xs)
= [b0 + x>s b+ x>s Bxs] + z>b+ z>Bz + 2x>s Bz
= ŷs + z>Bz.

Again, ŷs is the estimated response at the stationary point, and thus the final step comes
from xs = − 1

2B
−1b, giving 2x>s Bz = −z>b.

Once the system is centered at xs, the next step is to rotate axes according to their principal
components – in other words, to determine the principal axes of contours of the response
surface. Let P be an m×m matrix whose columns contain normalized eigenvectors associated
with eigenvalues of B. Denote Λ = P>BP as the diagonal matrix of eigenvalues λ1, . . . , λm
corresponding to that system. Now, if w = P>z, then
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ŷ = ŷs + w>P>BPw

= ŷs + w>Λw

= ŷs +
m∑
j=1

λjw
2
j . (3.4)

These w1, w2, . . . , wm are called canonical variables, and form the basis for principal axes.
The final line in the equations above nicely describes the nature of the stationary point xs
via signs and relative magnitudes of eigenvalues λ1, . . . , λm.

1. If the λj are negative for all j, the stationary point corresponds to a local maxima.
2. If λj are positive for all j, we have a local minima.
3. If any λj and λk for j 6= k have mixed sign, we have a saddle point.

The development below explores some of these quantities on our running toy 2d example
(Eq. (3.3) and Figure 3.6). To start with, eigenvalues may be calculated as follows.

E <- eigen(B)
lambda <- E$values
o <- order(abs(lambda), decreasing=TRUE)
lambda <- lambda[o]
lambda

## [1] -16.325 -3.675

Notice that both are negative, suggesting the stationary point xs is a maximum. (We already
knew that, but it doesn’t hurt to check understanding.) The code stores eigenvalues in
decreasing order. Observe that the first principal axis is elongated relative to the other by
nearly a factor of four. Actually those numbers are in units of squared distance in the input
space, so the true scaling factor is more like two. Code below extracts eigenvectors, taking
their ordering from the eigenvalues.

V <- E$vectors[,o]

These eigenvectors have unit norm, so it can help to scale them a bit when visualizing.
Figure 3.7 shows principal axes estimated for this response surface, upscaling eigenvectors
by a factor of ten so that they cover the entire range of x1 and x2.

image(x1, x2, y, col=cols)
contour(x1, x2, y, add=TRUE)
lines(c(-V[1,1], V[1,1])*10 + xs[1], c(-V[2,1], V[2,1])*10 + xs[2], lty=2)
lines(c(-V[1,2], V[1,2])*10 + xs[1], c(-V[2,2], V[2,2])*10 + xs[2], lty=2)

When we work with the system in canonical variables through

ŷ = 102.0833− 16.3246w2
1 − 3.6754w2

2

we’re essentially working on the original system pictured above, although there’s rarely a
good reason to do so in practice. Eigenvalue analysis gives us all the information we need to
proceed with further calculations, directly on original or coded inputs. Before outlining next
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FIGURE 3.7: Principal axes for the response surface in Eq. (3.3).

steps, the example below provides a second look, but in a somewhat more realistic setting
with a response surface estimated from actual data.

Example: chemical process

Consider an investigation into the effect of two variables, reaction temperature (ξ1) and
reactant concentration (ξ2), on the percentage conversion of a chemical process (y). By way
of a bit of back-story, we arrived at the current setup after an initial screening experiment
was conducted involving several factors, with temperature and concentration being isolated
as the two most important variables. Since experimenters believed that the process was
operating in the vicinity of the optimum, a quadratic model is appropriate for the next stage
of analysis. Measurements of the response variables were subsequently collected on a central
composite design whose center point was replicated four times.

chem <- read.table("chemical.txt", header=TRUE)
uchem <- unique(chem[,1:2])
reps <- apply(uchem, 1,

function(x) { sum(apply(chem[,1:2], 1, function(y) { all(y == x) })) })

Figure 3.8 provides a visualization of that design.

plot(uchem, type="n")
text(uchem, labels=reps)

Note that the data file contains measurements in both natural and coded units. After
expanding out into squared and interaction features, the second-order model may be fit to
these data (in coded units) with the following code.
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FIGURE 3.8: Central composite design for an experiment involving a chemical process.

TABLE 3.8: Chemical process data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 79.750 1.2462 63.996 0.0000
x1 10.178 0.8812 11.551 0.0000
x2 4.216 0.8812 4.785 0.0030
x11 -8.500 0.9852 -8.628 0.0001
x22 -5.250 0.9852 -5.329 0.0018
x12 -7.750 1.2462 -6.219 0.0008

X <- data.frame(x1=chem$x1, x2=chem$x2, x11=chem$x1^2, x22=chem$x2^2,
x12=chem$x1*chem$x2)

y <- chem$y
fit <- lm(y ~ ., data=X)
kable(summary(fit)$coefficients, caption="Chemical process data.")

Observe in Table 3.8 that all estimated coefficients are statistically significant at the typical
5% level. The fitted model may be summarized as

ŷ = 79.75 + 10.18x1 + 4.22x2 − 8.50x2
1 − 5.25x2

2 − 7.75x1x2.

To obtain some visuals, code below builds a predictive grid in natural inputs, and converts
these into coded units for prediction.

r <- cbind(c(200, 250), c(15,25))
d <- (r[2,] - r[1,])/2
xi1 <- seq(min(chem$temp), max(chem$temp), length=100)
xi2 <- seq(min(chem$conc), max(chem$conc), length=100)
xi <- expand.grid(xi1, xi2)
x <- cbind((xi[,1] - r[2,1] + d[1])/d[1], (xi[,2] - r[2,2] + d[2])/d[2])
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Using that grid in coded units, a data.frame of features is built, and fed into the predict.lm
method.

XX <- data.frame(x1=x[,1], x2=x[,2],
x11=x[,1]^2, x22=x[,2]^2, x12=x[,1]*x[,2])

p <- predict(fit, newdata=XX)

Figure 3.9 shows an image/contour view into those predictions on natural axes.

xlab <- "Temperature (°C)"
ylab <- "Concentration (%)"
image(xi1, xi2, matrix(p, nrow=length(xi1)),
col=cols, xlab=xlab, ylab=ylab)

contour(xi1, xi2, matrix(p, nrow=length(xi1)), add=TRUE)
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FIGURE 3.9: Fitted response surface for chemical process data whose fit is summarized
in Table 3.8.

Canonical analysis begins by determining the location of stationary point xs. Essentially
cutting-and-pasting from above . . .

b <- coef(fit)[2:3]
B <- matrix(NA, nrow=2, ncol=2)
diag(B) <- coef(fit)[4:5]
B[1,2] <- B[2,1] <- coef(fit)[6]/2
xs <- -(1/2)*solve(B, b)
xs

## [1] 0.62648 -0.06088

. . . which is converted back to natural units as follows.
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xis <- xs*d + (r[2,] - d)
xis

## [1] 240.7 19.7

A check that this is correct is deferred until after we calculate canonical axes, below. Both
eigenvalues of B are negative, so the stationary point is a maximum (as is obvious by
inspecting the surface in Figure 3.9).

E <- eigen(B)
E

## eigen() decomposition
## $values
## [1] -2.673 -11.077
##
## $vectors
## [,1] [,2]
## [1,] 0.5537 -0.8327
## [2,] -0.8327 -0.5537

The code below saves those values, re-ordering them by magnitude, extracts eigenvectors (in
that order), and converts them to their natural scale for visualization.

lambda <- E$values
o <- order(abs(lambda), decreasing=TRUE)
lambda <- lambda[o]
V <- E$vectors[,o]
Vxi <- V
for(j in 1:ncol(Vxi)) Vxi[,j] <- Vxi[,j]*d*10

We may then depict those axes, which intersect at stationary point xs, as in Figure 3.10.

image(xi1, xi2, matrix(p, nrow=length(xi1)), col=cols, xlab=xlab, ylab=ylab)
contour(xi1, xi2, matrix(p, nrow=length(xi1)), add=TRUE)
lines(c(-Vxi[1,1], Vxi[1,1])+xis[1], c(-Vxi[2,1], Vxi[2,1])+xis[2], lty=2)
lines(c(-Vxi[1,2], Vxi[1,2])+xis[1], c(-Vxi[2,2], Vxi[2,2])+xis[2], lty=2)
points(xis[1], xis[2])
text(xis[1], xis[2], "xs", pos=4)

The canonical form of the second-order model is

ŷ = ŷs + λ1w
2
1 + λ2w

2
2,

where ŷs is computed as follows.

ys <- as.numeric(coef(fit)[1]) + drop(0.5*t(xs) %*% b)
ys
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FIGURE 3.10: Principal axes for response surface in Figure 3.9.

## [1] 82.81

So we have

ŷ = 82.8099− 11.0769w2
1 − 2.6731w2

2.

The input corresponding to (w1 = 0, w2 = 0), which is xs in coded units, is an obvious
candidate for a confirmation test or as the center of a new central composite design over a
narrower range of inputs. One potential criticism of this approach is that subsequent iterations
retain little memory of previous (expensive) experimental work. Local second-order Taylor
expansions are not well-suited to data collected at multiple – even somewhat nearby – locales.
This will remain a motivating theme for much of the more global, nonparametric surrogate-
based methods in later chapters. In the meantime, what happens when the eigenvalues aren’t
all of the same sign?

3.2.2 Ridge analysis

When the system involves a pure minimum or maximum the procedure outlined above
is fairly straightforward. But what happens when eigenvalues are mixed, or near zero?
It’s perhaps more common for data on real response surfaces to lead to estimated models
implying a degree of ambiguity. Saddle points are one possibility, although these are rather
less common in practice, suggesting a bifurcation in the input space. A far more involved
study may be required to choose between two or more competing locally optimal operating
regimes on submanifolds of the study region. The murky spaces in-between, when some
eigenvalues are approximately zero (and the others are of generally the same sign) are rather
more common. This scenario indicates an elongation of the surface in the canonical direction
corresponding to that eigenvalue, resulting in what’s called a ridge system. An expanded
toolset is required, not only to deal with uncertainties regarding the nature of the system
– to test for and detect the nature of ridges – but subsequently to decide how to iterate
towards improved operating conditions: to “rise the ridge”.
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TABLE 3.9: Linear model summary for rising ridge data.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.263 0.3894 129.079 0e+00
A -12.417 0.3099 -40.068 0e+00
B 8.283 0.3099 26.730 0e+00
A2 -4.108 0.4769 -8.614 3e-04
B2 -9.108 0.4769 -19.098 0e+00
AB 11.125 0.3795 29.312 0e+00

Ridge systems are classified into two types depending on the estimated location of the
stationary point xs, relative to the experimental design used to fit the second-order model.
If xs is within the region of the design then we have a stationary ridge system. This is a
fortunate circumstance since it means that many inputs, along the ridge, provide nearly the
same, almost optimal result. Practitioners therefore have some freedom to choose among
operating conditions along that ridge, perhaps according to other criteria. For example if
one setting along the ridge is easier to implement, or represents the smallest divergence from
previous operating conditions, that setting might be preferred over others. On the other
hand, if xs isn’t inside the design region, this suggests that additional experimentation may
be in order. We have a rising or falling ridge. Remote xs may be spurious, so small steps in
its direction are preferred over big jumps into a new regime. Any tests failing to reject a
hypothesis about one or more zero eigenvalues, leading to a ridge local to the current design,
will likely need to be re-evaluated in the new experimental region.

As a warm-up example to make things a little more concrete, consider data from an
experiment on a square region with two factors, A and B, using a central composite design
with three center runs. Code supporting the second-order summary provided in Table 3.9
reads in data, expands into second-order features and performs the least squares fit.

rr <- read.table("risingridge.txt", header=TRUE)
rr$A2 <- rr$A^2
rr$B2 <- rr$B^2
rr$AB <- rr$A*rr$B
fit <- lm(y ~ ., data=rr)
kable(summary(fit)$coefficients,
caption="Linear model summary for rising ridge data.")

Observe that t-tests indicate that all estimated coefficients are statistically significant. To
perform the canonical analysis, let’s extract the coefficients into vector b and matrix B, and
use those values to estimate xs.

b <- coef(fit)[2:3]
B <- matrix(NA, nrow=2, ncol=2)
diag(B) <- coef(fit)[4:5]
B[1,2] <- B[2,1] <- coef(fit)[6]/2
xs <- -(1/2)*solve(B, b)
xs

## [1] -5.177 -2.707
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Now, the bounding box of the design is . . .

apply(rr[,1:2], 2, range)

## A B
## [1,] -1 -1
## [2,] 1 1

. . . so xs is well outside the experimental region. Eigen-analysis indicates that xs is a
maximum, as both estimated eigenvalues are negative. However one of them is quite close to
zero.

E <- eigen(B)
lambda <- E$values
o <- order(abs(lambda), decreasing=TRUE)
V <- E$vectors[,o]*20
lambda <- lambda[o]
lambda

## [1] -12.7064 -0.5094

We’ll have to wait until §3.2.5 to say how close is close in statistically meaningful terms.
Here the point is that statistically significant regression coefficients don’t necessarily imply
that eigenvalues are (statistically) non-zero and vice versa. Coefficients can “cancel each
other out” when they work in concert to represent the estimated response surface. The
canonical form offers another view. Combining those eigenvectors and a calculation of ŷs . . .

ys <- coef(fit)[1] + 0.5*t(xs) %*% b
ys

## [,1]
## [1,] 71.19

. . . leads to the representation

ŷ = 71.1902− 12.7064w2
1 − 0.5094w2

2.

So the question is: should we ignore the second canonical axis by taking λ2
2 = 0? Although

testing for λ2
2 = 0 is technically a matter of statistical inference, the outcome of that test is

somewhat of a moot point since xs is so far outside the design region, and the first principal
axis has more than 24× the “weight” of the second-one. For all practical purposes, we have
a rising ridge scenario.

If that doesn’t make sense, perhaps the following visualization will help. Using the eigenvectors
and gathering predictions on a grid of inputs (A and B) chosen large enough to show all
relevant features, we obtain the picture provided by Figure 3.11.

x <- seq(-6, 6, length=100)
xx <- expand.grid(x, x)
XX <- data.frame(A=xx[,1], B=xx[,2], A2=xx[,1]^2,
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B2=xx[,2]^2, AB=xx[,1]*xx[,2])
p <- predict(fit, newdata=XX)
image(x, x, matrix(p, nrow=length(x)), col=cols, xlab="A", ylab="B")
contour(x, x, matrix(p, nrow=length(x)), add=TRUE)
lines(c(-V[1,1], V[1,1]) + xs[1], c(-V[2,1], V[2,1]) + xs[2], lty=2)
lines(c(-V[1,2], V[1,2]) + xs[1], c(-V[2,2], V[2,2]) + xs[2], lty=2)
polygon(c(1,1,-1,-1), c(1,-1,-1,1), lty=3)
text(0,-0.5, "design region", cex=0.5)
points(xs[1], xs[2])
text(xs[1], xs[2], "xs", pos=4)
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FIGURE 3.11: Visual of the rising ridge on principal axes whose stationary point xs is
far from the design region.

Regardless of whether or not λ2
2 is statistically zero, it’s both clear which way to move the

experimental region (toward xs) and foolish to trust xs and move the experimental design
all the way over there. It’s never a good idea to extrapolate too far outside the design region,
especially with linear models. It’ll be beneficial to develop a more formal framework for
deciding on next steps. When xs is closer to or within the design region, and/or when λs
are similar in magnitude, a more nuanced analysis may be warranted. In such cases it’ll be
crucial to link outcomes of statistical tests to knobs in our framework in order to cautiously
but expediently rise the ridge.

Ridge analysis is steepest ascent applied to second-order models. Since second-order models
are generally undertaken when the practitioner believes that s/he is quite near the region of
the optimum, ridge analysis is typically entertained only in such settings. However, as we saw
above, results from experiments may reveal a stationary point well outside the design region,
contradicting that belief. Most often this is an artifact of the local nature of analysis via
low-order polynomial (Taylor) approximation. Nevertheless, it’s important for practitioners
to keep an open mind, and let evidence in the data be suggestive, if not entirely authoritative,
nearby the experimental regime. But enough with disclaimers . . .

Consider the fitted second-order response surface model
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ŷ = b0 + x>b+ x>Bx.

Without loss of generality, presume that the center of the design region is x1 = · · · = xm = 0,
likely in coded units. In steepest ascent with first-order models we optimized the fitted
response surface under a constraint, lest the solution be out at infinity. While second-order
response surfaces may not as acutely suffer from that pathology, it’s nevertheless a good
idea to explore paths of steepest ascent with “baby steps”. In a ridge analysis, the custom is
to maximize (or minimize) ŷ subject to the constraint

x>x = R2.

Lagrange multipliers9 facilitate optimization by differentiating

L = b0 + x>b+ x>Bx− µ(x>x−R2)

with respect to the vector x.

∂L

∂x
= b+ 2Bx− 2µx

The constrained optimal stationary point is determined by setting that expression to zero
and then solving for x.

(B − µIm)x = −1
2b

x = −1
2(B − µIm)−1b

Notice how that solution looks like a ridge regression10 estimator. Although a coincidence
in terminology, that analogy serves as an easy way to remember the role of µ in a ridge
analysis.

Appropriate choices of µ depend upon eigenvalues of B, and whether ascent or descent is
desired. If a) µ > λmax, the largest eigenvalue of B, then x will be an absolute maximum for
ŷ subject to the constraint; otherwise if b) µ < λmin, then the solution will be an absolute
minimum. To get better intuition on why and how, consider the orthogonal matrix P that
diagonalizes B, i.e., P>BP = Λ, where Λ = diag(λ1, . . . , λm). Now for (B − µI), which
must be inverted to find x, we find that

P>(B − µI)P = Λ− µIm, since P>P = Im.

Observe that situation a) thus results in a negative definite B − µIm; and b) a positive
definite one. This result suggests, but doesn’t guarantee that x corresponds to an absolute
minima or maxima in ŷ; see Draper (1963) for more details.

Before turning to an example, let’s codify the steps in the form of pseudocode for easy
reference. Although applications of steepest ascent on ridge systems vary widely in practice,
the essence is often a variation on themes outlined in Algorithm 3.2. Step 5 of the algorithm
might benefit from elaboration. One typical approach here is to perform a bisection-style or

9https://en.wikipedia.org/wiki/Lagrange_multiplier
10https://en.wikipedia.org/wiki/Tikhonov_regularization

https://en.wikipedia.org/wiki/Lagrange_multiplier
https://en.wikipedia.org/wiki/Tikhonov_regularization
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Algorithm 3.2 Steepest Ascent for Second-Order Models

Assume we wish to maximize a second-order response surface (ascent); let x0 be the
design center, e.g., the origin in coded inputs.

Require fitted first-order model via intercept b0; m-vector of main effects b; and
matrix of second-order terms B. The bounding box of the design region must also be
on hand.

Then
1. Calculate eigenvalues of B and let λmax be the largest such value.
2. Choose µ ≥ λmax, perhaps with equality to start out with.
3. Solve for x, the constrained optimal stationary point

x = −1
2(B − µIm)−1b.

4. Using that x, calculate the implied radius R =
√
x>x.

5. With (µ,R) pair calculated in Steps 3–4, initialize an iterative (perhaps interactive)
exploration of x and ŷ(x) = b0 + x>b+ x>Bx values and standard errors near the
boundary of the design.

• Increasing µ will result in coordinates x nearer to x0, the design center.
• Decreasing µ, maintaining µ > λmax, will push x outside of the design region.

Return the resulting collection of (µ, x, ŷ) tuples and standard errors, possibly after
first mapping back from coded to natural units.

root-finding11 search for (µ,R) pairs which yield an x as close to the boundary of the design
as possible. Often the initial µ-value, µ(1) = λmax, leads to an x which is well outside the
design area, so a sensible search area may be in the range (µ(1), 10µ(1)), with larger orders of
magnitude on the upper end possibly being required if an initial search fails to converge on a
solution away from the boundary. Another variation, which is actually an embellishment on
the previous theme, is to use root-finding to derive an adaptive grid of µ-values based on a
regular grid of R-values, with evenly spaced radius from R = 0 (implying µ =∞) to R = 2
in coded units. Both variations will be explored in some detail in our example below. Having
a collection of (µ, x, ŷ) tuples for a range of Rs may be beneficial in determining where
to center the next experimental design. In particular, an inspection of prediction intervals
obtained for ŷ could help determine the point near, or just beyond the design boundary
where quadratic growth in variance begins to dominate the nature of their spread.

Example: ridge analysis of a saddle

Consider a chemical process that converts 1,2-propanediol to 2,5-dimethylpiperazine, where
a maximum conversion is sought as a function of the following coded factors:

x1 = NH3 level− 102
51 x2 = temp. − 250

200

x3 = H2O level− 300
200 x4 = H press. − 850

350 . (3.5)

11https://en.wikipedia.org/wiki/Root-finding_algorithm

https://en.wikipedia.org/wiki/Root-finding_algorithm
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TABLE 3.10: Summary of second-order fit to saddle data (3.5).

Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.1982 8.322 4.8305 0.0007
x1 -1.5110 3.152 -0.4794 0.6420
x2 1.2841 3.152 0.4074 0.6923
x3 -8.7390 3.152 -2.7725 0.0197
x4 4.9548 3.152 1.5720 0.1470
x11 -6.3324 5.035 -1.2575 0.2371
x22 -4.2916 5.035 -0.8523 0.4140
x33 0.0196 5.035 0.0039 0.9970
x44 -2.5059 5.035 -0.4976 0.6295
x12 2.1938 3.517 0.6238 0.5467
x13 -0.1437 3.517 -0.0409 0.9682
x14 1.5812 3.517 0.4496 0.6626
x23 8.0063 3.517 2.2765 0.0461
x24 2.8062 3.517 0.7979 0.4435
x34 0.2937 3.517 0.0835 0.9351

The data file contains measurements of the response on inputs (in those coded units)
following a central composite design. R code below reads in the data and expands the
resulting data.frame to include features of a second-order model. A short-hand is used to
avoid the tedium of writing out all terms by hand. Some of the renaming and reordering of
columns isn’t strictly necessary, but helps here to maintain a degree of consistency across
analyses.

saddle <- read.table("saddle.txt", header=TRUE)
saddle <- cbind(saddle[,-5]^2,

model.matrix(~ .^2 - 1, saddle[,-5]), y=saddle[,5])
names(saddle)[1:4] <- paste("x", 1:4, 1:4, sep="")
names(saddle)[9:14] <- sub(":x", "", names(saddle)[9:14])
saddle <- saddle[c(5:8,1:4,9:15)]

A summary of the fit, provided in Table 3.10, suggests that perhaps we don’t have enough
data (n = 25) for all of the estimated quantities (m = 14). By independent t-tests at the 5%
level – a crude inspection to be sure – there are far fewer useful than useless predictors.

fit <- lm(y ~ ., data=saddle)
kable(summary(fit)$coefficients,
caption="Summary of second-order fit to saddle data(3.5).")

Recall that a representation on canonical axes hinges on fewer (m+1 = 5) derived quantities.
So nevertheless we proceed, prudently with caution. First, extract coefficient main effects
vector b and matrix B of second-order terms.

b <- coef(fit)[2:5]
B <- matrix(NA, nrow=4, ncol=4)
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diag(B) <- coef(fit)[6:9]
i <- 10
for(j in 1:3) {

for(k in (j+1):4) {
B[j,k] <- B[k,j] <- coef(fit)[i]/2
i <- i + 1

}
}

Using those coefficients, stationary point xs may be calculated as follows.

xs <- -(1/2)*solve(B, b)
xs

## [1] 0.2647 1.0336 0.2906 1.6680

Observe that this is within the vicinity of the design region.

apply(saddle[,1:4], 2, range)

## x1 x2 x3 x4
## [1,] -1.4 -1.4 -1.4 -1.4
## [2,] 1.4 1.4 1.4 1.4

Visualization is somewhat more challenging in four input dimensions, making eigen-analysis
crucial from both interpretive and algorithmic perspectives.

E <- eigen(B)
lambda <- E$values
o <- order(abs(lambda), decreasing=TRUE)
lambda <- lambda[o]
lambda

## [1] -7.547 -6.008 2.604 -2.159

Evidently we have a saddle point: these coefficients are far from zero but don’t agree on
sign. Of course, we don’t have their standard errors so we don’t know if they’re statistically
non-zero. (Chances are not good, since so many of the estimated coordinates of b and B are
likely insignificant. More later.) Stationary point xs, being centered on the trough of the
saddle, is well-within the design region, so we’re in a somewhat different situation compared
to our warm-up example from Table 3.9, where the center of the design was clearly along a
ridge far from the estimated mode.

On the other hand, when choosing initial µ(1) = λmax and calculating the x this implies,
following Steps 2–3 in Algorithm 3.2 . . .

mul <- max(lambda)
x <- solve(B - mul*diag(4), -b/2)
x
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## [1] 1.163e+13 8.290e+13 1.297e+14 2.829e+13

. . . we get a location which is well outside of the design region. So a bit of work will be
required to iterate on larger µ-values, placing us closer to the boundary of the design region.
To automate that process, code below sets up function f to serve as an objective in the
search for that boundary via the root (i.e., zero-crossing) of R2 − x>x, with x derived as a
function of µ. By default, f is set up to target R2 = 1 unless otherwise specified.

f <- function(mu, R2=1)
{
x <- solve(B - mu*diag(4), -b/2)
R2 - t(x) %*% x
}

The boundary of our search region is at 1.4 in absolute value. We know that we need a
µ > λmax, so it’s reasonable to set µ = λmax, stored as mul in the code, as the left-hand side
of the search interval. For starters, we’ll search up to 10λ on the right.

mu <- uniroot(f, c(mul, 10*mul), R2=1.4^2)$root
mu

## [1] 4.834

Having located a µ-value in the interior of the search region [λmax, 10λmax], we can be
confident that there’s no need to widen the range. It makes sense to check that input x
associated with that µ-value lies near one of the boundaries.

x <- solve(B - mu*diag(4), -b/2)
x

## [1] -0.09124 -0.47679 -1.29616 0.21061

Indeed, the third coordinate is quite close to 1.4. Double-checking the R-value . . .

drop(sqrt(t(x) %*% x))

## [1] 1.4

. . . verifies that the desired solution has been found. Since our x is within the design
region, i.e., where predictions from the fitted second-order model are most reliable, this may
represent a decent location for a confirmation test. Or it may serve as the center of a new
design in an iteration along a path of ascent. But before doing that, it’s a good idea to
inspect predictive standard errors, and corresponding error-bars. To avoid benchmarking in
a vacuum, code below considers a range of R-values in [0, 2], and the µ’s and x’s they imply,
so that ultimately predictive equations can be derived at those locations, and compared
relative to one another.

mus <- rs <- seq(0.1, 2, length=20)
xp <- matrix(NA, nrow=length(rs), ncol=4)
colnames(xp) <- c("x1", "x2", "x3", "x4")
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for(i in 1:length(rs)) {
mus[i] <- uniroot(f, c(mul, 100*mul), R2=rs[i]^2)$root
xp[i,] <- solve(B - mus[i]*diag(4), -b/2)

}
xp <- rbind(rep(0,4), xp)
rs <- c(0, rs)
mus <- c(Inf, mus)

Obtaining predictions with those x-values requires expanding out into second-order features.
Code below builds up a data.frame that can be passed into the predict.lm method.

Xp <- data.frame(xp)
Xp <- cbind(Xp^2, model.matrix(~ .^2 - 1, Xp))
names(Xp)[1:4] <- paste("x", 1:4, 1:4, sep="")
names(Xp)[9:14] <- sub(":x", "", names(Xp)[9:14])
Xp <- Xp[c(5:8,1:4,9:14)]

We’re ready to predict.

p <- predict(fit, newdata=Xp, se.fit=TRUE)

An inspection of the sequence(s) of numbers thus calculated, as collated in Table 3.11, reveals
that predictive uncertainly grows very quickly away from the design boundary. It certainly
seems risky to trust predictions derived from R > 1.4.

kable(cbind(R=rs, mu=mus, data.frame(pred=p$fit, se=p$se.fit), round(xp,6)),
caption="Predictions for the saddle experiment calculated along a path
leading away from the center of the design region.")

Perhaps the case is better made visually. Figure 3.12 plots confidence intervals (CIs) derived
from these means and standard errors.

plot(rs, p$fit, type="b", ylim=c(20,100), xlab="radius (R)",
ylab="y.hat(x) & 95% CIs")

lines(rs, p$fit + 2*p$se, col=2, lty=2)
lines(rs, p$fit - 2*p$se, col=2, lty=2)

Not surprisingly, predictive CIs begin to rapidly diverge from one another as we leave the
design region, with R > 1.4. Observe that the amount of predicted improvement (from
the predictive mean), even at R = 2 (compared to R = 0), is apparently dwarfed by
estimation uncertainty. This suggests we need more runs inside/nearby the design region
before venturing farther afield. It may be sensible to augment with a design centered near the
R = 1.4 solution, collecting new responses in a more limited range of inputs. Combining these
with the original design should yield improved predictions and further inform on statistical
relevance for coefficients and eigenvectors/values underpinning the analysis. Assessing that
relevance will require a bit more scaffolding, making for a nice segue into our final classical
response surfaces segment(s), on sampling properties.
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TABLE 3.11: Predictions for the saddle experiment calculated along a path leading away
from the center of the design region.

R mu pred se x1 x2 x3 x4
0.0 Inf 40.20 8.322 0.0000 0.0000 0.0000 0.0000
0.1 49.811 41.21 8.305 -0.0126 0.0064 -0.0871 0.0471
0.2 24.557 42.20 8.255 -0.0217 0.0012 -0.1773 0.0900
0.3 16.343 43.18 8.175 -0.0287 -0.0141 -0.2699 0.1271
0.4 12.368 44.16 8.074 -0.0346 -0.0379 -0.3641 0.1575
0.5 10.071 45.16 7.960 -0.0399 -0.0686 -0.4591 0.1815
0.6 8.598 46.18 7.849 -0.0451 -0.1045 -0.5543 0.1994
0.7 7.585 47.22 7.757 -0.0503 -0.1444 -0.6494 0.2120
0.8 6.853 48.30 7.708 -0.0556 -0.1873 -0.7438 0.2203
0.9 6.302 49.42 7.724 -0.0612 -0.2325 -0.8377 0.2248
1.0 5.875 50.57 7.832 -0.0669 -0.2793 -0.9308 0.2262
1.1 5.534 51.77 8.056 -0.0727 -0.3275 -1.0231 0.2251
1.2 5.257 53.01 8.414 -0.0788 -0.3765 -1.1148 0.2220
1.3 5.027 54.29 8.921 -0.0849 -0.4264 -1.2058 0.2170
1.4 4.834 55.62 9.581 -0.0912 -0.4768 -1.2961 0.2106
1.5 4.670 57.00 10.395 -0.0976 -0.5276 -1.3860 0.2030
1.6 4.528 58.42 11.357 -0.1041 -0.5789 -1.4752 0.1942
1.7 4.404 59.90 12.461 -0.1107 -0.6304 -1.5641 0.1846
1.8 4.296 61.42 13.699 -0.1173 -0.6821 -1.6525 0.1742
1.9 4.199 62.99 15.062 -0.1241 -0.7340 -1.7405 0.1631
2.0 4.114 64.61 16.543 -0.1308 -0.7861 -1.8281 0.1514

3.2.3 Sampling properties

The stationary point xs, or its constrained analog, are only estimates. Any point on the
contour of a response surface, as well as the contour itself, possesses sampling variability.
These quantities depend on estimated coefficients b0, b and B, which have standard errors.
When uncertainties are propagated through predictive equations to build the fitted response
surface, and its constrained optima, those derived quantities inherit a sampling uncertainty
which is, as yet, unexplored in our development. Below we review that predictive distribution,
borrowing highlights from a first course in linear models, as a first step in understanding
how uncertainty propagates to the stationary point(s) of the fitted surface, and steps along
the path of steepest ascent.

Let y = (y1, . . . , yn) be an n-vector of responses and write X as the n × (1 + 2m +
(
m
2
)
)

model matrix comprised of rows xi built, e.g., as

x>i = [1, xi1, xi2, x2
i1, x

2
i2, xi1xi2], for the special case of m = 2.

Then we have b = (X>X)−1X>y, generally for any X.

For the time being, note that we’re not utilizing the (b0, b, B) representation, but rather
a flattened p-vector of regression coefficients b, arising from a feature expanded X encod-
ing second-order model structure. Solution b = (X>X)−1X>y comes from solving least
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FIGURE 3.12: Visualizing predictive means and quantiles from Table 3.11.

squares equations, or as maximum likelihood estimator (MLE) b ≡ β̂ under the model
Y ∼ Nn(Xβ, σ2In), where Nn is an n-variate multivariate normal (MVN) distribution.

Now a useful property of projections of MVN random vectors is that if Y ∼ Nn(µ,Σ) and P
is a p× n matrix, then PY ∼ Np(Pµ, PΣP>). Notice that b involves one such projection.
In particular, let P = (X>X)−1X> so that β̂ = Py. Observe that

• PXβ = (X>X)−1X>Xβ = β, and
• PP> = (X>X)−1X>X(X>X)−1 = (X>X)−1

since X>X and its inverse are symmetric. Using the MVN result above, we obtain

β̂ = PY ∼ Np(β, σ2(X>X)−1), (3.6)

giving the sampling distribution of b ≡ β̂.

Predictions, provided as ŷ(x) ≡ x>b, are a function of estimated b and thus inherit its
sampling distribution. That distribution may be derived through a second projection, this
time onto the (one-dimensional) real line. We obtain that ŷ(x) is univariate Gaussian with
mean x>β, which is the true (but unknown) response modulo the local nature of the
approximation of the second-order response surface, with variance equal to σ2x>(X>X)−1x.

Usually σ2 is unknown, so it too must be estimated from data. MLE σ̂2 may be derived as a
mean sum of squares

σ̂2 = 1
n

n∑
i=1

(yi − x>i b)2, however s2 = 1
n− p

n∑
i=1

(yi − ŷi)2,

which corrects for bias in σ̂2 by subtracting off p DoF spent in estimating b, is more often
used in practice. An application of Cochran’s Theorem12 gives that s2 ∼ σ2

n−pχ
2
n−p. The

Gaussian nature of Y (x) | σ2 and χ2 relationship between s2 and σ2 combines to give a
Student-t sampling distribution for the prediction

12https://en.wikipedia.org/wiki/Cochran’s_theorem

https://en.wikipedia.org/wiki/Cochran's_theorem
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ŷ(x) ∼ tn−p(x>β, s2
ŷ(x)), as shorthand for ŷ(x)− x>β

sŷ(x) ∼ tn−p,

where sŷ(x) is the standard error of ŷ(x) ≡ x>b:

sŷ(x) = s
√
x>(X>X)−1x.

When using predict.lm with fitted lm objects in R, argument se.fit=TRUE causes estimates
of sŷ(x) to be returned on output. Given that standard error, a CI for ŷ(x) is ŷ(x) ±
tα/2,n−psŷ(x). In R this is what you get when you provide interval="confidence" to
predict with level=1 - alpha. Note that this is different from a prediction interval whose
standard error includes an extra factor of s:√

s2 + s2
ŷ(x).

You get intervals based on this estimate with interval="prediction". For completeness,
let me remark that a similar argument, paired with the Gaussian sampling distribution (3.6)
leads to the quantities reported for bj ≡ β̂j in summary.lm output, e.g. most recently in
Table 3.9. The square-root of the diagonal of s(X>X)−1 are the standard errors sbj from
Eq. (3.2), also on n− p DoF.

To illustrate a predictive application, consider again our chemical conversion “saddle” example
(3.5) on four input variables. Since visualization is challenging in 4d, here we explore how
predictive standard error varies as a function of (x1, x2) under fixed settings of (x0

3, x
0
4)

values. First, set up a 2d grid in the first two inputs to aid in visualization via slices.

x12 <- seq(-2,2,length=100)
g <- expand.grid(x12, x12)
Xp <- data.frame(x1=g[,1], x2=g[,2],
x11=g[,1]^2, x22=g[,2]^2, x12=g[,1]*g[,2])

Code below completes the data.frame with features derived from two settings of the latter
two inputs, (x3, x4) = (0, 0) and (x3, x4) = (1, 1), and collects predictive quantities under
the response surface fit earlier.

## x3 = x4 = 0
Xp$x3 <- Xp$x33 <- Xp$x4 <- Xp$x44 <- Xp$x34 <- 0
Xp$x13 <- Xp$x14 <- Xp$x23 <- Xp$x24 <- Xp$x34 <- 0
p0 <- predict(fit, newdata=Xp, se.fit=TRUE)
## x3 = x4 = 1
Xp$x3 <- Xp$x33 <- Xp$x4 <- Xp$x44 <- Xp$x34 <- 1
Xp$x13 <- Xp$x14 <- Xp$x1; Xp$x23 <- Xp$x24 <- Xp$x2
p1 <- predict(fit, newdata=Xp, se.fit=TRUE)

Surfaces showing the predictive standard error sŷ(x) in those two cases are provided in Figure
3.13. Projected experimental design coordinates are overlayed as open circles; the subset of
inputs lying in the corresponding (x3, x4) slice are shown as closed circles.
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par(mfrow=c(1,2))
bs <- seq(min(p0$se.fit), max(p0$se.fit), length=129)
image(x12, x12, matrix(p0$se.fit, nrow=length(x12)), col=cols, breaks=bs,

xlab="x1", ylab="x2", main="se.fit, x3 = x4 = 0")
contour(x12, x12, matrix(p0$se.fit, nrow=length(x12)), add=TRUE)
points(saddle[,1:2])
points(saddle[apply(saddle[,3:4] == c(0,0), 1, all),1:2], pch=19)
image(x12, x12, matrix(p1$se.fit, nrow=length(x12)), col=cols, breaks=bs,

xlab="x1", ylab="x2", main="se.fit, x3 = x4 = 1")
contour(x12, x12, matrix(p1$se.fit, nrow=length(x12)), add=TRUE)
points(saddle[,1:2])
points(saddle[apply(saddle[,3:4] == c(1,1), 1, all), 1:2], pch=19)
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FIGURE 3.13: Predictive variance slices for the chemical conversion “saddle” example
(3.5).

What do we take away from these plots? Prediction with this second-order response surface
becomes worse as one gets near the design perimeter. If the predicted value of the optimum
isn’t inside the design region, searching outside comes with substantial risk. Observe that
(X>X)−1 plays a prominent role in sŷ(x), so the design X matters! What might be less
obvious is that X (and y) also affect the location of the (estimated) stationary point xs and
its nature. So if we’re wondering about uncertainty in ŷ(xs), say, we’re missing an important
source of variability.

3.2.4 Confidence in the stationary point

Clearly the location of the stationary point xs is of considerable interest in its own right,
beyond its out-sized role in a ridge analysis. But how good can an estimate based on local
second-order modeling and limited experimentation possibly be? Can we get a sense of
confidence in our estimates? Could uncertainty so swamp our estimates that another set of
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locations offers about the same improvement at far lower risk? Answering these questions
requires propagating predictive standard error through the derivative-based optimization.

Recall that

ŷ(x) = b0 + x>b+ 2x>Bx, where we calculated ∂ŷ(x)
∂x

= b+ 2Bx.

So let d(x) = b+ 2Bx be the vector of derivatives (the gradient) with each component being
dj(x) = bj + 2Bjx, where Bj is the jth row of B. Observe that d(x) is comprised of linear
functions of x1, . . . , xm. Now let t = (t1, t2, . . . , tm) denote the true but unknown stationary
point of the system. The Gaussian error structure of our linear modeling framework, and
the fact that t is a critical point of the true response surface, implies that

d(t) ∼ Nm(0,Var{d(t)}).

This is useful because, if we can obtain an estimate of that variance–covariance matrix, we
may use the following result as a means of developing a CI for t, the true location of the
stationary point:

d>(t)[V̂ar{d(t)}]−1d(t)
m

∼ Fm,n−p, (3.7)

where V̂ar{d(t)} is Var{d(t)} with σ2 estimated by s2 on n − p DoF. In particular, a
100(1−α)% confidence region for the stationary point includes those t which evaluate, under
that quadratic form (3.7), to a number less than an α quantile of the Fm,n−p distribution:

d>(t)[V̂ar{d(t)}]−1d(t) ≤ mFαm,n−p. (3.8)

The utility of this result is, however, unfortunately limited to graphical analysis in two or
three dimensions at most. Also, the devil is in the details of estimating the variance of
the derivatives, which is greatly simplified if the design is chosen fortuitously. That’s best
illustrated by example.

Consider data on a process in two coded input dimensions under a central composite design
whose center is replicated four times.

crdat <- read.table("confreg.txt", header=TRUE)

R code below combines several steps: expanding to second-order features, model fitting and
extracting b and B, differentiating and solving to estimate stationary point xs.

crdat$x11 <- crdat$x1^2
crdat$x22 <- crdat$x2^2
crdat$x12 <- crdat$x1 * crdat$x2
fit <- lm(y ~ ., data=crdat)
b <- coef(fit)[2:3]
B <- matrix(NA, nrow=2, ncol=2)
diag(B) <- coef(fit)[4:5]
B[1,2] <- B[2,1] <- coef(fit)[6]/2
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xs <- -(1/2)*solve(B, b)
xs

## [1] -0.1716 -0.1806

Stationary point xs is a maximum, as indicated by the eigenvalues.

eigen(B)$values

## [1] -2.244 -3.061

Next evaluate predictive equations on a grid in order to visualize the response surface, design
and stationary point, which is well within the interior of the experimental region. See Figure
3.14.

xx <- xx <- seq(-1.6, 1.6, length=200)
g <- expand.grid(xx, xx)
XX <- data.frame(x1=g[,1], x2=g[,2],
x11=g[,1]^2, x22=g[,2]^2, x12=g[,1]*g[,2])

p <- as.numeric(predict(fit, newdata=XX))
image(xx, xx, matrix(p, nrow=length(xx)), col=cols, xlab="x1", ylab="x2")
contour(xx, xx, matrix(p, nrow=length(xx)), add=TRUE)
points(crdat$x1, crdat$x2, pch=20)
points(xs[1], xs[2])
text(xs[1], xs[2], "xs", pos=4)
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FIGURE 3.14: Simple maximum response surface.

Combining d(t) = b+ 2Bt with calculations of b and B . . .

d <- rbind(c(b[1], 2*B[,1]), c(b[2], 2*B[,2]))
colnames(d) <- c("(Intercept)", "t1", "t2")
d
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## (Intercept) t1 t2
## [1,] -1.095 -5.562 -0.775
## [2,] -1.045 -0.775 -5.047

. . . gives the following expressions for derivatives of the response surface as a function of the
true unknown stationary point t.

d1(t) = −1.095− 5.562t1 − 0.775t2
d2(t) = −1.045− 0.775t1 − 5.048t2

Now the variances of d(t), via β̂ ∼ Np(β, σ2(X>X)−1), are obtained from our estimate of
the residual variance s2 and the matrix (X>X)−1. The former may be extracted from fit
. . .

s2 <- summary(fit)$sigma^2
s2

## [1] 3.164

. . . on n− p = 7 DoF. The latter is most easily calculated “by hand” as follows.

X <- cbind(1, as.matrix(crdat[,-3]))
XtXi <- solve(t(X) %*% X)
XtXi

## x1 x2 x11 x22 x12
## 0.3333 0.000 0.000 -0.16669 -0.16669 0.00
## x1 0.0000 0.125 0.000 0.00000 0.00000 0.00
## x2 0.0000 0.000 0.125 0.00000 0.00000 0.00
## x11 -0.1667 0.000 0.000 0.17716 0.05208 0.00
## x22 -0.1667 0.000 0.000 0.05208 0.17716 0.00
## x12 0.0000 0.000 0.000 0.00000 0.00000 0.25

Observe that (X>X)−1 is sparse, owing to the orthogonal structure of our central composite
design. We finally have all necessary ingredients to build up the covariance matrix of d(t),
as a function of t. We shall proceed one component at a time. First: diagonal elements. By
linearity of variances, and reading off entries of (X>X)−1, we obtain

V̂ar{d1(t)} = s2

σ2 [Varb1 + 4t21Varb11 + t22Varb12]

= s2[1/8 + 4t21(0.1772) + t22/4],

and similarly V̂ar{d2(t)} = s2

σ2 [Varb2 + t21Varb12 + 4t22Varb22]

= s2[1/8 + t21/4 + 4t22(0.1772)].

Now for the off-diagonals. From (X>X)−1 we can see that all covariances involving b1 are
zero and Cov(b11, b12) = Cov(b12, b22) = 0. Therefore,

Ĉov(d1(t), d2(t)) = s2

σ2 [4t1t2Cov(b11, b22) + t1t2Varb12]

= s2[4(0.0521)t1t2 + t1t2/4].
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To help visualize the resulting confidence region, code below captures that covariance matrix
as a function of its elements, and coordinates t.

Vard <- function(t1, t2, s2, XtXi)
{
v11 <- XtXi[2,2] + 4*t1^2*XtXi[4,4] + t2^2*XtXi[6,6]
v22 <- XtXi[3,3] + t1^2*XtXi[6,6] + 4*t2^2*XtXi[5,5]
v12 <- v21 <- 4*t1*t2*XtXi[4,5] + t1*t2*XtXi[6,6]
v <- s2 * matrix(c(v11,v12,v21,v22), ncol=2, byrow=TRUE)
return(v)
}

This implementation isn’t generic; it leverages the particular structure of sparsity in XtXi
from above. Developing a general purpose version could be a good exercise for the interested
reader. To continue, we must combine that variance with a function that evaluates the
quadratic form in Eq. (3.7).

CIqf <- function(t1, t2, s2, XtXi, b, B)
{
dt <- b + 2*B %*% c(t1, t2)
V <- Vard(t1, t2, s2, XtXi)
Vi <- solve(V)
t(dt) %*% Vi %*% dt
}

With that we’ve assembled all building blocks necessary to evaluate Eq. (3.8) on our (x1, x2)
predictive grid g from before.

quadform <- rep(NA, nrow(g))
for(i in 1:nrow(g)) quadform[i] <- CIqf(g[i,1], g[i,2], s2, XtXi, b, B)

Code supporting Figure 3.15 completes Eq. (3.8) by converting evaluations of that quadratic
form into logical vectors under quantiles obtained from an F2,5 distribution at levels α = 0.1
and α = 0.05, respectively. These are then plotted as grayscale images.

ci90 <- quadform <= 2*qf(0.9, 2, nrow(X)-ncol(X))
ci95 <- quadform <= 2*qf(0.95, 2, nrow(X)-ncol(X))
image(xx, xx, matrix(ci90 + ci95, ncol=length(xx)), xlab="x1", ylab="x2",
col=c("white", "lightgray", "darkgray"))

text(c(-0.2,-1), c(-0.5,1), c("90%","95%"))

Unfortunately, these confidence regions present a rather grim picture of the utility of our
estimated stationary point. Although the smaller 90% region is clearly closed, and mostly
contained with the study area, the larger 95% set doesn’t close inside the plot window
which extends to cover the entirety of the experimental region. Recall the interpretation
of a confidence set: that the true response surface maximum, which could reside at any
location inside the (e.g., 95%) set, could readily have produced the data that were observed.
Apparently, at the 95% level, that could be nearly any location nearby the design. (I leave it
as an exercise to the curious reader to expand the grid and re-calculate the 95% region.)
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FIGURE 3.15: 90% and 95% confidence regions for stationary point xs.

It’s perhaps surprising that we have such a high degree of uncertainty, even though our fit
explains 84% of the variability in the response.

summary(fit)$r.squared

## [1] 0.8389

So as not to end on such a bleak message, consider a second dataset with the same design
(so X>X is the same), but with a considerably better fit, explaining 99% of variability.

crdat$y <- c(87.6, 86.5, 85.7, 86.9, 86.7, 86.8, 87.4, 86.7, 90.3,
91.0, 90.8)

fit2 <- lm(y ~ ., data=crdat)
summary(fit2)$r.squared

## [1] 0.9891

Updating the calculations from above with the new estimated coefficients . . .

b <- coef(fit)[2:3]
B <- matrix(NA, nrow=2, ncol=2)
diag(B) <- coef(fit)[4:5]
B[1,2] <- B[2,1] <- coef(fit)[6]/2
xs <- -(1/2)*solve(B, b)
s2 <- summary(fit2)$sigma^2
for(i in 1:nrow(g)) quadform[i] <- CIqf(g[i,1], g[i,2], s2, XtXi, b, B)

. . . leads to the 95% confidence region shown in Figure 3.16: a very compact set indeed.

ci95 <- quadform <= 2*qf(0.95, 2, nrow(X)-ncol(X))
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image(xx, xx, matrix(ci95, ncol=length(xx)), xlab="x1", ylab="x2",
col=c("white", "lightgray"))
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FIGURE 3.16: 95% confidence regions for stationary point xs under higher R2; compare
to Figure 3.15.

A smaller confidence region for the same level α is a welcome result. It’s nice to have low
ambiguity about where a local fit thinks best operating conditions lie, especially when the
estimated xs value is located within the design region. On the other hand, larger confidence
regions are not always bad news. As in Figure 3.15, it’s possible for a model to fit quite well
and yet generate a large confidence region. This state of affairs is merely a reflection of the
reality that the response surface is locally flat. A positive spin may be that such situations
imply a degree of flexibility in choosing the optimum. Communicating that effectively to
stakeholders requires care, of course, but is definitely of interest.

3.2.5 Intervals on eigenvalues

In our discussion of the canonical analysis (§3.2.1) we noted that when one or more eigenvalues
of B are close to zero a ridge system of some type is present. In judging the size of an
eigenvalue it can be helpful to have a notion of standard error – to put some statistical heft
behind just how small is basically zero. Standard errors can then be converted into CIs to
ease reporting and interpretation.

A convenient procedure for developing standard errors for λ, and subsequently CIs, is the
double linear regression (DLR) method (Bisgaard and Ankenman, 1996). As the name
implies, it entails fitting two linear models. The first is a second-order model fit to data,
as in any ridge analysis, providing the matrix B and its eigenvalues and vectors. The
second is framed in the canonical model, whose so-called B-canonical form (3.4) we’ve used
extensively throughout the latter half of this chapter. The DLR development instead utilizes
an equivalent “A-canonical” form which is somewhat less common when studying ridge
systems. The A-canonical form is based upon the representation ŷ = a0 + u>a + u>Λu,
where a = P>b and u = P>x with eigenvectors stacked in P . Observe that the A-form
utilizes axes rotated as in the B-form, but without translating from the stationary point xs
to the origin.

Rather than directly using a and Λ-values extracted from the eigen-analysis, they’re “re-
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inferred” through least squares on a design matrix of u and u2 predictors. Fitted values of
that regression may be expressed as

ŷ = â0 +
m∑
j=1

âjuj +
m∑
j=1

λ̂ju
2
j .

Standard errors for λ̂j obtained in this way can be used to make 100(1− α)% CIs.

To illustrate, consider again the chemical processes experiment whose design is depicted in
Figure 3.8. Code below duplicates some of our earlier effort to recreate variables pertinent
to a ridge analysis, comprising the first regression in the DLR method.

chem <- read.table("chemical.txt", header=TRUE)
X <- data.frame(x1=chem$x1, x2=chem$x2, x11=chem$x1^2, x22=chem$x2^2,
x12=chem$x1*chem$x2)

y <- chem$y
fit <- lm(y ~ ., data=X)
b <- coef(fit)[2:3]
B <- matrix(NA, nrow=2, ncol=2)
diag(B) <- coef(fit)[4:5]
B[1,2] <- B[2,1] <- coef(fit)[6]/2
E <- eigen(B)
lambda <- E$values
o <- order(abs(lambda), decreasing=TRUE)
P <- E$vectors[,o]
print(lambda <- lambda[o])

## [1] -11.077 -2.673

Next derive u coordinates, following u = P>x, and then expand out into second-order
features (without interactions, since the system is already orthogonalized). Then fit the
second regression involved in the DLR method.

U <- data.frame(cbind(chem$x1, chem$x2) %*% P)
names(U) <- c("u1", "u2")
U$u11 <- U$u1^2
U$u22 <- U$u2^2
fitU <- lm(y ~ ., data=U)

It’s not a coincidence that fitted coefficients from our canonical analysis match projected
coefficients from the original model, and the eigenvalues.

rbind(dlr2=coef(fitU)[-1], eigen=c(b %*% P, lambda))

## u1 u2 u11 u22
## dlr2 -10.81 2.126 -11.08 -2.673
## eigen -10.81 2.126 -11.08 -2.673

But now we can use summary.lm on the output of the second regression to extract standard
errors on those eigenvalues.
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summary(fitU)$coefficients[4:5,]

## Estimate Std. Error t value Pr(>|t|)
## u11 -11.077 0.9121 -12.144 5.868e-06
## u22 -2.673 0.9121 -2.931 2.200e-02

Observe that the t-tests provided in the table above, taken separately, reject the null
hypothesis that λ4:5 = 0. Therefore we conclude that both are indeed negative: the true
response is a maximum. Alternatively, these standard errors can be used to construct CIs
for the λj ’s, or we can ask R to do it for us.

confint(fitU)[4:5,]

## 2.5 % 97.5 %
## u11 -13.23 -8.9201
## u22 -4.83 -0.5163

As expected, neither includes zero: both are squarely in the negative. We now have statistical
evidence that the response surface is (locally) concave down, and can be reasonably confident
that baby steps toward ascent will bear fruit.

Summarizing remarks

This concludes our chapter on classical response surface methods. Although barely scratching
the surface, many of the underlying themes are present in abundance. In this careful
enterprise there’s potential to learn a great deal, at least locally, from appropriately planned
experiments. When conditions are right, a cautious ascent will likely lead to improvements.
When they’re not, a statistical explanation can justify staying “right where you are” when
little scope is apparent for incremental refinements to the process under study.

On the surface, it may seem that the biggest downside is the local nature of analysis. Another,
perhaps more modern, perspective might suggest another drawback: reproducibility. Two
different statistical experts might obtain dramatically different results or conclusions due to
small changes or different choices (of design, size of ascent steps, etc.) along the way, despite
being largely faithful to similar underlying principles. The process is far from automatable,
which makes a meta-analysis, about what happens in the long run after repeatedly applying
sequential procedures such as these, nearly impossible even in the abstract. Choice of design
for convenience of analytical calculation, say in the calculation of confidence regions, may
not be ideal either. Nevertheless, precedence for such tactics is well-established throughout
academic statistics.

These drawbacks, local emphasis and removing expert variability toward machine automation,
motivate much of what’s presented in subsequent chapters. Optimization and analysis of
computer simulation experiments, nonlinear regression in spatial statistics and machine
learning, are increasingly nonparametric. At first blush nonparametric methods seem more
complex, and thus are often dismissed as black boxes. But that vastly oversimplifies a
wide class of estimators. One clear positive side effect of non-parameter-“ism” is fewer
choices requiring expert judgement, and therefore greater potential for automation and
reproducibility. The canonical nonparametric apparatus in our setting is the Gaussian process.
While no panacea, these remarkably agile beasts have already revolutionized scientific inquiry
and optimization in the engineering and physical sciences, and deserve to be entertained as
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replacements to many well-established methods. Classical response surface methods are just
one example.

3.3 Homework exercises

These exercises are designed to check your understanding of the method of steepest ascent,
ridge analysis, and assessments of uncertainty thereupon. Data and parts of several questions
are borrowed from Chapters 5–6 of Myers et al. (2016), as detailed parenthetically below.
Other exercises from those chapters come highly recommended.

#1: Steepest ascent

The file sadat.txt13 contains runs of an experiment on two input variables. (Synthesizes
exercises 5.12, 5.24, and 5.25 from Myers et al. (2016) using data from Table E5.602.)

a. Apply the method of steepest ascent and construct an appropriate path based on a
first-order model. Report the path on both natural and coded variables.

b. Show graphically a confidence region for the path of steepest ascent. What fraction of
the possible directions from the design origin are excluded by the path you computed in
#a?

c. Perform tests for interaction and curvature. From these tests, do you feel comfortable
engaging in the method of steepest ascent? Explain why or why not. Would you suggest
any new runs besides those which are on the path from #a?

#2: Metallurgy

In a metallurgy experiment it’s desired to test the effect of four factors and their interactions
on the concentration (percent by weight) of a particular phosphorus compound in casting
material. The variables are: x1, percent phosphorus in the refinement; x2, percent remelted
material; x3, fluxing time; and x4, holding time. The four factors are varied in a 24 factorial
design with two castings taken at each factor combination. The 32 castings were made in
random order, and are provided in metallurgy.txt14, where the factors are presented in coded
form. (Reproduced almost verbatim from exercise 5.5 in Myers et al. (2016) using data from
Table E5.601.)

a. Build a first-order response function.
b. Construct a table summarizing the path of steepest ascent in the coded design variables.
c. It’s important to constrain the percentages of phosphorus and remelted material. In fact,

in coded variables we obtain x1 + x2 ≤ 2.7, where x1 is percent phosphorus and x2 is
percent remelted material. Recalculate the path of steepest ascent subject to the above
constraint.

13http://bobby.gramacy.com/surrogates/sadat.txt
14http://bobby.gramacy.com/surrogates/metallurgy.txt

http://bobby.gramacy.com/surrogates/sadat.txt
http://bobby.gramacy.com/surrogates/metallurgy.txt
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#3: Heat transfer

In a chemical engineering experiment dealing with heat transfer in a shallow fluidized bed,
data (in heat.txt15) are collected on the following four regressor variables: fluidizing gas flow
rate, lb/hr (fluid); supernatant gas flow rate, lb/hr (gas); supernatant gas inlet nozzle
opening, mm (open); supernatant gas inlet temperature, °F (temp). The responses measured
are heat transfer efficiency (heat) and thermal efficiency (therm). (Reproduced almost
verbatim from exercise 6.2 in Myers et al. (2016) using data from Table E6.1.)

This is a good example of what often happens in practice. An attempt was made to use
a particular second-order design. However, errors in controlling the variables produced a
design that’s only an approximation of the standard design.

a. Center and scale the design variables. That is, create a design matrix in coded form.
b. Fit a second-order model separately for both responses.
c. In the case of transfer efficiency (heat), do a canonical analysis and determine the nature

of the stationary point. Do the same for thermal efficiency (therm).
d. For the case of transfer efficiency, what (natural) levels of the design variables would

you recommend if maximum transfer efficiency is sought?
e. Do the same for thermal efficiency; that is, find levels of the design variables that you

recommend for maximization of thermal efficiency.

#4: Bumper plating

A computer program simulates an auto-bumper plating process using thickness as the
response with time, temperature (temp), and nickel pH as design variables. An experiment
was conducted so that a response surface optimization could be entertained. A coding for
the design variables is given by

x1 = time− 8
4 x2 = temp− 24

8 x3 = nickel− 14
4 .

Using the data in bumper.txt16, perform the following steps. (Inspired by exercise 6.9 in
Myers et al. (2016) using data from Table E6.6 which can be traced back to Schmidt and
Launsby (1989).)

a. With the conversion above, write out the design matrix in coded form.
b. Fit and edit a second-order response surface model. That is, fit and eliminate insignificant

terms.
c. Find conditions that maximize thickness, with the constraint that the condition falls

inside the design region. In addition, compute the standard error for prediction at the
location of optimum conditions.

#5: Gas turbine generators

The file turbine.txt17 contains runs of an experiment on two input variables, blade speed
(in/sec) and voltage measuring sensor extension (in) describing the configuration of a gas
turbine generator, and measuring the volts (voltage) output by the system. (Stripped down
version of exercise 6.4 in Myers et al. (2016) using data from Table E6.4.)

15http://bobby.gramacy.com/surrogates/heat.txt
16http://bobby.gramacy.com/surrogates/bumper.txt
17http://bobby.gramacy.com/surrogates/turbine.txt

http://bobby.gramacy.com/surrogates/heat.txt
http://bobby.gramacy.com/surrogates/bumper.txt
http://bobby.gramacy.com/surrogates/turbine.txt
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a. Write the design matrix in coded form.
b. Fit a second-order model, find the stationary point and interpret and visualize the fitted

response surface.
c. Calculate and visualize a confidence region for the stationary point at the 90% and 95%

levels. Approximately what proportion of those regions lie inside the design region?

#6: Viscosity

Consider an experiment summarized in viscosity.txt18 that studied a response triple (yield,
viscosity and molecular weight molewt) as a function of two inputs, time and temperature
(temp). For this question focus only on the viscosity output, ignoring the other two (yield
and molewt). (Adapted from exercise 6.15 in Myers et al. (2016) using data from Table
E7.4.)

a. Perform a canonical analysis on the second-order model for these data.
b. Use the double linear regression method to find confidence intervals on the eigenvalues.
c. Interpret the fitted surface.

18http://bobby.gramacy.com/surrogates/viscosity.txt

http://bobby.gramacy.com/surrogates/viscosity.txt




4
Space-filling Design

This segment puts the cart before the horse a little. Nonparametric spatial regression,
emphasizing Gaussian processes in Chapter 5, benefits from a more agnostic approach to
design compared to classical, linear modeling-based, response surface methods. One of the
goals here is pragmatic from an organizational perspective: to have some simple, good designs
for illustrations and comparisons in later chapters. Designs here are model-free, meaning
that we don’t need to know anything about the (Gaussian process) models we intend to
use with them, except in the loose sense that those are highly flexible models which impose
limited structure on the underlying data they’re are trained on. Later in Chapter 6 we’ll
develop model-specific analogs and find striking similarity, and in some sense inferiority – a
bizarre result considering their optimality – compared to these model-free analogs.

Here we seek so-called space-filling designs, ones which spread out points with the aim of
encouraging a diversity of data once responses are observed. A spread of training examples,
the thinking goes, will ultimately yield fitted models which smooth/interpolate/extrapolate
best, leading to more accurate predictors at out-of-sample testing locations. Our development
will focus on variations between, and combinations of, two of the most popular space-filling
schemes: Latin hypercube sampling (LHS), and maximin distance designs. Both are based
on geometric criteria but offer optimal spread in different senses. LHSs are random, so they
disperse in a probabilistic sense, targeting a certain uniformity property. Maximin designs
are more deterministic, even if many solvers for such designs deploy stochastic search. They
seek spread in terms of relative distance.

Plenty of other model-free, space-filling designs enjoy wide popularity, but they’re mostly
variations on a theme. It’s a lot of splitting hairs about subtly different geometric criteria,
coupled with vastly different highly customized solving algorithms, producing designs that
are visually and practically indistinguishable from one another. The aim here is twofold: 1)
to have a nice conceptual base to jump off from, and contrast with the more interesting
topic of model-based sequential design (§6.2 and Chapter 7); 2) to have an intuitive default
from which to initialize a more ambitious such sequential search.

The entirety of this chapter, and indeed much of the rest of the text, presumes coded inputs
in [0, 1]m unless otherwise stated. So the goal is a space-filling design of a desired run size n
in the unit hypercube. As an auxiliary consideration, we’ll explore the possibility of “growing”
a design to size n′ + n from an initial fixed design of size n when additional experimental
resources allow augmenting the training dataset. There the goal will be more modest: to
best respect, or at least not drastically offend, an underlying space-filling criteria as regards
the choice of n′ new locations.

117
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4.1 Latin hypercube sample

One simple option for design is random uniform. That is, fill a design matrix Xn in [0, 1]m
with n runs via runif.

m <- 2
n <- 10
X <- matrix(runif(n*m), ncol=m)
colnames(X) <- paste0("x", 1:m)

The trouble is, randomness is clumpy. With n of any reasonable size relative to input
dimension m you’re almost guaranteed to get design locations right next to one another,
and thus gaps in other parts of the input space. Figure 4.1 illustrates this with the single
random example generated above.

plot(X, xlim=c(0,1), ylim=c(0,1))
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FIGURE 4.1: Random designs can be clumpy.

It can be useful to repeat that example, visualizing new random designs in several replicates.
A takeaway from such an exercise is undoubtedly that designs offering reasonable “fill” in the
2d input space are quite rare indeed. Although we don’t bother to describe the formalism, nor
undertake calculations to make the following statement precise, it’s not a difficult exercise
for one so-inclined. The probability of observing at least two points close to one other, as
a relative share of the total input space (with n = 10 runs in m = 2 input dimensions), is
quite high. Therefore the chance of adequately filling the space, at least from an aesthetic
perspective, is quite low. Now clumpiness in a design for computer surrogate modeling is not
necessarily a bad thing. In fact, purely random designs can be good in some cases (Zhang
et al., 2020). But let’s table that discussion for a moment.

Latin hypercube samples (LHSs) were created, or perhaps borrowed (more details below)
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from another literature, to alleviate this problem. The goal is to guarantee a certain degree
of spread in the design, while otherwise enjoying the properties of a random uniform sample.
LHSs accomplish that by divvying the design region evenly into cubes, by partitioning
coordinates marginally into equal-sized segments, and ensuring that the sample contains
just one point in each such segment. In 2d, which is perhaps over-emphasized due to ease of
visualization, the pattern of selected cubes (i.e., those containing a sample) resemble Latin
squares1.

Since the location of the point within the selected cube is allowed to be random, the LHS
doesn’t preclude two points located nearby one another. For example, two points may reside
near a corner in common between a cube from an adjacent row and column. This will be easy
to see in our visualizations shortly. However the LHS does limit the number of such adjacent
cases, guaranteeing a certain amount of spread. But we’re getting ahead of ourselves; how
do we construct an LHS? For the description below, I’d like to acknowledge a chapter by
Lin and Tang (2015) as a primary source of material for this presentation.

A Latin hypercube (LH) of n runs for m factors is represented by an n×m matrix L = (lij).
Each column lj , for j = 1, . . . ,m, contains a permutation of n equally spaced levels. For
convenience, the n levels may be taken to be

−(n− 1)/2,−(n− 3)/2, . . . , (n− 3)/2, (n− 1)/2.

Right now levels span from −(n− 1)/2 to (n− 1)/2, so L spans [−(n− 1)/2, (n− 1)/2]m.
This is a mismatch to our design region [0, 1] in m coordinates. But don’t worry – we’ll fix
that with a normalization step momentarily.

A Latin hypercube sample (LHS), or sometimes design (LHD), Xn in the design space [0, 1]m
is an n×m matrix with (i, j)th entry

xij = lij + (n− 1)/2 + uij
n

, i = 1, . . . , n, j = 1, . . . ,m, (4.1)

where the uij ’s are independent uniform random deviates in [0, 1]. Observe that the denomi-
nator n normalizes so that xij is mapped into [0, 1]m. The (n− 1)/2 term chooses a point in
the corner of the selected square or (hyper) cube. Random adjustments uij place the jth

coordinate of run i elsewhere in the cube. If instead each uij is taken to be 0.5 the result is
called a Latin sample, which will put xij right in the middle of one of the squares or (hyper)
cubes.

If that verbal description seems complicated, its codification is relatively straightforward.
The first step is to create the levels, which depend on the desired number of runs in the
design, n.

l <- (-(n - 1)/2):((n - 1)/2)

Next, put m randomly permuted versions of the level vector l into a n×m matrix L.

L <- matrix(NA, nrow=n, ncol=m)
for(j in 1:m) L[,j] <- sample(l, n)

1https://en.wikipedia.org/wiki/Latin_square

https://en.wikipedia.org/wiki/Latin_square
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Finally, create a uniform jitter matrix U and combine with the level matrix L following a
vectorized version of Eq. (4.1).

U <- matrix(runif(n*m), ncol=m)
X <- (L + (n - 1)/2 + U)/n

What do we get? Figure 4.2 shows the design X as open circles, and uses the vector of levels
l to demarcate candidate Latin squares with gray-dashed lines.

plot(X, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
abline(h=c((l + (n - 1)/2)/n,1), col="grey", lty=2)
abline(v=c((l + (n - 1)/2)/n,1), col="grey", lty=2)
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FIGURE 4.2: Latin hypercube sample (LHS) in 2d.

If we were to instead shade the squares containing the dots gray, dropping the dots, we’d
have a Latin hypercube; forcing U=1/2 and placing the dot in the middle of the square
yields the Latin sample. Both represent useful exercises for the curious reader hoping to
gain better insight into what’s going on. Permuting l, comprising columns of L, ensures
that each margin, j ∈ {1, 2} representing x1 and x2 in this m = 2 dimensional example,
contains just one dot in each segment of the grid in that dimension. Said another way, each
column and each row (demarcated by the gray-dashed lines) in the plot has just one dot.
Consequently each margin, when projecting over the other input, is uniformly distributed
in that coordinate. More detail on these features is provided momentarily, and in greater
generality in higher dimension m.

But first, let’s write a function that does it so we don’t have to keep cutting-and-pasting
the code above. That code is essentially ready-to-go for arbitrary m ≡ m, so all we’re really
doing here is wrapping those lines in an R function. Think of this as a more directly useful
alternative to the formal environment used elsewhere in the book to demarcate pseudocode
for higher-level algorithmics.
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mylhs <- function(n, m)
{
## generate the Latin hypercube
l <- (-(n - 1)/2):((n - 1)/2)
L <- matrix(NA, nrow=n, ncol=m)
for(j in 1:m) L[,j] <- sample(l, n)

## draw the random uniforms and turn the hypercube into a sample
U <- matrix(runif(n*m), ncol=m)
X <- (L + (n - 1)/2 + U)/n
colnames(X) <- paste0("x", 1:m)

## return the design and the grid it lives on for visualization
return(list(X=X, g=c((l + (n - 1)/2)/n,1)))
}

The LHS output resides in the $X field of the list returned. To aid in visualization, grid
points are also returned via $g.

4.1.1 LHS properties

When using the new “library routine”, what can be expected in higher dimension m ≡ m?
As we noticed in Figure 4.2, LHSs are constructed so that there’s exactly one point in each
of the n intervals

[0, 1/n), [1/n, 2/n), . . . , [(n− 1)/n, 1),

partitioning up each input coordinate, j = 1, . . . ,m. This property is referred to as one-
dimensional uniformity. As a consequence of that property, any projection into lower
dimensions that can be obtained by dropping some of the coordinates will also be distributed
uniformly. Therefore that lower m′-dimensional design will also be an LHS in the m′ < m
dimensional unit hypercube. This property is perhaps apparent by inspecting the algorithmic
description above, or its implementation in code. What happens for a column of L or X is
independent of, yet identical to, calculations for other columns.

As an illustration, consider an m = 3 dimensional LHS with n = 10 runs using our library
routine.

Dlist <- mylhs(10, 3)

Figure 4.3 shows the first two coordinates of that sample.

plot(Dlist$X[,1:2], xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
abline(h=Dlist$g, col="grey", lty=2)
abline(v=Dlist$g, col="grey", lty=2)

Observe that this sample is a perfectly good m = 2 LHS, having only one point in each row
and column of the 2d grid, despite being generated in 3d. The other two pairs of inputs show
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FIGURE 4.3: Two-dimensional projection of a 3d LHS.

the same property in Figure 4.4. Any of these three (or
(
m
2
)
more generally) two-dimensional

projections would be a perfectly good 2d LHS.

Is <- as.list(as.data.frame(combn(ncol(Dlist$X),2)))[-1]
par(mfrow=c(1,length(Is)))
for(i in Is) {

plot(Dlist$X[,i], xlim=c(0,1), ylim=c(0,1),
xlab=paste0("x", i[1]), ylab=paste0("x", i[2]))

abline(h=Dlist$g, col="grey", lty=2)
abline(v=Dlist$g, col="grey", lty=2)

}
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FIGURE 4.4: Remaining pairs of coordinates beyond the one shown in Figure 4.3.

Projecting down into one dimension reveals uniform distributions on the margins. Figure 4.5
utilizes a much larger LHS so that the resulting histograms look more convincingly uniform.
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An analog using the previous n = 10 sample, potentially under replication, also provides an
instructive suite of visualizations.

X <- mylhs(1000, 3)$X
par(mfrow=c(1,ncol(X)))
for(i in 1:ncol(X)) hist(X[,i], main="", xlab=paste0("x", i))

x1

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

x2

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

x3

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80
10

0

FIGURE 4.5: Histograms of one-dimensional LHS margins.

Popularity of LHSs as designs can largely be attributed to their role in reducing variance in
numerical integration. Consider a function y = f(x) where f is known, and x has a uniform
distribution on [0, 1)m, and where we wish to estimate E{Y } via

µ̂ = 1
n

n∑
i=1

f(xi), xi
iid∼ U [0, 1].

It turns out that if f(x) is monotone in each coordinate of x then the variance of µ̂ is lower
if an LHS is used rather than simple random sampling.

One drawback of LHSs is that, although a degree of space-fillingness is guaranteed at the
margins, there’s no guarantee that the resulting design won’t otherwise be somehow aliased,
i.e., revealing patterns or clumpiness in other aspects of the variables’ joint distribution.
For example, the code chunk below repeatedly draws LHSs with (n,m) = (10, 2), stopping
when one is found satisfying a loosely specified monotonicity condition: where the second
coordinate is roughly increasing in the first, basically lining up along a jittered diagonal. A
counter is used to tally the number of attempts before that criterion is met.

count <- 0
while(1) {
count <- count + 1
Dlist <- mylhs(10, 2)
o <- order(Dlist$X[,1])
x <- Dlist$X[o,2]
if(all(x[1:9] < x[2:10] + 1/20)) break

}

Figure 4.6 shows the design that caused the code’s execution to break out of the while loop,
finding an LHS that met that loose monotonicity criterion.
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plot(Dlist$X, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
text(0.2, 0.85, paste("count =", count))
abline(v=Dlist$g, col="grey", lty=2)
abline(h=Dlist$g, col="grey", lty=2)
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FIGURE 4.6: Potential for aliasing in LHSs.

Clearly this is an undesirable space-filling design in 2d, even though the 1d marginals are
nice and uniform. Admittedly, it takes a ton of iterations (approximately 4500 thousand in
this run) to find the pattern we were looking for. But that’s one of many patterns out of
perhaps an enormous collection of dots that could have yielded an aesthetically undesirable
design. Despite many attractive properties, besides being easy to compute, a condition on
marginals is a crude way to spread things out, and one which has diminishing returns in
increasing dimension. In high dimensions (big m relative to n) everything looks like some
kind of pattern, so perhaps the distinction between (totally) uniform random and LHSs is
academic in that setting.

Suggesting potential remedies will require extra scaffolding which is offered, in part, in §4.2
on maximin design. In the meantime – and to end the LHS description on a high rather
than low note – it’s worth discussing several simple-yet-powerful enhancements unique to
the LHS setting.

4.1.2 LHS variations and extensions

LHSs may be extended to marginals other than uniform through a simple inverse cumulative
distribution function (CDF) transformation2. The steps are:

1. Generate an ordinary LHS, then
2. apply an inverse CDF (quantile function) of your choice on each of the marginals.

This will cause the marginals to take on distributions with those CDFs, but at the same
time ensure that there’s not “more clumpiness than necessary” in the joint distribution.

2https://en.wikipedia.org/wiki/Inverse_transform_sampling

https://en.wikipedia.org/wiki/Inverse_transform_sampling


4.1 Latin hypercube sample 125

The simplest application of this is to re-scale to a custom hyperrectangle to accommodate
another coding of the inputs, or directly in the natural scale.

Again in lieu of a formal algorithm, R code below generalizes our mylhs library routine to
utilize beta distributed3 marginals, of which uniform is a special case. Parameters α and β
are specified as m-vectors shape1 and shape2 following the nomenclature used by qbeta,
R’s built-in quantile function for beta distributions. Besides returning a matrix of design
elements, the implementation also provides a matrix of beta-mapped grid lines $g. Vector
$g no longer suffices since grid elements are now input-coordinate dependent.

mylhs.beta <- function(n, m, shape1, shape2)
{
## generate the Latin Hypercube and turn it into a sample
l <- (-(n - 1)/2):((n - 1)/2)
L <- matrix(NA, nrow=n, ncol=m)
for(j in 1:m) L[,j] <- sample(l, n)
U <- matrix(runif(n*m), ncol=m)
X <- (L + (n - 1)/2 + U)/n

## calculate the grid for that design
g <- (L + (n - 1)/2)/n
g <- rbind(g, 1)

for(j in 1:m) { ## redistrbute according to beta quantiles
X[,j] <- qbeta(X[,j], shape1[j], shape2[j])
g[,j] <- qbeta(g[,j], shape1[j], shape2[j])

}
colnames(X) <- paste0("x", 1:m)

## return the design and the grid it lives on for visualization
return(list(X=X, g=g))

}

By way of illustration, consider a 2d LHS with n = 10 under Beta(3, 2) and Beta(1/2, 1/2)
marginals.

Dlist <- mylhs.beta(10, 2, shape1=c(3,1/2), shape2=c(2,1/2))

Figure 4.7 shows behavior matching what was prescribed: density of grid locations (and
samples) is highest to the right of middle in x1, targeting a mean of 3/(2 + 3) = 3/5, and at
the edges of the x2 coordinate owing to the “U-shape” of Beta(1/2, 1/2).

plot(Dlist$X, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
abline(v=Dlist$g[,1], col="grey", lty=2)
abline(h=Dlist$g[,2], col="grey", lty=2)

To look closer at the marginals, code below generates a much larger LHS . . .

3https://en.wikipedia.org/wiki/Beta_distribution

https://en.wikipedia.org/wiki/Beta_distribution
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FIGURE 4.7: Two-dimensional LHS with beta marginals.

X <- mylhs.beta(1000, 2, shape1=c(3,1/2), shape2=c(2,1/2))$X

. . . and Figure 4.8 presents histograms of samples obtained in each coordinate against PDF
evaluations under the desired beta distributions.

par(mfrow=c(1,2))
x <- seq(0,1,length=100)
hist(X[,1], main="", xlab="x1", freq=FALSE)
lines(x, dbeta(x, 3, 2), col=2)
hist(X[,2], main="", xlab="x2", freq=FALSE)
lines(x, dbeta(x, 1/2, 1/2), col=2)
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FIGURE 4.8: Marginals of LHS with beta distributions.

Designs generated in this way are useful for input sensitivity analyses, discussed in detail in
§8.2, and related exercises common in the uncertainty quantification (UQ) literature. An
important aspect in both settings involves exploring how a distribution on inputs propagates
to a distribution of outputs through an opaque blackbox apparatus. Random sampling can
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facilitate a study of main effects and second-order uncertainty indices for nominal inputs
under random jitter, or for inputs concentrated in a typical regime. LHSs offer similar
functionality while requiring many fewer samples be pushed through a computationally
intensive blackbox, say one constructed as a daisy-chain of numerical solvers, surrogates,
and so on.

LHSs are also handy in synthetic predictive benchmarking exercises emphasizing assessment
of generalization error. Sometimes these are called “bakeoffs” or “horse races”. The idea is to
generate training and out-of-sample testing sets where input–output pairs from the former
are used to build fitted models of several varieties, and ones from the latter are held out to
subsequently compare predictors derived from those fitted models. Inputs from an LHS offer
certain guarantees on spread, and when collected simultaneously for training and testing
can yield a partition where out-of-sample measurements are made on novel (but not too
novel) input settings. Outputs for such exercises could come from any of the synthetic data
generating functions offered by the VLSE4, for example.

To illustrate, consider the following partition of an n = 20 LHS in 2d where training inputs
come from the first ten, and testing from the last ten.

Dlist <- mylhs(20, 2)
Xtrain <- Dlist$X[1:10,]
Xtest <- Dlist$X[11:20,]

Figure 4.9 visualizes the two sets on the combined LH grid.

plot(Xtrain, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
points(Xtest, pch=20)
abline(v=Dlist$g, col="grey", lty=2)
abline(h=Dlist$g, col="grey", lty=2)
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FIGURE 4.9: LHS training and testing partition.

Observe that testing and training locations are spaced out both relative to themselves and
4http://www.sfu.ca/~ssurjano/

http://www.sfu.ca/~ssurjano/
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to those from the other set. The thinking is that a prediction exercise based upon these
inputs would reduce variance in assessments of generalization error, i.e., when measuring
the quality of predictions made for inputs somewhat different than ones the fitted models
were trained on. It’s common to base horse races or bakeoffs on summaries obtained from
repetitions on this theme, as codified by Algorithm 4.1.

Algorithm 4.1 LHS Bakeoff

Assume input dimension (m) is a match for test function f , and that the K competing
methods are appropriate for f .

Require test function f , K fitting/prediction methods, training size n, testing size
n′, and number of repetitions R.

Repeat the following for r = 1, . . . , R:
1. Generate an LHS of size n+ n′ creating X.
2. Evaluate the true response at all n + n′ sites, yielding Y ∼ f(X), and combine

them with inputs to obtain n+ n′ data pairs D = (X,Y ).
3. Randomly partition into n training pairs Tn = (Xt

n, Y
t
n) and n′ testing or validation

pairs Vn′ = (Xv
n′ , Y

v
n′).

• Since rows of the LHS are random, as from mylhs, it’s usually sufficient to
take the first n and last n′ pairs, respectively.

4. Train K competing methods on Tn yielding predictors ŷ(k)(·) ≡ ŷ(k)(·) | Tn, for
k = 1, . . . ,K.

5. Test out-of-sample by making predictions on the validation set Vn′ , saving them
as Ŷ (k)

n′ = ŷ(k)(Xv
n′).

6. Calculate metrics m(k)
r for each method k = 1, . . . ,K comparing Ŷ

(k)
n′ to the

held-out values Y vn′ . Examples include
• proper scoring rule (See §5.2 and Gneiting and Raftery, 2007),
• root mean-squared (prediction) error (RMSE) or mean absolute error (MAE),

respectively

m(k)
r =

√√√√ 1
n′

n′∑
i=1

(yvi − ŷ
(k)
i )2, or m(k)

r = 1
n′

n′∑
i=1
|yvi − ŷ

(k)
i |.

Return one or more R×K matrices M comprised of m(k)
r -values calculated in Step

6, above, and/or more compact summaries of their empirical distribution in order to
determine the winner of the bakeoff.

Some notes about typical use follow. Perhaps the most common setting is n′ = n so that
testing size is commensurate with training. However in situations where computation involved
in fitting limits the training size, n, but prediction is much faster (i.e., as is the case for GPs
in Chapter 5), an n′ � n setup is sometimes used. It’s typical for y-values from f to be
observed with noise, e.g., y = f(x) + ε, where ε ∼ N (0, σ2), yet deterministic settings are
common when studying computer experiments. Notation Y ∼ f(X) above is intended to
cover both cases. Sometimes one is interested in training on noisy data, but making predictive
comparisons to de-noised versions, say via RMSE or MAE. This may be implemented with
a simple adaptation to the algorithm. However note that proper scores must use a noisy
testing set.
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One reason to prefer returning a raw R×K matrix of metric evaluations, M , as opposed to
a summary (say column-wise averages, quantiles or boxplots), is that the former makes it
easier to change your mind later. If the relative comparison turns out to be a “close call”, in
terms of average values say, then pairwise t-tests (possibly on the log of the metric) can be
helpful to adjudicate in order to determine a winner.

But we’re getting a little ahead of ourselves here. We haven’t really introduced any predictors
to compare yet, so it’s hard to make things concrete with an example at this time. The
curious reader may wish to “fast forward” to a comparison between GP variations and
MARS in §5.2.7 styled in the form of Algorithm 4.1.

While the testing set is spread out relative to the training set in the partition in Figure 4.9,
these partition elements are not themselves LHSs. That is, they don’t make up a nested
LHS (Qian, 2009), which might be a desirable property to have. Moreover, unless the plan
is to randomize over the partition, as in the GP comparison referenced above, the random
nature of an LHS may be undesirable. Or at the very least it’s a double-edged sword:
randomization necessitates devoting valuable computational resources to repetition and can
lead to insecurities about how much is enough. Many of the drawbacks of LHSs, like that
spread is not guaranteed (aliasing is always present to a degree), are a consequence of its
inherent randomness. Getting points with maximal spread, whether for one-shot design,
train–test partitions, or for sequential analysis, requires swapping a measure of randomization
for optimization.

4.2 Maximin designs

If what we want is points spread out, then perhaps it makes sense to design a criteria that
deliberately spreads points out! For that we need a notion of distance by which to measure
spread. The development here takes the simple choice of (squared) Euclidean distance

d(x, x′) = ||x− x′||2 =
m∑
j=1

(xj − x′j)2,

but the framework is otherwise quite general if other choices, such as say Mahalanobis
distance5, were desired instead. A design Xn = {x1, . . . , xn} which maximizes the minimum
distance between all pairs of points,

Xn = argmaxXn min{d(xi, xk) : i 6= k = 1, . . . , n},

is called a maximin design.

The opposite way around, so-called minimax designs, also leads to points all spread out.
By limiting how far apart pairs of points can be, you end up encouraging spread in a
circuitous manner. Many of the considerations are similar, so we won’t get into further
detail here on minimax designs. It turns out they’re somewhat harder to calculate than the
more conceptually straightforward maximin in practice. See Johnson et al. (1990) for more
discussion. Tan (2013) is also an excellent resource.

5https://en.wikipedia.org/wiki/Mahalanobis_distance

https://en.wikipedia.org/wiki/Mahalanobis_distance
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4.2.1 Calculating maximin designs

Maximin designs: easy to say, possibly not so easy to do. The details are all in the algorithm.
The leading maxX is effectively a maximization over n×m “dimensions”. Potential design
sites x1, . . . , xn making up Xn each occupy m coordinates in the input space. Every Xn

entertained must be evaluated under a criterion that entails at best O(n2) operations, at least
at first glance. Although the criterion suggests a deterministic solution for a particular choice
of n and m, in fact most solvers are stochastic, owing to the challenge of the optimization
setting. A naïve but simple iterative algorithm entails proposing a random change to one of
the n sites xi, and accepting or rejecting that change by consulting the criterion. Since only
n− 1 distances change under such a swap, a clever implementation can get away with O(n)
rather than O(n2) calculations.

Having a fast (Euclidean) distance calculation, not just for one pair of points but potentially
for many, is crucial to creating maximin designs efficiently. R has a dist function which is
appropriate. For slightly simpler implementation and to connect better to GP code in later
chapters (particularly Chapter 5), we shall instead borrow distance from the plgp package
(Gramacy, 2014) on CRAN. The distance function allows distances to be calculated between
pairs of coordinates, from one coordinate to many, and from many to many, where the for
loops are optimized in compiled C code.

library(plgp)
distance(X[1:2,], X[3:5,])

## [,1] [,2] [,3]
## [1,] 0.5317 1.0479 0.09896
## [2,] 0.1169 0.4173 0.04746

If you give distance just one matrix it’ll calculate all pairwise distances between the rows in
that matrix. Although the output records redundant lower and upper triangles, as complete
n×n matrices are required for many GP calculations, the implementation doesn’t double-up
effort when calculating duplicate entries. To use that output in a maximin calculation we
must ignore the diagonal, which is zero for all i = 1, . . . , n.

Consider two random uniform designs, and a comparison between them based on the maximin
criterion.

X1 <- matrix(runif(n*m), ncol=m)
dX1 <- distance(X1)
dX1 <- dX1[upper.tri(dX1)]
md1 <- min(dX1)
X2 <- matrix(runif(n*m), ncol=m)
dX2 <- distance(X2)
dX2 <- dX2[upper.tri(dX2)]
md2 <- min(dX2)

Now we can visualize the two and see if we think that the one with larger distance “looks”
better as a space-filling design. Figure 4.10 shows the two designs, one with open circles and
the other closed, with maximin distances quoted in the legend.
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plot(X1, xlim=c(0,1.25), ylim=c(0,1.25), xlab="x1", ylab="x2")
points(X2, pch=20)
legend("topright", paste("md =", round(c(md1, md2), 5)), pch=c(21,20))
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FIGURE 4.10: Comparing two designs via the maximin distance criterion.

Rmarkdown builds are sensitive to random whim, so it’s hard to write text here to anticipate
the outcome except to say that usually it’s pretty obvious which of the two designs is
better. It’s highly likely that at least one of the random uniform designs has a pair of points
very close together. Typically, one has an order of magnitude smaller md than the other.
However, a single pair of points doesn’t a holistic judgment make. It could well be that the
design with the smallest minimum distance pair is actually the far better one when taking
the distances of all other pairs into account. It’s tempting to consider average minimum
distance or some such more aggregate alternative, but that turns out to be a poor criteria
for refinement through iterative search. That is, unless aggregate criteria are developed with
care. See Morris and Mitchell (1995)’s φp criteria and related homework exercise (§4.4).
More on computational strategies is peppered throughout the discussion below; specific
libraries/implementations and off-shoots will be provided in §4.3.

Iterative pairwise comparisons of designs of size n, as in the example above, would be
quite cumbersome computationally. Yet the simplicity of this idea makes it attractive
from an implementation perspective. The coding effort is just as easy, but more efficient
computationally, if modified to consider pairs X1 and X2 which differ by just one point.
Along those lines, code below sets up a simple stochastic exchange algorithm to maximize
minimum distance, starting from a random uniform design (X1 above), proposing a random
row to swap out, and a new set of random coordinates to swap back in (thus implicitly
creating X2). If the resulting maximin distance is not improved, then the proposed exchange
is undone: a rejection. Otherwise the implicit X2 is accepted as the new X1. After accepting
or rejecting 10000 such proposals, the algorithm terminates.

T <- 10000
for(t in 1:T) {
row <- sample(1:n, 1)
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xold <- X1[row,] ## random row selection
X1[row,] <- runif(m) ## random new row
d <- distance(X1)
d <- d[upper.tri(d)]
mdprime <- min(d)
if(mdprime > md1) { ## accept
md1 <- mdprime

} else { ## reject
X1[row,] <- xold

}
}

There are clearly many inefficiencies which are easily remedied, and addressing these will be
left to exercises in §4.4. For example, any swapped-out row not corresponding to a minimum
distance pair will result in rejection. So choosing row completely at random is clumsy.
Replacing completely at random is also inefficient, although relatively cheap compared to
other alternatives. Secondly, distance is applied to the entirety of the modified X1, an O(n2)
operation, when only one row and column (of O(n)) has changed. Finally, no convergence
is monitored. It could be that stopping much sooner than T=10000 would yield a nearly
identical design.

Despite gross inefficiency, execution is reasonably fast – because n is pretty small – and
results are quite good, as shown in Figure 4.11.

plot(X1, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
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FIGURE 4.11: Maximin design in two input dimensions.

What do we notice? Design sites are nice and spread out, but they’re pushed to boundaries
which may be undesirable. Upon reflection, perhaps that’s an obvious consequence of the
search criteria. Points are pushed to the edge of the input space because they’re repelled
away from other ones nearby. As input dimension m increases this boundary effect becomes
more extreme. Surface area will eventually dwarf interior volume in relative terms. Also
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notice a lack of one-dimensional uniformity here. Marginally, projecting over either of x1 or
x2, there appears to be just three or four truly unique settings. Whereas with an LHS using
n = 10 there were exactly ten.

Before exploring further, particularly in higher dimension, let’s make a “library” function
just as we did with mylhs.

mymaximin <- function(n, m, T=100000)
{
X <- matrix(runif(n*m), ncol=m) ## initial design
d <- distance(X)
d <- d[upper.tri(d)]
md <- min(d)

for(t in 1:T) {
row <- sample(1:n, 1)
xold <- X[row,] ## random row selection
X[row,] <- runif(m) ## random new row
d <- distance(X)
d <- d[upper.tri(d)]
mdprime <- min(d)
if(mdprime > md) { md <- mdprime ## accept
} else { X[row,] <- xold } ## reject

}

return(X)
}

Now how about generating a maximin design with n = 10 and m = 3?

X <- mymaximin(10, 3)

Figure 4.12 offers 2d projections of that design for all pairs of inputs. Numbers plotted spot
indices of each unique design element in order to help link points across panels.

Is <- as.list(as.data.frame(combn(ncol(X),2)))
par(mfrow=c(1,length(Is)))
for(i in Is) {

plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n", xlab=paste0("x", i[1]),
ylab=paste0("x", i[2]))

text(X[,i], labels=1:nrow(X))
}

Things don’t look so good here, at least compared to similar plots for the 3d LHS in Figures
4.3–4.4. Of course, it’s harder to visualize a 3d design via 2d projections. An alternative is
provided at the end of §4.2.2, but similar features emerge here: a push to boundaries, near
non-uniqueness of values in the input coordinates, etc. Some 2d projections may have close
pairs, but other panels indicate that those points are far apart in their other coordinates. In
fact, those which are among the closest in one input pair tend to be among the farthest in
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FIGURE 4.12: Three 2d projections of a maximin design in three inputs.

the others. It’s abundantly clear that a projection of a maximin design is not itself maximin
in the lower dimension. There’s no one-dimensional uniformity.

Many of these drawbacks are addressed by variations available in library implementations,
including the gross computational inefficiencies in mymaximin discussed above. We’ll get to
some of these, including hybridizations, in §4.3. First comes one of my favorite features of
maximin designs.

4.2.2 Sequential maximin design

Maximin selection naturally extends to sequential design. That is, we may condition on an
existing design Xorig

n ≡ Xorig and ask what new runs could augment that design to produce
Xn′ ≡ X where the new runs optimize the maximin criterion. Only elements of X are being
chosen, but the desired settings of its coordinates are spaced out relative to themselves, and
to existing locations in Xorig. Mathematically,

Xn′ = argmaxXn′ min{d(xi, xk) : i = 1, . . . , n′; k 6= i = 1, . . . , n′ + n},

where Xorig
n is comprised of n locations indexed as xn′+1, . . . , xn′+n. Sometimes Xn′ in this

context is called an augmenting design.

Adapting our mymaximin function (§4.2.1) to work in this way isn’t hard. Again, this
implementation lacks solutions to many of the same inefficiencies pointed out for our earlier
version, but benefits from simplicity. New code is highlighted by “## new code” comments
below, comprised of two if statements that are active only when Xorig is defined.

mymaximin <- function(n, m, T=100000, Xorig=NULL)
{
X <- matrix(runif(n*m), ncol=m) ## initial design
d <- distance(X)
d <- d[upper.tri(d)]
md <- min(d)
if(!is.null(Xorig)) { ## new code
md2 <- min(distance(X, Xorig))
if(md2 < md) md <- md2

}
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for(t in 1:T) {
row <- sample(1:n, 1)
xold <- X[row,] ## random row selection
X[row,] <- runif(m) ## random new row
d <- distance(X)
d <- d[upper.tri(d)]
mdprime <- min(d)
if(!is.null(Xorig)) { ## new code

mdprime2 <- min(distance(X, Xorig))
if(mdprime2 < mdprime) mdprime <- mdprime2

}
if(mdprime > md) { md <- mdprime ## accept
} else { X[row,] <- xold } ## reject

}

return(X)
}

Let’s see how it works. Below we ask for n′ = 5 new runs, augmenting our earlier n = 10
sites stored in X1.

X2 <- mymaximin(5, 2, Xorig=X1)

Figure 4.13 shows how new runs (closed dots) are spaced out relative to themselves and to
the previously obtained maximin design (open circles).

plot(X1, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
points(X2, pch=20)
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FIGURE 4.13: Sequential maximin design with augmenting points as closed dots.

The chosen locations look sensible, with spacing being optimized. Observe however that very
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few new settings are chosen marginally, when mentally projecting down onto coordinate axes
for x1 and x2. The random nature of search makes it hard to comment on specific patterns
in this Rmarkdown document. Yet in repeated applications it’s quite typical for new design
elements to have just one new unique coordinate value, up to reasonable relative tolerance.
Lack of one-dimensional uniformity remains a drawback of maximin relative to LHS, even in
the sequential or augmenting setting.

Despite that downside, this example demonstrates that a sequential maximin design could
be used to create a training and testing partition much like our LHS analog in §4.1.2
and Algorithm 4.1. For settings where a large degree of training–testing repetition is too
expensive, a single partition obtained via sequential maximin design might represent a
sensible alternative. First select an n-sized maximin training design Xn; then create a
sequential maximin testing set Xn′ given Xn.

The story is similar in higher input dimension. For example, consider expanding our 3d
design to include five more runs.

X2 <- mymaximin(5, 3, Xorig=X)
X <- rbind(X2, X)

To ease visualization in Figure 4.14, new runs from X2 are subsumed into X. In addition to
occupying indices 1:5, new design elements are colored in red.

Is <- as.list(as.data.frame(combn(ncol(X),2)))
par(mfrow=c(1,length(Is)))
for(i in Is) {

plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n", xlab=paste0("x", i[1]),
ylab=paste0("x", i[2]))

text(X[,i], labels=1:nrow(X), col=c(rep(2,5), rep(1,10)))
}
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FIGURE 4.14: Augmenting design (red, numbered 1 to 5) in three inputs via three 2d
projections.

As before, any particular projection might not be perfect, but the ensemble of panel views
indicates that new runs are indeed spaced out relative to themselves and to the previous
locations (numbered 6:15 and colored in black). Sometimes the illusion of perspective offered
by the scatterplot3d library is helpful in such inspections. Some code is provided below, but
graphical output is suppressed due to the excessive whitespace it creates in the Rmardown
environment.
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library(scatterplot3d)
scatterplot3d(X, type="h", color=c(rep(2,5), rep(1,10)),
pch=c(rep(20,5), rep(21,10)), xlab="x1", ylab="x2", zlab="x3")

The color and point scheme indicates new locations Xn′ as red filled circles and Xorig
n as black

open circles. Vertical lines under the dots, as provided by type="h", are essential to visually
track locations in 3d space and see that the design is truly space-filling. Unfortunately, it’s
not obvious how to use text to plot indices rather than points in scatterplot3d.

4.3 Libraries and hybrids

Our mylhs function from §4.1, and its extension mylhs.beta (§4.1.2) are hard to improve
upon in terms of computational efficiency. Nevertheless it’s simpler to rely on canned
alternatives. Similar functionality is offered by randomLHS in the lhs library (Carnell, 2018)
on CRAN. Although tailored to uniform marginals, that library does offer a sequential
alternative in augmentLHS.

The lhs package also provides a nice hybrid between maximin and LHS in maximinLHS
which helps avoid aliasing problems of both ordinary LHS and maximin designs. Think of
this as entertaining candidate LHSs and preferring ones whose minimum distance between
design element pairs is large (Morris and Mitchell, 1995). Typical search methods proceed
similarly to our sequential maximin method, described above, usually involving stochastic
exchange of pairs of levels, separately (and possibly also randomly) in each coordinate, in
order to preserve a Latin square structure. To compare/contrast with some of our earlier
examples, code below builds one of these hybrid designs.

library(lhs)
X <- maximinLHS(10, 2)

As shown in Figure 4.15, the resulting points are spread out, but perhaps not as spread out
as a fully maximin design. By default, maximinLHS performs a greedy6, stepwise search. A
homework exercise (§4.4) demonstrates that it’s possible to get better maximin LHS hybrid
performance with a more exhaustive search. The library doesn’t provide a Latin square grid
on output, so code supporting Figure 4.15 offers an educated guess as to what that grid
might look like.

plot(X, xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
abline(h=seq(0,1,length=11), col="gray", lty=2)
abline(v=seq(0,1,length=11), col="gray", lty=2)

Since it’s still an LHS, points are not pushed to the boundaries. One-dimensional uniformity
guarantees at most one point near each edge. Consequently such designs are often more
desirable than an LHS or maximin on their own, although there are reasons to prefer these

6https://en.wikipedia.org/wiki/Greedy_algorithm

https://en.wikipedia.org/wiki/Greedy_algorithm
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FIGURE 4.15: Maximin/LHS hybrid design.

original, raw (un-hybridized), options. For example, I’m not aware of any software offering a
sequential update to a hybrid maximin LHS design. Related, so-called maximum projection
design (Joseph et al., 2015), extends the LHS one-dimensional uniformity property to larger
subspaces. Building a maxpro design entails calculations similar to those involved in maximin,
and like maximin they emit a natural sequential analog. A package is available on CRAN
called MaxPro (Ba and Joseph, 2018). Sometimes computer experiments contain factor-valued
inputs – i.e., categorical rather than real-valued ones. Maxpro designs have recently been
extended to accommodate this case. Maximin “sliced” LHD (SLHD) hybrids (Ba et al., 2015)
also represent an attractive option in this setting. See SLHD (Ba, 2015) on CRAN.

A package called maximin (Sun and Gramacy, 2019) on CRAN offers batch and sequential
(ordinary) maximin design. By optionally including distance to boundaries in search criteria
it can avoid sites selected along extremities of the input space. Its implementation addresses
many of the computational inefficiencies highlighted for mymaximin in §4.2.1, and which
are the subject of an exercise in §4.4. Additionally maximin replaces random search with
a heuristically motivated derivative-based optimization, leveraging local continuity in the
objective criteria. Sometimes, however, a more discrete alternative is handy. A function
maximin.cand allows search to be restricted to a candidate grid, which can be helpful when
simulators only accept certain input locations. A homework exercise in §5.5 requires such
a feature in order to work with surrogate LGBB data from §2.1. Sun et al. (2019b) used
candidate-restricted sequential maximin designs to combine field and simulation data for a
solar irradiance forecasting project. Obtaining accurate IBM PAIRS7 simulations of solar
irradiance, emphasizing ones geographically far from sporadically spaced weather station
data, required limiting future simulation runs to a particular grid.

There are many further options when it comes to sensible, and computationally efficient,
model-free space-filling designs. DiceDesign on CRAN (Franco et al., 2018; Dupuy et al.,
2015) covers several others in addition ones I’ve introduced/pointed to above. We now have
everything we need to move on to GP modeling in Chapter 5, in particular to generate
data for illustrative examples provided therein. As mentioned at the outset of this chapter,
topics in model-based design (using GPs) in Chapter 6 are in many ways twinned with the

7https://ibmpairs.mybluemix.net/

https://ibmpairs.mybluemix.net/
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model-free analogs here. Despite conditioning on the model, resulting designs are quite similar
to more agnostic alternatives, except when you have something more particular in mind.
Perhaps that explains the popularity of a model-free option: all of the effect of “knowing”
the model for the purposes of learning more about it, without potential for pathology as
inherent in any presumptive choice before learning actually takes place.

Unfortunately, that characterization is not quite right because choosing a space-filling design
can indeed influence what you learn. In fact Zhang et al. (2020) very specifically demonstrate
pathological behavior when using space-filling designs like maximin and LHS with GP
surrogates. Poor behavior can be particularly acute when using maximin or LHS as a
small seed design in order to initiate an inherently sequential analysis, such as in Bayesian
optimization (Chapter 7). Surprisingly, simple completely random design can protect against
such pathologies. Going further, Zhang et al. show how designs offering more control on the
distribution of pairwise distances – as opposed to attempting to maximize the smallest of
those – fare better too. The reason has to do with mechanisms behind how GPs are typically
specified, and fit to data. But we’re getting well ahead of ourselves. I must first introduce
the GP.

4.4 Homework exercises

These exercises give the reader an opportunity to explore space-filling design properties and
algorithms. Throughout, use up to T=10000 iterations for your searches.

#1: Faster maximin

This question targets improvements to our initial, inefficient mymaximin implementation
in §4.2.1. In each case, measure improvement in terms of the rate of increase in minimum
distance over search iterations.

a. Fix a random design Xinit of size n=100 in m=2 dimensions. Modify mymaximin to
use Xinit as its starting design, and to keep track (and return) md progress over the T
iterations of search. (It might help to change the default number of iterations to T=10000.)
Generate a maximin design using your new mymaximin implementation. Provide a visual
of the final design and progress in md over the iterations. Report execution time.

b. Update mymaximin to more cleverly choose the row swapped out in each iteration. Argue
that only two rows are worth potentially swapping out if progress is to be measured by
increasing md over stochastic exchange iterations. How would you choose among these
two? After you implement your new scheme, compare it to results from #a via visuals of
the final design and md progress on common axes. Compare the execution time to #a.

c. Update mymaximin so that not all pairwise distances are calculated in each iteration.
Calculate and update only those distances, and minimum pairwise distances, which
change. Verify that your new implementation gives identical results (final design and md
progress) to those which you obtained in #b, but show that the calculation is now much
faster in terms of execution time. If your algorithm is randomized, verifying identical
results will require identical RNG seeds.

d. Repeat #a–c thirty times with novel Xinit and compare average progress in md in terms
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of means and 90% quantiles for each of the three methods. Also compare distributions
of compute times.

#2: Hybrid space-filling design

Latin hypercube samples (LHSs) (§4.1) and maximin distance (§4.2) are both space-filling
in a certain sense. Consider a hybrid of the two methods, a so-called maximin LHS (§4.3)
as introduced by Morris and Mitchell (1995). That is, among LHSs we desire ones that
maximize the minimum distance between design points. Such a hybrid can offer the best of
both words: nice margins (whether uniform or otherwise), no clumping at the boundaries,
and no diagonal aliasing!

There are lots of ways to make a precise definition for maximim LHS, but the spirit is
conveyed in a simple algorithm for how it might be (approximately) calculated.

1. Generate an initializing LHS Xinit of appropriate size.
2. Randomly choose a pair of design points, randomly choose a column, and propose

swapping that pair’s coordinates in that column.
3. Keep the exchange if the minimum distances between those two points and all others is

improved; otherwise swap back.
4. Repeat 2–3.

Your task is the following.

a. Convince yourself (and your instructor) that the result is still an LHS.
b. Implement the method and try it out in m ∈ {2, 3, 4} dimensional design spaces, with

design sizes n ∈ {100, 1000}. How do your maximin LHS designs compare to maximin?
In particular, how do 2d projections for m ∈ {3, 4} compare? Can you improve upon
the numerical performance of your algorithm by deploying some of the strategies from
exercises #1b–c?

c. Report on average progress of the algorithm, in terms of its ability to maximize minimum
distance(s), over iterations of steps 2–3 above. (Use Monte Carlo; e.g., see #1d above.)

d. How does your algorithm compare to the maximinLHS method in the lhs library for R?

(The attentive reader will recognize that the choice of random jitter in the Latin square,
i.e., the U step in generating Xinit, is at odds with the maximin criterion. But let’s not get
distracted by such details here; if you prefer choose U=0.)

#3: φp designs

In addition to maximin LHS hybridization (#2 above), Morris and Mitchell (1995) suggested
the following search criteria for the purpose of space-filling design. Let dk, for k = 1, . . . ,K,
denote the K unique pairwise distances in a design Xn, and let Jk denote the number of
rows of Xn who share pairwise distance dk. In most applications, K =

(
n
2
)
and all Jk = 1.

Then, one may search for a design Xn by minimizing φp(Xn) where

φp =
[
K∑
k=1

Jkd
−p
k

]1/p

.

At p =∞, minimizing the criterion is equivalent to solving for a maximin design. Interestingly,
Morris & Mitchell show how all p lead to maximin designs – in the sense that the smallest
distance, mink dk is maximized – but resulting designs differ in the distribution of other
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distances d(−k). Behavior of numerical methods for optimizing φp also differ from maximin
due to the smoother nature of the criteria for smaller p.

Your task is to port mymaximin to myminphi, entertain enhancements similar to those of
exercises #1a–c (i.e., think about search and computational efficiency), and to make a Monte
Carlo comparison to those methods by extending #1d. Limit your study to p ∈ {2, 5}. Then
hybridize with LHS following exercise #2b–c. How do the most efficient variations on the
four methods: maximin, φp, maximin LHS, and φp LHS compare?

#4: Candidate-based augmenting maximin design

For a solar irradiance forecasting project, Sun et al. (2019b) worked with data from a network
of weather stations scattered throughout the continental United States. Monitoring sites
are heterogeneously dispersed, with heavy concentration in national/state parks and sparse
coverage in the Great Plains and lower Midwest. Code below reads in the data . . .

lola <- read.csv("lola.csv")

. . . and Figure 4.16 offers a visual of the sites where irradiance measurements have been
gathered.

library(maps)
myUS <- map("state", fill=TRUE, plot=FALSE)
omit <- c("massachusetts:martha's vineyard", "massachusetts:nantucket",
"new york:manhattan", "new york:staten island", "new york:long island",
"north carolina:knotts", "north carolina:spit", "virginia:chesapeake",
"virginia:chincoteague", "washington:san juan island",
"washington:lopez island", "washington:orcas island",
"washington:whidbey island")

myNames <- myUS$names[!(myUS$names %in% omit)]
myUS <- map("state", myNames, fill=TRUE, col="gray", plot=TRUE)
points(lola$lon, lola$lat, pch=19, cex=0.3, col="blue")
legend("bottomleft", legend=c("Original/Weather Stations"), col="blue",
pch=19, pt.cex=0.3, bty="n")

To extrapolate better to sparsely covered regions of the country, Sun et al. (2019b) augmented
their data with computer model irradiance evaluations. For reasons that are somewhat more
thoroughly explained in §4.3 and in their manuscript, such runs could only be obtained at
the grid of locations stored in the file below.

lola.cands <- read.csv("lola_cands.csv")

a. Demonstrate visually that the grid uniformly covers the continental USA except where it
doubles-up on original lola locations. For brownie points, how would you automate the
process of creating lola.cands from a uniform 0.1-spaced grid in longitude and latitude
throughout myUS$range; that is, so that there are no grid points in the oceans/Great
Lakes and none overlapping with lola?

b. Design an algorithm which delivers 100 new sites whose locations are confined to
lola.cands and whose minimum distance to themselves and to lola is maximized.
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Original/Weather Stations

FIGURE 4.16: Weather station sites in the continental USA.

Augment the visualization above to include the newly selected sites. Inspect md progress
over the iterations. You may wish to adapt your method from exercise #1.

c. Using your implementation from #b, or with maximin.cands in the maximin package
on CRAN, select 900 more (for 1000 total) new sites and provide visuals of the results.
Plot md progress over the iterations.



5
Gaussian Process Regression

Here the goal is humble on theoretical fronts, but fundamental in application. Our aim is to
understand the Gaussian process (GP) as a prior over random functions, a posterior over
functions given observed data, as a tool for spatial data modeling and surrogate modeling
for computer experiments, and simply as a flexible nonparametric regression. We’ll see that,
almost in spite of a technical over-analysis of its properties, and sometimes strange vocabulary
used to describe its features, GP regression is a simple extension of linear modeling. Knowing
that is all it takes to make use of it as a nearly unbeatable regression tool when input–output
relationships are relatively smooth, and signal-to-noise ratios relatively high. And even
sometimes when they’re not.

The subject of this chapter goes by many names and acronyms. Some call it kriging, which
is a term that comes from geostatistics (Matheron, 1963); some call it Gaussian spatial
modeling or a Gaussian stochastic process. Both, if you squint at them the right way, have
the acronym GaSP. Machine learning (ML) researchers like Gaussian process regression
(GPR). All of these instances are about regression: training on inputs and outputs with
the ultimate goal of prediction and uncertainty quantification (UQ), and ancillary goals
that are either tantamount to, or at least crucially depend upon, qualities and quantities
derived from a predictive distribution. Although the chapter is titled “Gaussian process
regression”, and we’ll talk lots about Gaussian process surrogate modeling throughout this
book, we’ll typically shorten that mouthful to Gaussian process (GP), or use “GP surrogate”
for short. GPS1 would be confusing and GPSM2 is too scary. I’ll try to make this as painless
as possible.

After understanding how it all works, we’ll see how GPs excel in several common response
surface tasks: as a sequential design tool in Chapter 6; as the workhorse in modern (Bayesian)
optimization of blackbox functions in Chapter 7; and all that with a “hands off” approach.
Classical RSMs of Chapter 3 have many attractive features, but most of that technology was
designed specifically, and creatively, to cope with limitations arising in first- and second-order
linear modeling. Once in the more flexible framework that GPs provide, one can think big
without compromising finer detail on smaller things.

Of course GPs are no panacea. Specialized tools can work better in less generic contexts.
And GPs have their limitations. We’ll have the opportunity to explore just what they are,
through practical examples. And down the line in Chapter 9 we’ll see that most of those
are easy to sweep away with a bit of cunning. These days it’s hard to make the case that
a GP shouldn’t be involved as a component in a larger analysis, or at least attempted as
such, where ultimately limited knowledge of the modeling context can be met by a touch of
flexibility, taking us that much closer to human-free statistical “thinking” – a fundamental
desire in ML and thus, increasingly, in tools developed for modern analytics.

1https://en.wikipedia.org/wiki/Global_Positioning_System
2https://en.wikipedia.org/wiki/S&M_(disambiguation)
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5.1 Gaussian process prior

Gaussian process is a generic term that pops up, taking on disparate but quite specific
meanings, in various statistical and probabilistic modeling enterprises. As a generic term,
all it means is that any finite collection of realizations (i.e., n observations) is modeled as
having a multivariate normal (MVN)3 distribution. That, in turn, means that characteristics
of those realizations are completely described by their mean n-vector µ and n×n covariance
matrix Σ. With interest in modeling functions, we’ll sometimes use the term mean function,
thinking of µ(x), and covariance function, thinking of Σ(x, x′). But ultimately we’ll end up
with vectors µ and matrices Σ after evaluating those functions at specific input locations
x1, . . . , xn.

You’ll hear people talk about function spaces, reproducing kernel Hilbert spaces, and so on, in
the context of GP modeling of functions. Sometimes thinking about those aspects/properties
is important, depending on context. For most purposes that makes things seem fancier than
they really need to be.

The action, at least the part that’s interesting, in a GP treatment of functions is all in
the covariance. Consider a covariance function defined by inverse exponentiated squared
Euclidean distance:

Σ(x, x′) = exp{−||x− x′||2}.

Here covariance decays exponentially fast as x and x′ become farther apart in the input,
or x-space. In this specification, observe that Σ(x, x) = 1 and Σ(x, x′) < 1 for x′ 6= x. The
function Σ(x, x′) must be positive definite4. For us this means that if we define a covariance
matrix Σn, based on evaluating Σ(xi, xj) at pairs of n x-values x1, . . . , xn, we must have
that

x>Σnx > 0 for all x 6= 0.

We intend to use Σn as a covariance matrix in an MVN, and a positive (semi-) definite
covariance matrix is required for MVN analysis. In that context, positive definiteness is
the multivariate extension of requiring that a univariate Gaussian have positive variance
parameter, σ2.

To ultimately see how a GP with that simple choice of covariance Σn can be used to perform
regression, let’s first see how GPs can be used to generate random data following a smooth
functional relationship. Suppose we take a bunch of x-values: x1, . . . , xn, define Σn via
Σijn = Σ(xi, xj), for i, j = 1, . . . , n, then draw an n-variate realization

Y ∼ Nn(0,Σn),

and plot the result in the x-y plane. That was a mouthful, but don’t worry: we’ll see it in
code momentarily. First note that the mean of this MVN is zero; this need not be but it’s
quite surprising how well things work even in this special case. Location invariant zero-mean
GP modeling, sometimes after subtracting off a middle value of the response (e.g., ȳ), is the

3https://en.wikipedia.org/wiki/Multivariate_normal_distribution
4https://en.wikipedia.org/wiki/Positive-definite_matrix

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Positive-definite_matrix


5.1 Gaussian process prior 145

default in computer surrogate modeling and (ML) literatures. We’ll talk about generalizing
this later.

Here’s a version of that verbal description with x-values in 1d. First create an input grid
with 100 elements.

n <- 100
X <- matrix(seq(0, 10, length=n), ncol=1)

Next calculate pairwise squared Euclidean distances between those inputs. I like the distance
function from the plgp package (Gramacy, 2014) in R because it was designed exactly for
this purpose (i.e., for use with GPs), however dist in base R provides similar functionality.

library(plgp)
D <- distance(X)

Then build up covariance matrix Σn as inverse exponentiated squared Euclidean distances.
Notice that the code below augments the diagonal with a small number eps ≡ ε. Although
inverse exponentiated distances guarantee a positive definite matrix in theory, sometimes
in practice the matrix is numerically ill-conditioned5. Augmenting the diagonal a tiny bit
prevents that. Neal (1998), a GP vanguard in the statistical/ML literature, calls ε the jitter
in this context.

eps <- sqrt(.Machine$double.eps)
Sigma <- exp(-D) + diag(eps, n)

Finally, plug that covariance matrix into an MVN random generator; below I use one from
the mvtnorm package (Genz et al., 2018) on CRAN.

library(mvtnorm)
Y <- rmvnorm(1, sigma=Sigma)

That’s it! We’ve generated a finite realization of a random function under a GP prior with a
particular covariance structure. Now all that’s left is visualization. Figure 5.1 plots those X
and Y pairs as tiny connected line segments on an x-y plane.

plot(X, Y, type="l")

Because the Y -values are random, you’ll get a different curve when you try this on your
own. We’ll generate some more below in a moment. But first, what are the properties of this
function, or more precisely of a random function generated in this way? Several are easy to
deduce from the form of the covariance structure. We’ll get a range of about [−2, 2], with
95% probability, because the scale of the covariance is 1, ignoring the jitter ε added to the
diagonal. We’ll get several bumps in the x-range of [0, 10] because short distances are highly
correlated (about 37%) and long distances are essentially uncorrelated (1e−7).

5https://en.wikipedia.org/wiki/Condition_number

https://en.wikipedia.org/wiki/Condition_number
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FIGURE 5.1: A random function under a GP prior.

c(exp(-1^2), exp(-4^2))

## [1] 3.679e-01 1.125e-07

Now the function plotted above is only a finite realization, meaning that we really only
have 100 pairs of points. Those points look smooth, in a tactile sense, because they’re
close together and because the plot function is “connecting the dots” with lines. The full
surface, which you might conceptually extend to an infinite realization over a compact
domain, is extremely smooth in a calculus sense because the covariance function is infinitely
differentiable, a discussion we’ll table for a little bit later.

Besides those three things – scale of two, several bumps, smooth look – we won’t be able to
anticipate much else about the nature of a particular realization. Figure 5.2 shows three
new random draws obtained in a similar way, which will again look different when you run
the code on your own.

Y <- rmvnorm(3, sigma=Sigma)
matplot(X, t(Y), type="l", ylab="Y")

Each random finite collection is different than the next. They all have similar range, about the
same number of bumps, and are smooth. That’s what it means to have function realizations
under a GP prior: Y (x) ∼ GP.

5.1.1 Gaussian process posterior

Of course, we’re not in the business of generating random functions. I’m not sure what that
would be useful for. Instead, we ask: given examples of a function in pairs (x1, y1), . . . , (xn, yn),
comprising data Dn = (Xn, Yn), what random function realizations could explain – could
have generated – those observed values? That is, we want to know about the conditional
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FIGURE 5.2: Three more random functions under a GP prior.

distribution of Y (x) | Dn. If we call Y (x) ∼ GP the prior, then Y (x) | Dn must be the
posterior.

Fortunately, you don’t need to be a card-carrying Bayesian to appreciate what’s going
on, although that perspective has really taken hold in ML. That conditional distribution,
Y (x) | Dn, which one might more simply call a predictive distribution, is a familiar quantity
in regression analysis. Forget for the moment that when regressing one is often interested in
other aspects, like relevance of predictors through estimates of parameter standard errors,
etc., and that so far our random functions look like they have no noise. The somewhat
strange, and certainly most noteworthy, thing is that so far there are no parameters!

Let’s shelve interpretation (Bayesian updating or a twist on simple regression) for a moment
and focus on conditional distributions, because that’s what it’s really all about. Deriving
that predictive distribution is a simple application of deducing a conditional from a (joint)
MVN. From Wikipedia6, if an N -dimensional random vector X is partitioned as

X =
(
X1
X2

)
with sizes

(
q × 1

(N − q)× 1

)
,

and accordingly µ and Σ are partitioned as,

µ =
(
µ1
µ2

)
with sizes

(
q × 1

(N − q)× 1

)
and

Σ =
(

Σ11 Σ12
Σ21 Σ22

)
with sizes

(
q × q q × (N − q)

(N − q)× q (N − q)× (N − q)

)
,

then the distribution of X1 conditional on X2 = x2 is MVN X1 | x2 ∼ Nq(µ̄, Σ̄), where

6https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions
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µ̄ = µ1 + Σ12Σ−1
22 (x2 − µ2) (5.1)

and Σ̄ = Σ11 − Σ12Σ−1
22 Σ21.

An interesting feature of this result is that conditioning upon x2 alters the variance of X1.
Observe that Σ̄ above is reduced compared to its marginal analog Σ11. Reduction in variance
when conditioning on data is a hallmark of statistical learning. We know more – have less
uncertainty – after incorporating data. Curiously, the amount by which variance is decreased
doesn’t depend on the value of x2. Observe that the mean is also altered, comparing µ1 to
µ̄. In fact, the equation for µ̄ is a linear mapping, i.e., of the form ax+ b for vectors a and b.
Finally, note that Σ12 = Σ>21 so that Σ̄ is symmetric.

Ok, how do we deploy that fundamental MVN result towards deriving the GP predictive
distribution Y (x) | Dn? Consider an n+ 1st observation Y (x). Allow Y (x) and Yn to have a
joint MVN distribution with mean zero and covariance function Σ(x, x′). That is, stack(

Y (x)
Yn

)
with sizes

(
1× 1
n× 1

)
,

and if Σ(Xn, x) is the n × 1 matrix comprised of Σ(x1, x), . . . ,Σ(xn, x), its covariance
structure can be partitioned as follows:(

Σ(x, x) Σ(x,Xn)
Σ(Xn, x) Σn

)
with sizes

(
1× 1 1× n
n× 1 n× n

)
.

Recall that Σ(x, x) = 1 with our simple choice of covariance function, and that symmetry
provides Σ(x,Xn) = Σ(Xn, x)>.

Applying Eq. (5.1) yields the following predictive distribution

Y (x) | Dn ∼ N (µ(x), σ2(x))

with

mean µ(x) = Σ(x,Xn)Σ−1
n Yn (5.2)

and variance σ2(x) = Σ(x, x)− Σ(x,Xn)Σ−1
n Σ(Xn, x).

Observe that µ(x) is linear in observations Yn, so we have a linear predictor! In fact it’s
the best linear unbiased predictor (BLUP), an argument we’ll leave to other texts (e.g.,
Santner et al., 2018). Also notice that σ2(x) is lower than the marginal variance. So we learn
something from data Yn; in fact the amount that variance goes down is a quadratic function
of distance between x and Xn. Learning is most efficient for x that are close to training data
locations Xn. However the amount learned doesn’t depend upon Yn. We’ll return to that
later.

The derivation above is for “pointwise” GP predictive calculations. These are sometimes
called the kriging7 equations, especially in geospatial contexts. We can apply them, separately,
for many predictive/testing locations x, one x at a time, but that would ignore the obvious
correlation they’d experience in a big MVN analysis. Alternatively, we may consider a bunch
of x locations jointly, in a testing design X of n′ rows, say, all at once:

7https://en.wikipedia.org/wiki/Kriging

https://en.wikipedia.org/wiki/Kriging
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Y (X ) | Dn ∼ Nn′(µ(X ),Σ(X ))

with

mean µ(X ) = Σ(X , Xn)Σ−1
n Yn (5.3)

and variance Σ(X ) = Σ(X ,X )− Σ(X , Xn)Σ−1
n Σ(X , Xn)>,

where Σ(X , Xn) is an n′×n matrix. Having a full covariance structure offers a more complete
picture of the random functions which explain data under a GP posterior, but also more
computation. The n′ × n′ matrix Σ(X ) could be enormous even for seemingly moderate n′.

Simple 1d GP prediction example

Consider a toy example in 1d where the response is a simple sinusoid measured at eight
equally spaced x-locations in the span of a single period of oscillation. R code below provides
relevant data quantities, including pairwise squared distances between the input locations
collected in the matrix D, and its inverse exponentiation in Sigma.

n <- 8
X <- matrix(seq(0,2*pi,length=n), ncol=1)
y <- sin(X)
D <- distance(X)
Sigma <- exp(-D) + diag(eps, ncol(D))

Now this is where the example diverges from our earlier one, where we used such quantities
to generate data from a GP prior. Applying MVN conditioning equations requires similar
calculations on a testing design X , coded as XX below. We need inverse exponentiated squared
distances between those XX locations . . .

XX <- matrix(seq(-0.5, 2*pi+0.5, length=100), ncol=1)
DXX <- distance(XX)
SXX <- exp(-DXX) + diag(eps, ncol(DXX))

. . . as well as between testing locations X and training data locations Xn.

DX <- distance(XX, X)
SX <- exp(-DX)

Note that an ε jitter adjustment is not required for SX because it need not be decomposed
in the conditioning calculations (and SX is anyways not square). We do need jitter on
the diagonal of SXX though, because this matrix is directly involved in calculation of the
predictive covariance which we shall feed into an MVN generator below.

Now simply follow Eq. (5.3) to derive joint predictive equations for XX ≡ X : invert Σn, apply
the linear predictor, and calculate reduction in covariance.
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Si <- solve(Sigma)
mup <- SX %*% Si %*% y
Sigmap <- SXX - SX %*% Si %*% t(SX)

Above mup maps to µ(X ) evaluated at our testing grid X ≡ XX, and Sigmap similarly
for Σ(X ) via pairs in XX. As a computational note, observe that Siy <- Si %*% y may
be pre-computed in time quadratic in n = length(y) so that mup may subsequently be
calculated for any XX in time linear in n, without redoing Siy; for example, as solve(Sigma,
y). There are two reasons we’re not doing that here. One is to establish a clean link between
code and mathematical formulae. The other is a presumption that the variance calculation,
which remains quadratic in n no matter what, is at least as important as the mean.

Mean vector and covariance matrix in hand, we may generate Y -values from the poste-
rior/predictive distribution Y (X ) | Dn in the same manner as we did from the prior.

YY <- rmvnorm(100, mup, Sigmap)

Those Y (X ) ≡ YY samples may then be plotted as a function of predictive input X ≡ XX
locations. Before doing that, extract some pointwise quantile-based error-bars from the
diagonal of Σ(X ) to aid in visualization.

q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap)))
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap)))

Figure 5.3 plots each of the random predictive, finite realizations as gray curves. Training
data points are overlayed, along with true response at the X locations as a thin blue line.
Predictive mean µ(X ) in black, and 90% quantiles in dashed-red, are added as thicker lines.

matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y")
points(X, y, pch=20, cex=2)
lines(XX, sin(XX), col="blue")
lines(XX, mup, lwd=2)
lines(XX, q1, lwd=2, lty=2, col=2)
lines(XX, q2, lwd=2, lty=2, col=2)

What do we observe in the figure? Notice how the predictive surface interpolates the data.
That’s because Σ(x, x) = 1 and Σ(x, x′) → 1− as x′ → x. Error-bars take on a “football”
shape, or some say a “sausage” shape, being widest at locations farthest from xi-values in
the data. Error-bars get really big outside the range of the data, a typical feature in ordinary
linear regression settings. But the predictive mean behaves rather differently than under
an ordinary linear model. For GPs it’s mean-reverting, eventually leveling off to zero as
x ∈ X gets far away from Xn. Predictive variance, as exemplified by those error-bars, is
also reverting to something: a prior variance of 1. In particular, variance won’t continue
to increase as x gets farther and farther from Xn. Together those two “reversions” imply
that although we can’t trust extrapolations too far outside of the data range, at least their
behavior isn’t unpredictable, as can sometimes happen in linear regression contexts, for
example when based upon feature-expanded (e.g., polynomial basis) covariates.

These characteristics, especially the football/sausage shape, is what makes GPs popular
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FIGURE 5.3: Posterior predictive distribution in terms of means (solid black), quantiles
(dashed-red), and draws (gray). The truth is shown as a thin blue line.

as surrogates for computer simulation experiments. That literature, which historically
emphasized study of deterministic computer simulators, drew comfort from interpolation-
plus-expansion of variance away from training simulations. Perhaps more importantly, they
liked that out-of-sample prediction was highly accurate. Come to think of it, that’s why
spatial statisticians and machine learners like them too. But hold that thought; there are a
few more things to do before we get to predictive comparisons.

5.1.2 Higher dimension?

There’s nothing particularly special about the presentation above that would preclude
application in higher input dimension. Except perhaps that visualization is a lot simpler
in 1d or 2d. We’ll get to even higher dimensions with some of our later examples. For now,
consider a random function in 2d sampled from a GP prior. The plan is to go back through
the process above: first prior, then (posterior) predictive, etc.

Begin by creating an input set, Xn, in two dimensions. Here we’ll use a regular 20× 20 grid.

nx <- 20
x <- seq(0, 2, length=nx)
X <- expand.grid(x, x)

Then calculate pairwise distances and evaluate covariances under inverse exponentiated
squared Euclidean distances, plus jitter.

D <- distance(X)
Sigma <- exp(-D) + diag(eps, nrow(X))

Finally make random MVN draws in exactly the same way as before. Below we save two
such draws.
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Y <- rmvnorm(2, sigma=Sigma)

For visualization in Figure 5.4, persp is used to stretch each 20× 20 = 400-variate draw
over a mesh with a fortuitously chosen viewing angle.

par(mfrow=c(1,2))
persp(x, x, matrix(Y[1,], ncol=nx), theta=-30, phi=30, xlab="x1",
ylab="x2", zlab="y")

persp(x, x, matrix(Y[2,], ncol=nx), theta=-30, phi=30, xlab="x1",
ylab="x2", zlab="y")

x1

x2

y

x1

x2

y

FIGURE 5.4: Two random functions under a GP prior in 2d.

So drawing from a GP prior in 2d is identical to the 1d case, except with a 2d input grid.
All other code is “cut-and-paste”. Visualization is more cumbersome, but that’s a cosmetic
detail. Learning from training data, i.e., calculating the predictive distribution for observed
(xi, yi) pairs, is no different: more cut-and-paste.

To try it out we need to cook up some toy data from which to learn. Consider the 2d function
y(x) = x1 exp{−x2

1 − x2
2} which is highly nonlinear near the origin, but flat (zero) as inputs

get large. This function has become a benchmark 2d problem in the literature for reasons that
we’ll get more into in Chapter 9. Suffice it to say that thinking up simple-yet-challenging toy
problems is a great way to get noticed8 in the community, even when you borrow a common
example in vector calculus textbooks or one used to demonstrate 3d plotting features in
MATLAB®.

library(lhs)
X <- randomLHS(40, 2)
X[,1] <- (X[,1] - 0.5)*6 + 1
X[,2] <- (X[,2] - 0.5)*6 + 1
y <- X[,1]*exp(-X[,1]^2 - X[,2]^2)

Above, a Latin hypercube sample (LHS; §4.1) is used to generate forty (coded) input

8https://www.sfu.ca/~ssurjano/grlee08.html

https://www.sfu.ca/~ssurjano/grlee08.html
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locations in lieu of a regular grid in order to create a space-filling input design. A regular
grid with 400 elements would have been overkill, but a uniform random design of size forty
or so would have worked equally well. Coded inputs are mapped onto a scale of [−2, 4]2 in
order to include both bumpy and flat regions.

Let’s suppose that we wish to interpolate those forty points onto a regular 40× 40 grid, say
for stretching over a mesh. Here’s code that creates such testing locations XX ≡ X in natural
units.

xx <- seq(-2, 4, length=40)
XX <- expand.grid(xx, xx)

Now that we have inputs and outputs, X and y, and predictive locations XX we can start
cutting-and-pasting. Start with the relevant training data quantities . . .

D <- distance(X)
Sigma <- exp(-D)

. . . and follow with similar calculations between input sets X and XX.

DXX <- distance(XX)
SXX <- exp(-DXX) + diag(eps, ncol(DXX))
DX <- distance(XX, X)
SX <- exp(-DX)

Then apply Eq. (5.3). Code wise, these lines are identical to what we did in the 1d case.

Si <- solve(Sigma)
mup <- SX %*% Si %*% y
Sigmap <- SXX - SX %*% Si %*% t(SX)

It’s hard to visualize a multitude of sample paths in 2d – two was plenty when generating
from the prior – but if desired, we may obtain them with the same rmvnorm commands as
in §5.1.1. Instead focus on plotting pointwise summaries, namely predictive mean µ(x) ≡
mup and predictive standard deviation σ(x):

sdp <- sqrt(diag(Sigmap))

The left panel in Figure 5.5 provides an image plot of the mean over our regularly-gridded
inputs XX; the right panel shows standard deviation.

par(mfrow=c(1,2))
cols <- heat.colors(128)
image(xx, xx, matrix(mup, ncol=length(xx)), xlab="x1", ylab="x2", col=cols)
points(X[,1], X[,2])
image(xx, xx, matrix(sdp, ncol=length(xx)), xlab="x1", ylab="x2", col=cols)
points(X[,1], X[,2])
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FIGURE 5.5: Posterior predictive for a two-dimensional example, via mean (left) and
standard deviation (right) surfaces. Training data input locations are indicated by open
circles.

What do we observe? Pretty much the same thing as in the 1d case. We can’t see it, but the
predictive surface interpolates. Predictive uncertainty, here as standard deviation σ(x), is
highest away from xi-values in the training data. Predictive intervals don’t look as much
like footballs or sausages, yet somehow that analogy still works. Training data locations act
as anchors to smooth variation between points with an organic rise in uncertainty as we
imagine predictive inputs moving away from one toward the next.

Figure 5.6 provides another look, obtained by stretching the predictive mean over a mesh.
Bumps near the origin are clearly visible, with a flat region emerging for larger x1 and x2
settings.

persp(xx, xx, matrix(mup, ncol=40), theta=-30, phi=30, xlab="x1",
ylab="x2", zlab="y")

Well that’s basically it! Now you know GP regression. Where to go from here? Hopefully I’ve
convinced you that GPs hold great potential as a nonlinear regression tool. It’s kinda-cool
that they perform so well – that they “learn” – without having to tune anything. In statistics,
we’re so used to seeking out optimal settings of parameters that a GP predictive surface
might seem like voodoo. Simple MVN conditioning is able to capture input–output dynamics
without having to “fit” anything, or without trying to minimize a loss criteria. That flexibility,
without any tuning knobs, is what people think of when they call GPs a nonparametric
regression tool. All we did was define covariance in terms of (inverse exponentiated squared
Euclidean) distance, condition, and voilà.

But when you think about it a little bit, there are lots of (hidden) assumptions which are
going to be violated by most real-data contexts. Data is noisy. The amplitude of all functions
we might hope to learn will not be 2. Correlation won’t decay uniformly in all directions, i.e.,
radially. Even the most ideally smooth physical relationships are rarely infinitely smooth.

Yet we’ll see that even gross violations of those assumptions are easy to address, or “fix
up”. At the same time GPs are relatively robust to transgressions between assumptions and
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FIGURE 5.6: Perspective view on the posterior mean surface from the left panel of Figure
5.5.

reality. In other words, sometimes it works well even when it ought not. As I see it – once
we clean things up – there are really only two serious problems that GPs face in practice:
stationarity of covariance (§5.3.3), and computational burden, which in most contexts go
hand-in-hand. Remedies for both will have to wait for Chapter 9. For now, let’s keep the
message upbeat. There’s lots that can be accomplished with the canonical setup, whose
description continues below.

5.2 GP hyperparameters

All this business about nonparametric regression and here we are introducing parameters,
passive–aggressively you might say: refusing to call them parameters. How can one have
hyperparameters without parameters to start with, or at least to somehow distinguish from?
To make things even more confusing, we go about learning those hyperparameters in the
usual way, by optimizing something, just like parameters. I guess it’s all to remind you that
the real power – the real flexibility – comes from MVN conditioning. These hyperparameters
are more of a fine tuning. There’s something to that mindset, as we shall see. Below we
revisit the drawbacks alluded to above – scale, noise, and decay of correlation – with a
(fitted) hyperparameter targeting each one.

5.2.1 Scale

Suppose you want your GP prior to generate random functions with an amplitude larger
than two. You could introduce a scale parameter τ2 and then take Σn = τ2Cn. Here C is
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basically the same as our Σ from before: a correlation function for which C(x, x) = 1 and
C(x, x′) < 1 for x 6= x′, and positive definite; for example

C(x, x′) = exp{−||x− x′||2}.

But we need a more nuanced notion of covariance to allow more flexibility on scale, so we’re
re-parameterizing a bit. Now our MVN generator looks like

Y ∼ Nn(0, τ2Cn).

Let’s check that that does the trick. First rebuild Xn-locations, e.g., a sequence of one
hundred from zero to ten, and then calculate pairwise distances. Nothing different yet
compared to our earlier illustration in §5.1.

n <- 100
X <- matrix(seq(0, 10, length=n), ncol=1)
D <- distance(X)

Now amplitude, via 95% of the range of function realizations, is approximately 2σ(x) where
σ2 ≡ diag(Σn). So for an amplitude of 10, say, choose τ2 = 52 = 25. The code below
calculates inverse exponentiated squared Euclidean distances in Cn and makes ten draws
from an MVN whose covariance is obtained by pre-multiplying Cn by τ2.

C <- exp(-D) + diag(eps, n)
tau2 <- 25
Y <- rmvnorm(10, sigma=tau2*C)

As Figure 5.7 shows, amplitude has increased. Not all draws completely lie between −10
and 10, but most are in the ballpark.

matplot(X, t(Y), type="l")

But again, who cares about generating random functions? We want to be able to learn
about functions on any scale from training data. What would happen if we had some data
with an amplitude of 5, say, but we used a GP with a built-in scale of 1 (amplitude of 2).
In other words, what would happen if we did things the “old-fashioned way”, with code
cut-and-pasted directly from §5.1.1?

First generate some data with that property. Here we’re revisiting sinusoidal data from
§5.1.1, but multiplying by 5 on the way out of the sin call.

n <- 8
X <- matrix(seq(0, 2*pi, length=n), ncol=1)
y <- 5*sin(X)

Next cut-and-paste code from earlier, including our predictive grid of 100 equally spaced
locations.
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FIGURE 5.7: Higher amplitude draws from a GP prior.

D <- distance(X)
Sigma <- exp(-D)
XX <- matrix(seq(-0.5, 2*pi + 0.5, length=100), ncol=1)
DXX <- distance(XX)
SXX <- exp(-DXX) + diag(eps, ncol(DXX))
DX <- distance(XX, X)
SX <- exp(-DX)
Si <- solve(Sigma);
mup <- SX %*% Si %*% y
Sigmap <- SXX - SX %*% Si %*% t(SX)

Now we have everything we need to visualize the resulting predictive surface, which is shown
in Figure 5.8 using plotting code identical to that behind Figure 5.3.

YY <- rmvnorm(100, mup, Sigmap)
q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap)))
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap)))
matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y")
points(X, y, pch=20, cex=2)
lines(XX, mup, lwd=2)
lines(XX, 5*sin(XX), col="blue")
lines(XX, q1, lwd=2, lty=2, col=2)
lines(XX, q2, lwd=2, lty=2, col=2)

What happened? In fact the “scale 1” GP is pretty robust. It gets the predictive mean
almost perfectly, despite using the “wrong prior” relative to the actual data generating
mechanism, at least as regards scale. But it’s over-confident. Besides a change of scale,
the new training data exhibit no change in relative error, nor any other changes for that
matter, compared to the example we did above where the scale was actually 1. So we must
now be under-estimating predictive uncertainty, which is obvious by visually comparing the
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FIGURE 5.8: GP fit to higher amplitude sinusoid.

error-bars to those obtained from our earlier fit (Figure 5.3). Looking closely, notice that
the true function goes well outside of our predictive interval at the edges of the input space.
That didn’t happen before.

How to estimate the right scale? Well for starters, admit that scale may be captured by a
parameter, τ2, even though we’re going to call it a hyperparameter to remind ourselves that
its impact on the overall estimation procedure is really more of a fine-tuning. The analysis
above lends some credence to that perspective, since our results weren’t too bad even though
we assumed an amplitude that was off by a factor of five. Whether benevolently gifted the
right scale or not, GPs clearly retain a great deal of flexibility to adapt to the dynamics at
play in data. Decent predictive surfaces often materialize, as we have seen, in spite of less
than ideal parametric specifications.

As with any “parameter”, there are many choices when it comes to estimation: method
of moments (MoM), likelihood (maximum likelihood, Bayesian inference), cross validation
(CV), the “eyeball norm”. Some, such as those based on (semi-) variograms9, are preferred
in the spatial statistics literature. All of those are legitimate, except maybe the eyeball
norm which isn’t very easily automated and challenges reproducibility. I’m not aware of any
MoM approaches to GP inference for hyperparameters. Stochastic kriging10 (Ankenman
et al., 2010) utilizes MoM in a slightly more ambitious, latent variable setting which is the
subject of Chapter 10. Whereas CV is common in some circles, such frameworks generalize
rather less well to higher dimensional hyperparameter spaces, which we’re going to get to
momentarily. I prefer likelihood-based inferential schemes for GPs, partly because they’re
the most common and, especially in the case of maximizing (MLE/MAP) solutions, they’re
also relatively hands-off (easy automation), and nicely generalize to higher dimensional
hyperparameter spaces.

But wait a minute, what’s the likelihood in this context? It’s a bit bizarre that we’ve been
talking about priors and posteriors without ever talking about likelihood. Both prior and
likelihood are needed to form a posterior. We’ll get into finer detail later. For now, recognize

9http://petrowiki.org/Spatial_statistics#Semivariograms_and_covariance
10http://users.iems.northwestern.edu/~nelsonb/SK/

http://petrowiki.org/Spatial_statistics#Semivariograms_and_covariance
http://users.iems.northwestern.edu/~nelsonb/SK/
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that our data-generating process is Y ∼ Nn(0, τ2Cn), so the relevant quantity, which we’ll
call the likelihood now (but was our prior earlier), comes from an MVN PDF:

L ≡ L(τ2, Cn) = (2πτ2)−n2 |Cn|−
1
2 exp

{
− 1

2τ2Y
>
n C

−1
n Yn

}
.

Taking the log of that is easy, and we get

` = logL = −n2 log 2π − n

2 log τ2 − 1
2 log |Cn| −

1
2τ2Y

>
n C

−1
n Yn. (5.4)

To maximize that (log) likelihood with respect to τ2, just differentiate and solve.

0 set= `′ = − n

2τ2 + 1
2(τ2)2Y

>
n C

−1
n Yn,

so τ̂2 = Y >n C
−1
n Yn
n

. (5.5)

In other words, we get that the MLE for scale τ2 is a mean residual sum of squares under the
quadratic form obtained from an MVN PDF with a mean of µ(x) = 0: (Yn−0)>C−1

n (Yn−0).

How would this analysis change if we were to take a Bayesian approach? A homework
exercise (§5.5) invites the curious reader to investigate the form of the posterior under
prior τ2 ∼ IG (a/2, b/2). For example, what happens when a = b = 0 which is equivalent to
p(τ2) ∝ 1/τ2, a so-called reference prior in this context (Berger et al., 2001, 2009)?

Estimate of scale τ̂2 in hand, we may simply “plug it in” to the predictive equations
(5.2)–(5.3). Now technically, when you estimate a variance and plug it into a (multivariate)
Gaussian, you’re turning that Gaussian into a (multivariate) Student-t, in this case with n
degrees of freedom (DoF). (There’s no loss of DoF when the mean is assumed to be zero.)
For details, see for example Gramacy and Polson (2011). For now, presume that n is large
enough so that this distinction doesn’t matter. As we generalize to more hyperparameters,
DoF correction could indeed matter but we still obtain a decent approximation, which is so
common in practice that the word “approximation” is often dropped from the description –
a transgression I shall be guilty of as well.

So to summarize, we have the following scale-adjusted (approximately) MVN predictive
equations:

Y (X ) | Dn ∼ Nn′(µ(X ),Σ(X ))
with mean µ(X ) = C(X , Xn)C−1

n Yn

and variance Σ(X ) = τ̂2[C(X ,X )− C(X , Xn)C−1
n C(X , Xn)>].

Notice how τ̂2 doesn’t factor into the predictive mean, but it does figure into predictive
variance. That’s important because it means that Yn-values are finally involved in assessment
of predictive uncertainty, whereas previously (5.2)–(5.3) only Xn-values were involved.

To see it all in action, let’s return to our simple 1d sinusoidal example, continuing from
Figure 5.8. Start by performing calculations for τ̂2.
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CX <- SX
Ci <- Si
CXX <- SXX
tau2hat <- drop(t(y) %*% Ci %*% y / length(y))

Checking that we get something reasonable, consider . . .

2*sqrt(tau2hat)

## [1] 5.487

. . . which is quite close to what we know to be the true value of five in this case. Next plug
τ̂2 into the MVN conditioning equations to obtain a predictive mean vector and covariance
matrix.

mup2 <- CX %*% Ci %*% y
Sigmap2 <- tau2hat*(CXX - CX %*% Ci %*% t(CX))

Finally gather some sample paths using MVN draws and summarize predictive quantiles by
cutting-and-pasting from above.

YY <- rmvnorm(100, mup2, Sigmap2)
q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap2)))
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap2)))

Figure 5.9 shows a much better surface compared to Figure 5.8.

matplot(XX, t(YY), type="l", col="gray", lty=1, xlab="x", ylab="y")
points(X, y, pch=20, cex=2)
lines(XX, mup, lwd=2)
lines(XX, 5*sin(XX), col="blue")
lines(XX, q1, lwd=2, lty=2, col=2); lines(XX, q2, lwd=2, lty=2, col=2)

Excepting the appropriately expanded scale of the y-axis, the view in Figure 5.9 looks nearly
identical to Figure 5.3 with data back on the two-unit scale. Besides that this last fit (with
τ̂2) looks better (particularly the variance) than the one before it (with implicit τ2 = 1 when
the observed scale was really much bigger), how can one be more objective about which is
best out-of-sample?

A great paper by Gneiting and Raftery (2007) offers proper scoring rules that facilitate
comparisons between predictors in a number of different situations, basically depending
on what common distribution characterizes predictors being compared. These are a great
resource when comparing apples and oranges, even though we’re about to use them to
compare apples to apples: two GPs under different scales.

We have the first two moments, so Eq. (25) from Gneiting and Raftery (2007) may be used.
Given Y (X )-values observed out of sample, the proper scoring rule is given by

score(Y, µ,Σ;X ) = − log |Σ(X )| − (Y (X )− µ(X ))>(Σ(X ))−1(Y (X )− µ(X )). (5.6)
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FIGURE 5.9: Sinusoidal GP predictive surface with estimated scale τ̂2. Compare to Figure
5.8.

In the case where predictors are actually MVN, which they aren’t quite in our case (they’re
Student-t), this is within an additive constant of what’s called predictive log likelihood. Higher
scores, or higher predictive log likelihoods, are better. The first term − log |Σ(X )| measures
magnitude of uncertainty. Smaller uncertainty is better, all things considered, so larger is
better here. The second term (Y (X )−µ(X ))>(Σ(X ))−1(Y (X )−µ(X )) is mean-squared error
(MSE) adjusted for covariance. Smaller MSE is better, but when predictions are inaccurate
it’s also important to capture that uncertainty through Σ(X ). Score compensates for that
second-order consideration: it’s ok to mispredict as long as you know you’re mispredicting.

A more recent paper by Bastos and O’Hagan (2009) tailors the scoring discussion to
deterministic computer experiments, which better suits our current setting: interpolating
function observations without noise. They recommend using Mahalanobis distance11, which
for the multivariate Gaussian is the same as the (negative of the) formula above, except
without the determinant of Σ(X ), and square-rooted.

mah(y, µ,Σ;X ) =
√

(y(X )− µ(X ))>(Σ(X ))−1(y(X )− µ(X )) (5.7)

Smaller distances are otherwise equivalent to higher scores. Here’s code that calculates both
in one function.

score <- function(Y, mu, Sigma, mah=FALSE)
{
Ymmu <- Y - mu
Sigmai <- solve(Sigma)
mahdist <- t(Ymmu) %*% Sigmai %*% Ymmu
if(mah) return(sqrt(mahdist))
return (- determinant(Sigma, logarithm=TRUE)$modulus - mahdist)
}

11https://en.wikipedia.org/wiki/Mahalanobis_distance

https://en.wikipedia.org/wiki/Mahalanobis_distance
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How about using Mahalanobis distance (Mah for short) to make a comparison between the
quality of predictions from our two most recent fits (τ2 = 1 versus τ̂2)?

Ytrue <- 5*sin(XX)
df <- data.frame(score(Ytrue, mup, Sigmap, mah=TRUE),

score(Ytrue, mup2, Sigmap2, mah=TRUE))
colnames(df) <- c("tau2=1", "tau2hat")
df

## tau2=1 tau2hat
## 1 6.259 2.282

Estimated scale wins! Actually if you do score without mah=TRUE you come to the opposite
conclusion, as Bastos and O’Hagan (2009) caution. Knowledge that the true response is
deterministic is important to coming to the correct conclusion about estimates of accuracy
as regards variations in scale, in this case, with signal and (lack of) noise contributing to the
range of observed measurements. Now what about when there’s noise?

5.2.2 Noise and nuggets

We’ve been saying “regression” for a while, but actually interpolation is a more apt description.
Regression is about extracting signal from noise, or about smoothing over noisy data, and
so far our example training data have no noise. By inspecting a GP prior, in particular
its correlation structure C(x, x′), it’s clear that the current setup precludes idiosyncratic
behavior because correlation decays smoothly as a function of distance. Observe that
C(x, x′)→ 1− as x→ x′, implying that the closer x is to x′ the higher the correlation, until
correlation is perfect, which is what “connects the dots” when conditioning on data and
deriving the predictive distribution.

Moving from GP interpolation to smoothing over noise is all about breaking interpolation,
or about breaking continuity in C(x, x′) as x→ x′. Said another way, we must introduce
a discontinuity between diagonal and off-diagonal entries in the correlation matrix Cn to
smooth over noise. There are a lot of ways to skin this cat, and a lot of storytelling that
goes with it, but the simplest way to “break it” is with something like

K(x, x′) = C(x, x′) + gδx,x′ .

Above, g > 0 is a new hyperparameter called the nugget (or sometimes nugget effect12),
which determines the size of the discontinuity as x′ → x. The function δ is more like the
Kronecker delta13, although the way it’s written above makes it look like the Dirac delta14.
Observe that g generalizes Neal’s ε jitter.

Neither delta is perfect in terms of describing what to do in practice. The simplest, correct
description, of how to break continuity is to only add g on a diagonal – when indices of x are
the same, not simply for identical values – and nowhere else. Never add g to an off-diagonal
correlation even if that correlation is based on zero distances: i.e., identical x and x′-values.
Specifically,

12http://petrowiki.org/Spatial_statistics#Nugget_effect
13https://en.wikipedia.org/wiki/Kronecker_delta
14https://en.wikipedia.org/wiki/Dirac_delta_function

http://petrowiki.org/Spatial_statistics#Nugget_effect
https://en.wikipedia.org/wiki/Kronecker_delta
https://en.wikipedia.org/wiki/Dirac_delta_function
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• K(xi, xj) = C(xi, xj) when i 6= j, even if xi = xj ;
• only K(xi, xi) = C(xi, xi) + g.

This leads to the following representation of the data-generating mechanism.

Y ∼ Nn(0, τ2Kn)

Unfolding terms, covariance matrix Σn contains entries

Σijn = τ2(C(xi, xj) + gδij),

or in other words Σn = τ2Kn = τ2(Cn+gIn). This all looks like a hack, but it’s operationally
equivalent to positing the following model.

Y (x) = w(x) + ε,

where w(x) ∼ GP with scale τ2, i.e., W ∼ Nn(0, τ2Cn), and ε is independent Gaussian noise
with variance τ2g, i.e., ε iid∼ N (0, τ2g).

A more aesthetically pleasing model might instead use w(x) ∼ GP with scale τ2, i.e., W ∼
Nn(0, τ2Cn), and where ε(x) is iid Gaussian noise with variance σ2, i.e., ε(x) iid∼ N (0, σ2).
An advantage of this representation is two totally “separate” hyperparameters, with one
acting to scale noiseless spatial correlations, and another determining the magnitude of
white noise. Those two formulations are actually equivalent. There’s a 1:1 mapping between
the two. Many researchers prefer the latter to the former on intuition grounds. But inference
in the latter is harder. Conditional on g, τ̂2 is available in closed form, which we’ll show
momentarily. Conditional on σ2, numerical methods are required for τ̂2.

Ok, so back to plan-A with Y ∼ N (0,Σn), where Σn = τ2Kn = τ2(Cn + gIn). Recall that
Cn is an n× n matrix of inverse exponentiated pairwise squared Euclidean distances. How,
then, to estimate two hyperparameters: scale τ2 and nugget g? Again, we have all the usual
suspects (MoM, likelihood, CV, variogram) but likelihood-based methods are by far most
common. First, suppose that g is known.

MLE τ̂2 given a fixed g is

τ̂2 = Y >n K
−1
n Yn
n

= Y >n (Cn + gIn)−1Yn
n

.

The derivation involves an identical application of Eq. (5.5), except with Kn instead of Cn.

Plug τ̂2 back into our log likelihood to get a concentrated (or profile) log likelihood involving
just the remaining parameter g.

`(g) = −n2 log 2π − n

2 log τ̂2 − 1
2 log |Kn| −

1
2τ̂2Y

>
n K

−1
n Yn

= c− n

2 log Y >n K−1
n Yn −

1
2 log |Kn| (5.8)

Unfortunately taking a derivative and setting to zero doesn’t lead to a closed form solution.
Calculating the derivative is analytic, which we show below momentarily, but solving is
not. Maximizing `(g) requires numerical methods. The simplest thing to do is throw it into
optimize and let a polished library do all the work. Since most optimization libraries prefer
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to minimize, we’ll code up −`(g) in R. The nlg function below doesn’t directly work on
X inputs, rather through distances D. This is slightly more efficient since distances can be
pre-calculated, rather than re-calculated in each evaluation for new g.

nlg <- function(g, D, Y)
{
n <- length(Y)
K <- exp(-D) + diag(g, n)
Ki <- solve(K)
ldetK <- determinant(K, logarithm=TRUE)$modulus
ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK
counter <<- counter + 1
return(-ll)
}

Observe a direct correspondence between nlg and −`(g) with the exception of a counter
increment (accessing a global variable). This variable is not required, but we’ll find it handy
later when comparing alternatives on efficiency grounds in numerical optimization, via
the number of times our likelihood objective function is evaluated. Although optimization
libraries often provide iteration counts on output, sometimes that report can misrepresent
the actual number of objective function calls. So I’ve jerry-rigged my own counter here to
fill in.

Example: noisy 1d sinusoid

Before illustrating numerical nugget (and scale) optimization towards the MLE, we need
some example data. Let’s return to our running sinusoid example from §5.1.1, picking up
where we left off but augmented with standard Gaussian noise. Code below utilizes the
same uniform Xs from earlier, but doubles them up. Adding replication into a design is
recommended in noisy data contexts, as discussed in more detail in Chapter 10. Replication
is not essential for this example, but it helps guarantee predictable outcomes which is
important for a randomly seeded, fully reproducible Rmarkdown build.

X <- rbind(X, X)
n <- nrow(X)
y <- 5*sin(X) + rnorm(n, sd=1)
D <- distance(X)

Everything is in place to estimate the optimal nugget. The optimize function in R is ideal
in 1d derivative-free contexts. It doesn’t require an initial value for g, but it does demand a
search interval. A sensible yet conservative range for g-values is from eps to var(y). The
former corresponds to the noise-free/jitter-only case we entertained earlier. The latter is the
observed marginal variance of Y , or in other words about as big as variance could be if these
data were all noise and no signal.

counter <- 0
g <- optimize(nlg, interval=c(eps, var(y)), D=D, Y=y)$minimum
g
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## [1] 0.2878

Now the value of that estimate isn’t directly useful to us, at least on an intuitive level. We
need τ̂2 to understand the full decomposition of variance. But backing out those quantities
is relatively straightforward.

K <- exp(-D) + diag(g, n)
Ki <- solve(K)
tau2hat <- drop(t(y) %*% Ki %*% y / n)
c(tau=sqrt(tau2hat), sigma=sqrt(tau2hat*g))

## tau sigma
## 2.304 1.236

Both are close to their true values of 5/2 = 2.5 and 1, respectively. Estimated hyperparameters
in hand, prediction is a straightforward application of MVN conditionals. First calculate
quantities involved in covariance between testing and training locations, and between testing
locations and themselves.

DX <- distance(XX, X)
KX <- exp(-DX)
KXX <- exp(-DXX) + diag(g, nrow(DXX))

Notice that only KXX is augmented with g on the diagonal. KX is not a square symmetric
matrix calculated from identically indexed x-values. Even if it were coincidentally square,
or if DX contained zero distances because elements of XX and X coincide, still no nugget
augmentation is deployed. Only with KXX, which is identically indexed with respect to itself,
does a nugget augment the diagonal.

Covariance matrices in hand, we may then calculate the predictive mean vector and covariance
matrix.

mup <- KX %*% Ki %*% y
Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))
q1 <- mup + qnorm(0.05, 0, sqrt(diag(Sigmap)))
q2 <- mup + qnorm(0.95, 0, sqrt(diag(Sigmap)))

Showing sample predictive realizations that look pretty requires “subtracting” out idiosyn-
cratic noise, i.e., the part due to nugget g. Otherwise sample paths will be “jagged” and
hard to interpret.

Sigma.int <- tau2hat*(exp(-DXX) + diag(eps, nrow(DXX))
- KX %*% Ki %*% t(KX))

YY <- rmvnorm(100, mup, Sigma.int)

§5.3.2 explains how this maneuver makes sense in a latent function-space view of GP posterior
updating, and again when we delve into a deeper signal-to-noise discussion in Chapter 10.
For now this is just a trick to get a prettier picture, only affecting gray lines plotted in
Figure 5.10.
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matplot(XX, t(YY), type="l", lty=1, col="gray", xlab="x", ylab="y")
points(X, y, pch=20, cex=2)
lines(XX, mup, lwd=2)
lines(XX, 5*sin(XX), col="blue")
lines(XX, q1, lwd=2, lty=2, col=2)
lines(XX, q2, lwd=2, lty=2, col=2)
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FIGURE 5.10: GP fit to sinusoidal data with estimated nugget.

Notice how the error-bars, which do provide a full accounting of predictive uncertainty, lie
mostly outside of the gray lines and appropriately capture variability in the training data
observations, shown as filled black dots. That’s it: now we can fit noisy data with GPs using
a simple library-based numerical optimizer and about twenty lines of code.

5.2.3 Derivative-based hyperparameter optimization

It can be unsatisfying to brute-force an optimization for a hyperparameter like g, even
though 1d solving with optimize is often superior to cleverer methods. Can we improve
upon the number of evaluations?

nlg.count <- counter
nlg.count

## [1] 16

Actually, that’s pretty good. If you can already optimize numerically in fewer than twenty or
so evaluations there isn’t much scope for improvement. Yet we’re leaving information on the
table: closed-form derivatives. Differentiating `(g) involves pushing the chain rule through
the inverse of covariance matrix Kn and its determinant, which is where hyperparameter g
is involved. The following identities, which are framed for an arbitrary parameter φ, will
come in handy.
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∂K−1
n

∂φ
= −K−1

n

∂Kn

∂φ
K−1
n and ∂ log |Kn|

∂φ
= tr

{
K−1
n

∂Kn

∂φ

}
(5.9)

The chain rule, and a single application of each of the identities above, gives

`′(g) = −n2
Y >n

∂K−1
n

∂g Yn

Y >n K
−1
n Yn

− 1
2
∂ log |Kn|

∂g
(5.10)

= n

2
Y >n K

−1
n

∂Kn
∂g K

−1
n Yn

Y >n K
−1
n Yn

− 1
2tr
{
K−1
n

∂Kn

∂g

}
.

Off-diagonal elements of Kn don’t depend on g. The diagonal is simply 1 + g. Therefore
∂Kn
∂g is an n-dimensional identity matrix. Putting it all together:

`′(g) = n

2
Y >n (K−1

n )2Yn

Y >n K
−1
n Yn

− 1
2tr
{
K−1
n

}
.

Here’s an implementation of the negative of that derivative for the purpose of minimization.
The letter “g” for gradient in the function name is overkill in this scalar context, but I’m
thinking ahead to where yet more hyperparameters will be optimized.

gnlg <- function(g, D, Y)
{
n <- length(Y)
K <- exp(-D) + diag(g, n)
Ki <- solve(K)
KiY <- Ki %*% Y
dll <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki))
return(-dll)
}

Objective (negative concentrated log likelihood, nlg) and gradient (gnlg) in hand, we’re ready
to numerically optimize using derivative information. The optimize function doesn’t support
derivatives, so we’ll use optim instead. The optim function supports many optimization
methods, and not all accommodate derivatives. I’ve chosen to illustrate method="L-BFGS-B"
here because it supports derivatives and allows bound constraints (Byrd et al., 1995). As
above, we know we don’t want a nugget lower than eps for numerical reasons, and it seems
unlikely that g will be bigger than the marginal variance.

Here we go . . . first reinitializing the evaluation counter and choosing 10% of marginal
variance as a starting value.

counter <- 0
out <- optim(0.1*var(y), nlg, gnlg, method="L-BFGS-B", lower=eps,
upper=var(y), D=D, Y=y)

c(g, out$par)

## [1] 0.2878 0.2879

Output is similar to what we obtained from optimize, which is reassuring. How many
iterations?
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c(out$counts, actual=counter)

## function gradient actual
## 8 8 8

Notice that in this scalar case our internal, manual counter agrees with optim’s. Just 8
evaluations to optimize something is pretty excellent, but possibly not noteworthy compared
to optimize’s 16, especially when you consider that an extra 8 gradient evaluations (with
similar computational complexity) are also required. When you put it that way, our new
derivative-based version is potentially no better, requiring 16 combined evaluations of
commensurate computational complexity. Hold that thought. We shall return to counting
iterations after introducing more hyperparameters.

5.2.4 Lengthscale: rate of decay of correlation

How about modulating the rate of decay of spatial correlation in terms of distance? Surely
unadulterated Euclidean distance isn’t equally suited to all data. Consider the following
generalization, known as the isotropic Gaussian family.

Cθ(x, x′) = exp
{
−||x− x

′||2

θ

}
Isotropic Gaussian correlation functions are indexed by a scalar hyperparameter θ, called the
characteristic lengthscale. Sometimes this is shortened to lengthscale, or θ may be referred
to as a range parameter, especially in geostatistics. When θ = 1 we get back our inverse
exponentiated squared Euclidean distance-based correlation as a special case. Isotropy means
that correlation decays radially; Gaussian suggests inverse exponentiated squared Euclidean
distance. Gaussian processes should not be confused with Gaussian-family correlation or
kernel functions, which appear in many contexts. GPs get their name from their connection
with the MVN, not because they often feature Gaussian kernels as a component of the
covariance structure. Further discussion of kernel variations and properties is deferred until
later in §5.3.3.

How to perform inference for θ? Should our GP have a slow decay of correlation in space,
leading to visually smooth/slowly changing surfaces, or a fast one looking more wiggly? Like
with nugget g, embedding θ deep within coordinates of a covariance matrix thwarts analytic
maximization of log likelihood. Yet again like g, numerical methods are rather straightforward.
In fact the setup is identical except now we have two unknown hyperparameters.

Consider brute-force optimization without derivatives. The R function nl is identical to nlg
except argument par takes in a two-vector whose first coordinate is θ and second is g. Only
two lines differ, and those are indicated by comments in the code below.

nl <- function(par, D, Y)
{
theta <- par[1] ## change 1
g <- par[2]
n <- length(Y)
K <- exp(-D/theta) + diag(g, n) ## change 2
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Ki <- solve(K)
ldetK <- determinant(K, logarithm=TRUE)$modulus
ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK
counter <<- counter + 1
return(-ll)
}

That’s it: just shove it into optim. Note that optimize isn’t an option here as that routine
only optimizes in 1d. But first we’ll need an example. For variety, consider again our 2d
exponential data from §5.1.2 and Figure 5.5, this time observed with noise and entertaining
non-unit lengthscales.

library(lhs)
X2 <- randomLHS(40, 2)
X2 <- rbind(X2, X2)
X2[,1] <- (X2[,1] - 0.5)*6 + 1
X2[,2] <- (X2[,2] - 0.5)*6 + 1
y2 <- X2[,1]*exp(-X2[,1]^2 - X2[,2]^2) + rnorm(nrow(X2), sd=0.01)

Again, replication is helpful for stability in reproduction, but is not absolutely necessary.
Estimating lengthscale and nugget simultaneously represents an attempt to strike balance
between signal and noise (Chapter 10). Once we get more experience, we’ll see that long
lengthscales are more common when noise/nugget is high, whereas short lengthscales offer
the potential to explain away noise as quickly changing dynamics in the data. Sometimes
choosing between those two can be a difficult enterprise.

With optim it helps to think a little about starting values and search ranges. The nugget is
rather straightforward, and we’ll copy ranges and starting values from our earlier example:
from ε to Var{Y }. The lengthscale is a little harder. Sensible choices for θ follow the following
rationale, leveraging x-values in coded units (∈ [0, 1]2). A lengthscale of 0.1, which is about√

0.1 = 0.32 in units of x, biases towards surfaces three times more wiggly than in our earlier
setup, with implicit θ = 1, in a certain loose sense. More precise assessments are quoted
later after learning more about kernel properties (§5.3.3) and upcrossings (5.17). Initializing
in a more signal, less noise regime seems prudent. If we thought the response was “really
straight”, perhaps an ordinary linear model would suffice. A lower bound of eps allows the
optimizer to find even wigglier surfaces, however it might be sensible to view solutions close
to eps as suspect. A value of θ = 10, or

√
10 = 3.16 is commensurately (3x) less wiggly

than our earlier analysis. If we find a θ̂ on this upper boundary we can always re-run with a
new, bigger upper bound. For a more in-depth discussion of suitable lengthscale and nugget
ranges, and even priors for regularization, see Appendix A of the tutorial (Gramacy, 2016)
for the laGP library (Gramacy and Sun, 2018) introduced in more detail in §5.2.6.

Ok, here we go. (With new X we must first refresh D.)

D <- distance(X2)
counter <- 0
out <- optim(c(0.1, 0.1*var(y2)), nl, method="L-BFGS-B", lower=eps,
upper=c(10, var(y2)), D=D, Y=y2)

out$par
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## [1] 0.902791 0.009972

Actually the outcome, as regards the first coordinate θ̂, is pretty close to our initial version
with implied θ = 1. Since "L-BFGS-B" is calculating a gradient numerically through finite
differences, the reported count of evaluations in the output doesn’t match the number of
actual evaluations.

brute <- c(out$counts, actual=counter)
brute

## function gradient actual
## 14 14 70

We’re searching in two input dimensions, and a rule of thumb is that it takes two evaluations
in each dimension to build a tangent plane to approximate a derivative. So if 14 function
evaluations are reported, it’d take about 2× 2→ 4× 14 = 56 additional runs to approximate
derivatives, which agrees with our “by-hand” counter.

How can we improve upon those counts? Reducing the number of evaluations should speed
up computation time. It might not be a big deal now, but as n gets bigger the repeated cubic
cost of matrix inverses and determinants really adds up. What if we take derivatives with
respect to θ and combine with those for g to form a gradient? That requires K̇n ≡ ∂Kn

∂θ , to
plug into inverse and determinant derivative identities (5.9). The diagonal is zero because the
exponent is zero no matter what θ is. Off-diagonal entries of K̇n work out as follows. Since

Kθ(x, x′) = exp
{
−||x− x

′||2

θ

}
, we have ∂Kθ(xi, xj)

∂θ
= Kθ(xi, xj)

||xi − xj ||2

θ2 .

A slightly more compact way to write the same thing would be K̇n = Kn ◦Distn/θ2 where ◦
is a component-wise, Hadamard product15, and Distn contains a matrix of squared Euclidean
distances – our D in the code. An identical application of the chain rule for the nugget (5.10),
but this time for θ, gives

`′(θ) ≡ ∂

∂θ
`(θ, g) = n

2
Y >n K

−1
n K̇nK

−1
n Yn

Y >n K
−1
n Yn

− 1
2tr
{
K−1
n K̇n

}
. (5.11)

A vector collecting the two sets of derivatives forms the gradient of `(θ, g), a joint log
likelihood with τ2 concentrated out. R code below implements the negative of that gradient
for the purposes of MLE calculation with optim minimization. Comments therein help
explain the steps involved.

gradnl <- function(par, D, Y)
{
## extract parameters
theta <- par[1]
g <- par[2]

## calculate covariance quantities from data and parameters
n <- length(Y)

15https://en.wikipedia.org/wiki/Hadamard_product_(matrices)

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
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K <- exp(-D/theta) + diag(g, n)
Ki <- solve(K)
dotK <- K*D/theta^2
KiY <- Ki %*% Y

## theta component
dlltheta <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -
(1/2)*sum(diag(Ki %*% dotK))

## g component
dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki))

## combine the components into a gradient vector
return(-c(dlltheta, dllg))
}

How well does optim work when it has access to actual gradient evaluations? Observe here
that we’re otherwise using exactly the same calls as earlier.

counter <- 0
outg <- optim(c(0.1, 0.1*var(y2)), nl, gradnl, method="L-BFGS-B",
lower=eps, upper=c(10, var(y2)), D=D, Y=y2)

rbind(grad=outg$par, brute=out$par)

## [,1] [,2]
## grad 0.9028 0.009972
## brute 0.9028 0.009972

Parameter estimates are nearly identical. Availability of a true gradient evaluation changes
the steps of the algorithm slightly, often leading to a different end-result even when identical
convergence criteria are applied. What about the number of evaluations?

rbind(grad=c(outg$counts, actual=counter), brute)

## function gradient actual
## grad 11 11 11
## brute 14 14 70

Woah! That’s way better. No only does our actual “by-hand” count of evaluations match
what’s reported on output from optim, but it can be an order of magnitude lower, roughly,
compared to what we had before. (Variations depend on the random data used to generate
this Rmarkdown document.) A factor of five-to-ten savings is definitely worth the extra
effort to derive and code up a gradient. As you can imagine, and we’ll show shortly, gradients
are commensurately more valuable when there are even more hyperparameters. “But what
other hyperparameters?”, you ask. Hold that thought.

Optimized hyperparameters in hand, we can go about rebuilding quantities required for
prediction. Begin with training quantities . . .
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K <- exp(- D/outg$par[1]) + diag(outg$par[2], nrow(X2))
Ki <- solve(K)
tau2hat <- drop(t(y2) %*% Ki %*% y2 / nrow(X2))

. . . then predictive/testing ones . . .

gn <- 40
xx <- seq(-2, 4, length=gn)
XX <- expand.grid(xx, xx)
DXX <- distance(XX)
KXX <- exp(-DXX/outg$par[1]) + diag(outg$par[2], ncol(DXX))
DX <- distance(XX, X2)
KX <- exp(-DX/outg$par[1])

. . . and finally kriging equations.

mup <- KX %*% Ki %*% y2
Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))
sdp <- sqrt(diag(Sigmap))

The resulting predictive surfaces look pretty much the same as before, as shown in Figure
5.11.

par(mfrow=c(1,2))
image(xx, xx, matrix(mup, ncol=gn), main="mean", xlab="x1",
ylab="x2", col=cols)

points(X2)
image(xx, xx, matrix(sdp, ncol=gn), main="sd", xlab="x1",
ylab="x2", col=cols)

points(X2)

This is perhaps not an exciting way to end the example, but it serves to illustrate the basic
idea of estimating unknown quantities and plugging them into predictive equations. I’ve
only illustrated 1d and 2d so far, but the principle is no different in higher dimensions.

5.2.5 Anisotropic modeling

It’s time to expand input dimension a bit, and get ambitious. Visualization will be challenging,
but there are other metrics of success. Consider the Friedman function16, a popular toy
problem from the seminal multivariate adaptive regression splines (MARS17; Friedman,
1991) paper. Splines are a popular alternative to GPs in low input dimension. The idea is to
“stitch” together low-order polynomials. The “stitching boundary” becomes exponentially
huge as dimension increases, which challenges computation. For more details, see the splines
supplement linked here18 which is based on Hastie et al. (2009), Chapters 5, 7 and 8.

16https://www.sfu.ca/~ssurjano/fried.html
17https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
18http://bobby.gramacy.com/surrogates/splines.html

https://www.sfu.ca/~ssurjano/fried.html
https://en.wikipedia.org/wiki/Multivariate_adaptive_regression_splines
http://bobby.gramacy.com/surrogates/splines.html
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FIGURE 5.11: Predictive mean (left) and standard deviation (right) after estimating a
lengthscale θ̂.

MARS circumvents many of those computational challenges by simplifying basis elements
(to piecewise linear) on main effects and limiting (to two-way) interactions. Over-fitting is
mitigated by aggressively pruning useless basis elements with a generalized CV scheme.

fried <- function(n=50, m=6)
{
if(m < 5) stop("must have at least 5 cols")
X <- randomLHS(n, m)
Ytrue <- 10*sin(pi*X[,1]*X[,2]) + 20*(X[,3] - 0.5)^2 + 10*X[,4] + 5*X[,5]
Y <- Ytrue + rnorm(n, 0, 1)
return(data.frame(X, Y, Ytrue))
}

The surface is nonlinear in five input coordinates,

E{Y (x)} = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 − 5x5, (5.12)

combining periodic, quadratic and linear effects. Notice that you can ask for more (useless)
coordinates if you want: inputs x6, x7, . . . The fried function, as written above, generates
both the X-values, via LHS (§4.1) in [0, 1]m, and Y -values. Let’s create training and testing
sets in seven input dimensions, i.e., with two irrelevant inputs x6 and x7. Code below uses
fried to generate an LHS training–testing partition (see, e.g., Figure 4.9) with n = 200 and
n′ = 1000 observations, respectively. Such a partition could represent one instance in the
“bakeoff” described by Algorithm 4.1. See §5.2.7 for iteration on that theme.

m <- 7
n <- 200
nprime <- 1000
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data <- fried(n + nprime, m)
X <- as.matrix(data[1:n,1:m])
y <- drop(data$Y[1:n])
XX <- as.matrix(data[(n + 1):nprime,1:m])
yy <- drop(data$Y[(n + 1):nprime])
yytrue <- drop(data$Ytrue[(n + 1):nprime])

The code above extracts two types of Y -values for use in out-of-sample testing. De-noised
yytrue values facilitate comparison with root mean-squared error (RMSE),√√√√ 1

n′

n′∑
i=1

(yi − µ(xi))2. (5.13)

Notice that RMSE is square-root Mahalanobis distance (5.7) calculated with an identity
covariance matrix. Noisy out-of-sample evaluations yy can be used for comparison by proper
score (5.6), combining both mean accuracy and estimates of covariance.

First learning. Inputs X and outputs y are re-defined, overwriting those from earlier examples.
After re-calculating pairwise distances D, we may cut-and-paste gradient-based optim on
objective nl and gradient gnl.

D <- distance(X)
out <- optim(c(0.1, 0.1*var(y)), nl, gradnl, method="L-BFGS-B", lower=eps,
upper=c(10, var(y)), D=D, Y=y)

out

## $par
## [1] 2.534239 0.005208
##
## $value
## [1] 683.6
##
## $counts
## function gradient
## 33 33
##
## $convergence
## [1] 0
##
## $message
## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Output indicates convergence has been achieved. Based on estimated θ̂ = 2.534 and ĝ =
0.0052, we may rebuild the data covariance quantities . . .

K <- exp(- D/out$par[1]) + diag(out$par[2], nrow(D))
Ki <- solve(K)
tau2hat <- drop(t(y) %*% Ki %*% y / nrow(D))
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. . . as well as those involved in predicting at XX testing locations.

DXX <- distance(XX)
KXX <- exp(-DXX/out$par[1]) + diag(out$par[2], ncol(DXX))
DX <- distance(XX, X)
KX <- exp(-DX/out$par[1])

Kriging equations are then derived as follows.

mup <- KX %*% Ki %*% y
Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))

Notice how not a single line in the code above, pasted directly from identical lines used
in earlier examples, requires tweaking to accommodate the novel 7d setting. Our previous
examples were in 1d and 2d, but the code works verbatim in 7d. However the number of
evaluations required to maximize is greater now than in previous examples. Here we have 33
compared to 11 previously in 2d.

How accurate are predictions? RMSE on the testing set is calculated below, but we don’t
yet have a benchmark to compare this to.

rmse <- c(gpiso=sqrt(mean((yytrue - mup)^2)))
rmse

## gpiso
## 1.073

How about comparing to MARS? That seems natural considering these data were created as
a showcase for that very method. MARS implementations can be found in the mda (Leisch
et al., 2017) and earth (Milborrow, 2019) packages on CRAN.

library(mda)
fit.mars <- mars(X, y)
p.mars <- predict(fit.mars, XX)

Which wins between the isotropic GP and MARS based on RMSE to the truth?

rmse <- c(rmse, mars=sqrt(mean((yytrue - p.mars)^2)))
rmse

## gpiso mars
## 1.073 1.529

Usually the GP wins in this comparison. In about one time out of twenty random Rmarkdown
rebuilds MARS wins. Unfortunately MARS doesn’t natively provide a notion of predictive
variance. That is, not without an extra bootstrap layer or a Bayesian treatment; e.g., see
BASS (Francom, 2017) on CRAN. So a comparison to MARS by proper score isn’t readily
available. Some may argue that this comparison isn’t fair. MARS software has lots of tuning
parameters that we aren’t exploring. Results from mars improve with argument degree=2
and, for reasons that aren’t immediately clear to me at this time, they’re even better with
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earth after the same degree=2 modification. I’ve deliberately put up a relatively “vanilla”
straw man in this comparison. This is in part because our GP setup is itself relatively vanilla.
An exercise in §5.5 invites the reader to explore a wider range of alternatives on both fronts.

How can we add more flavor? If that was vanilla GP regression, what does rocky road look
like? To help motivate, recall that the Friedman function involved a diverse combination of
effects on the input variables: trigonometric, quadratic and linear. Although we wouldn’t
generally know that much detail in a new application – and GPs excel in settings where
little is known about input–output relationships, except perhaps that it might be worth
trying methods beyond the familiar linear model – it’s worth wondering if our modeling
apparatus is not at odds with typically encountered dynamics. More to the point, GP
modeling flexibility comes from the MVN covariance structure which is based on scaled (by
θ) inverse exponentiated squared Euclidean distance. That structure implies uniform decay
in correlation in each input direction. Is such radial symmetry reasonable? Probably not in
general, and definitely not in the case of the Friedman function.

How about the following generalization?

Cθ(x, x′) = exp
{
−

m∑
k=1

(xk − x′k)2

θk

}

Here we’re using a vectorized lengthscale parameter θ = (θ1, . . . , θm), allowing strength of
correlation to be modulated separately by distance in each input coordinate. This family
of correlation functions is called the separable or anisotropic Gaussian. Separable because
the sum is a product when taken outside the exponent, implying independence in each
coordinate direction. Anisotopic because, except in the special case where all θk are equal,
decay of correlation is not radial.

How does one perform inference for such a vectorized parameter? Simple; just expand log
likelihood and derivative functions to work with vectorized θ. Thinking about implementation:
a for loop in the gradient function can iterate over coordinates, wherein each iteration we
plug

∂Kij
n

∂θk
= Kij

n

(xik − xjk)2

θ2
k

(5.14)

into our formula for `′(θk) in Eq. (5.11), which is otherwise unchanged.

Each coordinate has a different θk, so pre-computing a distance matrix isn’t helpful. Instead
we’ll use the covar.sep function from the plgp package which takes vectorized d ≡ θ and
scalar g arguments, combing distance and inverse-scaling into one step. Rather than going
derivative crazy immediately, let’s focus on the likelihood first, which we’ll need anyways
before going “whole hog”. The function below is nearly identical to nl from §5.2.4 except
the first ncol(X) components of argument par are sectioned off for theta, and covar.sep
is used directly on X inputs rather than operating on pre-calculated D.

nlsep <- function(par, X, Y)
{
theta <- par[1:ncol(X)]
g <- par[ncol(X)+1]
n <- length(Y)
K <- covar.sep(X, d=theta, g=g)
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Ki <- solve(K)
ldetK <- determinant(K, logarithm=TRUE)$modulus
ll <- - (n/2)*log(t(Y) %*% Ki %*% Y) - (1/2)*ldetK
counter <<- counter + 1
return(-ll)
}

As a testament to how easy it is to optimize that likelihood, at least in terms of coding,
below we port our optim on nl above to nlsep below with the only change being to repeat
upper and lower arguments, and supply X instead of D. (Extra commands for timing will
be discussed momentarily.)

tic <- proc.time()[3]
counter <- 0
out <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, method="L-BFGS-B",
X=X, Y=y, lower=eps, upper=c(rep(10, ncol(X)), var(y)))

toc <- proc.time()[3]
out$par

## [1] 1.046068 1.156524 1.792535 9.036107 9.979581 10.000000
## [7] 9.207463 0.008191

What can be seen on output? Notice how θ̂k-values track what we know about the Friedman
function. The first three inputs have relatively shorter lengthscales compared to inputs four
and five. Recall that shorter lengthscale means “more wiggly”, which is appropriate for
those nonlinear terms; longer lengthscale corresponds to linearly contributing inputs. Finally,
the last two (save g in the final position of out$par) also have long lengthscales, which is
similarly reasonable for inputs which aren’t contributing.

But how about the number of evaluations?

brute <- c(out$counts, actual=counter)
brute

## function gradient actual
## 71 71 1207

Woah, lots! Although only 71 optimization steps were required, in 8d (including nugget g in
par) that amounts to evaluating the objective function more than one-thousand-odd times,
plus-or-minus depending on the random Rmarkdown build. When n = 200, and with cubic
matrix decompositions, that can be quite a slog time-wise: about 9 seconds.

toc - tic

## elapsed
## 9.341

To attempt to improve on that slow state of affairs, code below implements a gradient (5.14)
for vectorized θ.
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gradnlsep <- function(par, X, Y)
{
theta <- par[1:ncol(X)]
g <- par[ncol(X)+1]
n <- length(Y)
K <- covar.sep(X, d=theta, g=g)
Ki <- solve(K)
KiY <- Ki %*% Y

## loop over theta components
dlltheta <- rep(NA, length(theta))
for(k in 1:length(dlltheta)) {
dotK <- K * distance(X[,k])/(theta[k]^2)
dlltheta[k] <- (n/2) * t(KiY) %*% dotK %*% KiY / (t(Y) %*% KiY) -

(1/2)*sum(diag(Ki %*% dotK))
}

## for g
dllg <- (n/2) * t(KiY) %*% KiY / (t(Y) %*% KiY) - (1/2)*sum(diag(Ki))

return(-c(dlltheta, dllg))
}

Here’s what you get when you feed gradnlsep into optim, otherwise with the same calls as
before.

tic <- proc.time()[3]
counter <- 0
outg <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, gradnlsep,
method="L-BFGS-B", lower=eps, upper=c(rep(10, ncol(X)), var(y)), X=X, Y=y)

toc <- proc.time()[3]
thetahat <- rbind(grad=outg$par, brute=out$par)
colnames(thetahat) <- c(paste0("d", 1:ncol(X)), "g")
thetahat

## d1 d2 d3 d4 d5 d6 d7 g
## grad 1.111 1.116 1.755 7.457 10.00 10 8.910 0.008419
## brute 1.046 1.157 1.793 9.036 9.98 10 9.207 0.008191

First, observe the similar, but not always identical result in terms of optimized parameter(s).
Derivatives enhance accuracy and alter convergence criteria compared to tangent-based
approximations which sometimes leads to small discrepancies. How about number of evalua-
tions?

rbind(grad=c(outg$counts, actual=counter), brute)

## function gradient actual
## grad 138 138 138
## brute 71 71 1207
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Far fewer; an order of magnitude fewer actually, and that pays dividends in time.

toc - tic

## elapsed
## 5.818

Unfortunately, it’s not 10× faster with 10× fewer evaluations because gradient evaluation
takes time. Evaluating each derivative component – each iteration of the for loop in
gradnlsep – involves a matrix multiplication quadratic in n. So that’s eight more quadratic-
n-cost operations per evaluation compared to one for nlsep alone. Consequently, we see a
2–3× speedup. There are some inefficiencies in this implementation. For example, notice
that nlsep and gradnlsep repeat some calculations. Also the matrix trace implementation,
sum(diag(Ki %*% dotK) is wasteful. Yet again I’ll ask you to hold that thought for when
we get to library-based implementations, momentarily.

Ok, we got onto this tangent after wondering if GPs could do much better, in terms of
prediction, on the Friedman data. So how does a separable GP compare against the isotropic
one and MARS? First, take MLE hyperparameters and plug them into the predictive
equations.

K <- covar.sep(X, d=outg$par[1:ncol(X)], g=outg$par[ncol(X)+1])
Ki <- solve(K)
tau2hat <- drop(t(y) %*% Ki %*% y / nrow(X))
KXX <- covar.sep(XX, d=outg$par[1:ncol(X)], g=outg$par[ncol(X)+1])
KX <- covar.sep(XX, X, d=outg$par[1:ncol(X)], g=0)
mup2 <- KX %*% Ki %*% y
Sigmap2 <- tau2hat*(KXX - KX %*% Ki %*% t(KX))

A 2 is tacked onto the variable names above so as not to trample on isotropic analogs. We’ll
need both sets of variables to make a comparison based on score shortly. But first, here are
RMSEs.

rmse <- c(rmse, gpsep=sqrt(mean((yytrue - mup2)^2)))
rmse

## gpiso mars gpsep
## 1.0732 1.5288 0.6441

The separable covariance structure performs much better. Whereas the isotropic GP only
beats MARS 19/20 times in random Rmarkdown builds, the separable GP is never worse
than MARS, and it’s also never worse than its isotropic cousin. It pays to learn separate
lengthscales for each input coordinate.

Since GPs emit full covariance structures we can also make a comparison by proper score
(5.6). Mahalanobis distance is not appropriate here because training responses are not
deterministic. Score calculations should commence on yy here, i.e., with noise, not on yytrue
which is deterministic.

scores <- c(gp=score(yy, mup, Sigmap), mars=NA,
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gpsep=score(yy, mup2, Sigmap2))
scores

## gp mars gpsep
## -1093.4 NA -932.4

Recall that larger scores are better; so again the separable GP wins.

5.2.6 Library

All this cutting-and-pasting is getting a bit repetitive. Isn’t there a library for that? Yes,
several! But first, this might be a good opportunity to pin down the steps for GP regression
in a formal algorithm. Think of it as a capstone. Some steps in Algorithm 5.1 are a little
informal since the equations are long, and provided earlier. There are many variations/choices
on exactly how to proceed, especially to do with MVN correlation structure, or kernel. More
options follow, i.e., beyond isotropic and separable Gaussian variations, later in the chapter.

Algorithm 5.1 Gaussian Process Regression

Assume correlation structure K(·, ·) has been chosen, which may include hyperpa-
rameter lengthscale (vector) θ and nugget g; we simply refer to a combined θ ≡ (θ, g)
below.

Require n×m matrix of inputs Xn and n-vector of outputs Yn; optionally an n′×m
matrix of predictive locations X .

Then
1. Derive the concentrated log likelihood `(θ) following Eq. (5.8) under MVN sampling

model with hyperparameters θ and develop code to evaluate that likelihood as a
function of θ.

• Variations may depend on choice of K(·, ·), otherwise the referenced equations
can be applied directly.

2. Optionally, differentiate that log likelihood (5.11) with respect to θ, forming a
gradient `′(θ) ≡ ∇`(θ), and implement it too as a code which can be evaluated as
a function of θ.

• Referenced equations apply directly so long as K̇n, the derivative of the
covariance matrix with respect to the components of θ, may be evaluated.

3. Choose initial values and search ranges for the components of θ being optimized.
4. Plug log likelihood and (optionally) gradient code into your favorite optimizer (e.g.,

optim with method="L-BFGS-B"), along with initial values and ranges, obtaining
θ̂.

• If any components of θ̂ are on the boundary of the chosen search range,
consider expanding those ranges and repeat step 3.

5. If X is provided, plug θ̂ and X into either pointwise (5.2) or joint (5.3) predictive
equations.

Return MLE θ̂, which can be used later for predictions; mean vector µ(X ) and
covariance matrix Σ(X ) or variance vector σ2(X ) if X provided.
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Referenced equations in the algorithm are meant as examples. Text surrounding those
links offers more context about how such equations are intended to be applied. Observe
that the description treats predictive/testing locations X as optional. It’s quite common
in implementation to separate inference and prediction, however Algorithm 5.1 combines
them. If new X comes along, steps 1–4 can be skipped if θ̂ has been saved. If τ̂2 and K−1

n ,
which depend on θ̂, have also been saved then pointwise prediction is quadratic in n. They’re
quadratic in n′ when a full predictive covariance Σ(X ) is desired, which may be problematic
for large grids. Evaluating those equations, say to obtain draws, necessitates decomposition
and is thus cubic in n′.

There are many libraries automating the process outlined by Algorithm 5.1, providing several
choices of families of covariance functions and variations in hyperparameterization. For R
these include mlegp (Dancik, 2018), GPfit (MacDonald et al., 2019), spatial (Ripley, 2015)
fields (Nychka et al., 2019), RobustGaSP (Gu et al., 2018), and kernlab (Karatzoglou
et al., 2018) – all performing maximum likelihood (or maximum a posteriori/Bayesian
regularized) point inference; or tgp (Gramacy and Taddy, 2016), emulator (Hankin, 2019),
plgp, and spBayes (Finley and Banerjee, 2019) – performing fully Bayesian inference. There
are a few more that will be of greater interest later, in Chapters 9 and 10. For Python
see GPy19, and for MATLAB/Octave see gpstuff20 (Vanhatalo et al., 2012). Erickson et al.
(2018) provide a nice review and comparison of several libraries.

Here we shall demonstrate the implementation in laGP (Gramacy and Sun, 2018), in part
due to my intimate familiarity. It’s the fastest GP regression library that I’m aware of, being
almost entirely implemented in C. We’ll say a little more about speed momentarily. The
main reason for highlighting laGP here is because of its more advanced features, and other
convenient add-ons for sequential design and Bayesian optimization, which will come in
handy in later chapters. The basic GP interface in the laGP package works a little differently
than other packages do, for example compared to those above. But it’s the considerations
behind those peculiarities from which laGP draws its unmatched speed.

Ok, now for laGP’s basic GP functionality on the Friedman data introduced in §5.2.5. After
loading the package, the first step is to initialize a GP fit. This is where we provide the
training data, and choose initial values for lengthscale θ and nugget g. It’s a bit like a
constructor function, for readers familiar with C or C++. Code below also checks a clock so
we can compare to earlier timings.

library(laGP)
tic <- proc.time()[3]
gpi <- newGPsep(X, y, d=0.1, g=0.1*var(y), dK=TRUE)

The “sep” in newGPsep indicates a separable/anisotropic Gaussian formulation. An isotropic
version is available from newGP. At this time, the laGP package only implements Gaussian
families (and we haven’t talked about any others yet anyways).

After initialization, an MLE subroutine may be invoked. Rather than maximizing a con-
centrated log likelihood, laGP actually maximizes a Bayesian integrated log likelihood. But
that’s not an important detail. In fact, the software deliberately obscures that nuance with
its mle... naming convention, rather than mbile... or something similar, which would
probably look strange to the average practitioner.

19https://sheffieldml.github.io/GPy/
20https://research.cs.aalto.fi/pml/software/gpstuff/

https://sheffieldml.github.io/GPy/
https://research.cs.aalto.fi/pml/software/gpstuff/
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mle <- mleGPsep(gpi, param="both", tmin=c(eps, eps), tmax=c(10, var(y)))
toc <- proc.time()[3]

Notice that we don’t need to provide training data (X, y) again. Everything passed to
newGPsep, and all data quantities derived therefrom, is stored internally by the gpi object.
Once MLE calculation is finished, that object is updated to reflect the new, optimal
hyperparameter setting. More on implementation details is provided below. Outputs from
mleGPsep report hyperparameters and convergence diagnostics primarily for the purposes of
inspection.

thetahat <- rbind(grad=outg$par, brute=out$par, laGP=mle$theta)
colnames(thetahat) <- c(paste0("d", 1:ncol(X)), "g")
thetahat

## d1 d2 d3 d4 d5 d6 d7 g
## grad 1.111 1.116 1.755 7.457 10.00 10 8.910 0.008419
## brute 1.046 1.157 1.793 9.036 9.98 10 9.207 0.008191
## laGP 1.100 1.071 1.732 8.099 10.00 10 10.000 0.008527

Not exactly the same estimates as we had before, but pretty close. Since it’s not the same
objective being optimized, we shouldn’t expect exactly the same estimate. And how long
did it take?

toc - tic

## elapsed
## 1.05

Now that is faster! Almost five times faster than our bespoke gradient-based version, and
ten times faster than our earlier non-gradient-based one. What makes it so fast? The answer
is not that it performs fewer optimization iterations, although sometimes that is the case,
. . .

rbind(grad=c(outg$counts, actual=counter), brute,
laGP=c(mle$its, mle$its, NA))

## function gradient actual
## grad 138 138 138
## brute 71 71 1207
## laGP 139 139 NA

. . . or that it uses a different optimization library. In fact, laGP’s C backend borrows the
C subroutines behind L-BFGS-B optimization provided with R. One explanation for that
speed boost is the compiled (and optimized) C code, but that’s only part of the story. The
implementation is very careful not to re-calculate anything. Matrices and decompositions are
shared between objective and gradient, which involve many of the same operations. Inverses
are based on Cholesky decompositions, which can be re-used to calculate determinants
without new decompositions. (Note that this can be done in R too, with chol and chol2inv,
but it’s quite a bit faster in C, where pointers and pass-by-reference save on automatic
copies necessitated by an R-only implementation.)



5.2 GP hyperparameters 183

TABLE 5.1: RMSEs and proper scores on the Friedman data.

gpiso mars gpsep laGP
rmse 1.073 1.529 0.6441 0.6355
scores -1093.429 NA -932.3916 -929.8908

Although mle output reports estimated hyperparameter values, those are mostly for infor-
mation purposes. That mle object is not intended for direct use in subsequent calculations,
such as to make predictions. The gpi output reference from newGPsep, which is passed to
mleGPsep, is where the real information lies. In fact, the gpi variable is merely an index – a
unique integer – pointing to a GP object stored by backend C data structures, containing
updated Kn and K−1

n , and related derivative quantities, and everything else that’s needed
to do more calculations: more MLE iterations if needed, predictions, quick updates if new
training data arrive (more in Chapters 6–7). These are modified as a “side effect” of the mle
calculation. That means nothing needs to be “rebuilt” to make predictions. No copying of
matrices back and forth. The C-side GP object is ready for whatever, behind the scenes.

p <- predGPsep(gpi, XX)

How good are these predictions compared to what we had before? Let’s complete the table,
fancy this time because we’re done with this experiment. See Table 5.1.

rmse <- c(rmse, laGP=sqrt(mean((yytrue - p$mean)^2)))
scores <- c(scores, laGP=score(yy, p$mean, p$Sigma))
kable(rbind(rmse, scores),
caption="RMSEs and proper scores on the Friedman data.")

About the same as before; we’ll take a closer look at potential differences momentarily. When
finished using the data structures stored for a GP fit in C, we must remember to call the
destructor function otherwise memory will leak. The stored GP object referenced by gpi is
not under R’s memory management. (Calling rm(gpi) would free the integer reference, but
not the matrices it refers to as C data structures otherwise hidden to R and to the user.)

deleteGPsep(gpi)

5.2.7 A bakeoff

As a capstone on the example above, and to connect to a dangling thread from Chapter
4, code below performs an LHS Bakeoff, in the style of Algorithm 4.1, over R = 30 Monte
Carlo (MC) repetitions with the four comparators above. Begin by setting up matrices to
store our two metrics, RMSE and proper score, and one new one: execution time.

R <- 30
scores <- rmses <- times <- matrix(NA, nrow=R, ncol=4)
colnames(scores) <- colnames(rmses) <- colnames(times) <- names(rmse)
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Then loop over replicate data with each comparator applied to the same LHS-generated
training and testing partition, each of size n = n′ = 200. Note that this implementation
discards the one MC replicate we already performed above, which was anyways slightly
different under n′ = 1000 testing runs. Since we’re repeating thirty times here, a smaller
testing set suffices. As in our previous example, out-of-sample RMSEs are calculated against
the true (no noise) response, and scores against a noisy version. Times recorded encapsulate
both fitting and prediction calculations.

for(r in 1:R) {

## train-test partition and application of f(x) on both
data <- fried(2*n, m)
train <- data[1:n,]
test <- data[(n + 1):(2*n),]

## extract data elements from both train and test
X <- as.matrix(train[,1:m])
y <- drop(train$Y)
XX <- as.matrix(test[,1:m])
yy <- drop(test$Y) ## for score
yytrue <- drop(test$Ytrue) ## for RMSE

## isotropic GP fit and predict by hand
tic <- proc.time()[3]
D <- distance(X)
out <- optim(c(0.1, 0.1*var(y)), nl, gradnl, method="L-BFGS-B",
lower=eps, upper=c(10, var(y)), D=D, Y=y)

K <- exp(-D/out$par[1]) + diag(out$par[2], nrow(D))
Ki <- solve(K)
tau2hat <- drop(t(y) %*% Ki %*% y / nrow(D))
DXX <- distance(XX)
KXX <- exp(-DXX/out$par[1]) + diag(out$par[2], ncol(DXX))
DX <- distance(XX, X)
KX <- exp(-DX/out$par[1])
mup <- KX %*% Ki %*% y
Sigmap <- tau2hat*(KXX - KX %*% Ki %*% t(KX))
toc <- proc.time()[3]

## calculation of metrics for GP by hand
rmses[r,1] <- sqrt(mean((yytrue - mup)^2))
scores[r,1] <- score(yy, mup, Sigmap)
times[r,1] <- toc - tic

## MARS fit, predict, and RMSE calculation (no score)
tic <- proc.time()[3]
fit.mars <- mars(X, y)
p.mars <- predict(fit.mars, XX)
toc <- proc.time()[3]
rmses[r,2] <- sqrt(mean((yytrue - p.mars)^2))
times[r,2] <- toc - tic
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## separable GP fit and predict by hand
tic <- proc.time()[3]
outg <- optim(c(rep(0.1, ncol(X)), 0.1*var(y)), nlsep, gradnlsep,
method="L-BFGS-B", lower=eps, upper=c(rep(10, m), var(y)), X=X, Y=y)

K <- covar.sep(X, d=outg$par[1:m], g=outg$par[m+1])
Ki <- solve(K)
tau2hat <- drop(t(y) %*% Ki %*% y / nrow(X))
KXX <- covar.sep(XX, d=outg$par[1:m], g=outg$par[m+1])
KX <- covar.sep(XX, X, d=outg$par[1:m], g=0)
mup2 <- KX %*% Ki %*% y
Sigmap2 <- tau2hat*(KXX - KX %*% Ki %*% t(KX))
toc <- proc.time()[3]

## calculation of metrics for separable GP by hand
rmses[r,3] <- sqrt(mean((yytrue - mup2)^2))
scores[r,3] <- score(yy, mup2, Sigmap2)
times[r,3] <- toc - tic

## laGP based separable GP
tic <- proc.time()[3]
gpi <- newGPsep(X, y, d=0.1, g=0.1*var(y), dK=TRUE)
mle <- mleGPsep(gpi, param="both", tmin=c(eps, eps), tmax=c(10, var(y)))
p <- predGPsep(gpi, XX)
deleteGPsep(gpi)
toc <- proc.time()[3]

## calculation of metrics for laGP based separable GP
rmses[r,4] <- sqrt(mean((yytrue - p$mean)^2))
scores[r,4] <- score(yy, p$mean, p$Sigma)
times[r,4] <- toc - tic

}

Three sets of boxplots in Figure 5.12 show the outcome of the experiment in terms of RMSE,
proper score and time, respectively. Smaller is better in the case of the first and last, whereas
larger scores are preferred.

par(mfrow=c(1,3))
boxplot(rmses, ylab="rmse")
boxplot(scores, ylab="score")
boxplot(times, ylab="execution time (seconds)")

MARS is the fastest but least accurate. Library-based GP prediction with laGP is substan-
tially faster than its by-hand analog. Variability in timings is largely due to differing numbers
of iterations to convergence when calculating MLEs. Our by-hand separable GP and laGP
analog are nearly the same in terms of RMSE and score. However boxplots only summarize
marginal results, masking any systematic (if subtle) patterns between comparators over
the thirty trials. One advantage to having a randomized experiment where each replicate
is trained and tested on the same data is that a paired t-test can be used to check for
systematic differences between pairs of competitors.
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FIGURE 5.12: RMSEs (left), proper scores (middle) and execution times (right) for a
bakeoff based on the Friedman data.

t.test(scores[,4], scores[,3], paired=TRUE)

##
## Paired t-test
##
## data: scores[, 4] and scores[, 3]
## t = -0.26, df = 29, p-value = 0.8
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.3280 0.2549
## sample estimates:
## mean of the differences
## -0.03659

The outcome of the test reveals that there’s no difference between these two predictors in
terms of accuracy (p-value greater than the usual 5%). When comparing RMSEs in this way,
it may be appropriate to take the log. (Scores are already on a log scale.) So that’s it: now
you can try GP regression on data of your own! Of course, there are natural variations we
could add to the bakeoff above, such as laGP’s isotropic implementation, and MARS with
degree=2. I’ll leave those to the curious reader as a homework exercise (§5.5). You could
stop reading now and be satisfied knowing almost all there is to know about deploying GPs
in practice.

Or you could let me get a few more words in, since I have your attention. What else is there?
We’ve been alluding to “other covariance structures”, so it might be a good idea to be a
little more concrete on that. We’ve talked about “properties”, but that’s been vague. Same
thing with limitations. We’ll scratch the surface now, and spend whole chapters on that
later on. And then there’s the matter of perspective on what a GP is really doing when it’s
giving you predictions? Is it really Bayesian?
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5.3 Some interpretation and perspective

So we fit some hyperparameters and used MVN conditioning identities to predict. But what
are we doing really? Well that depends upon your perspective. I was raised a Bayesian,
but have come to view things more pragmatically over the years. There’s a lot you can do
with ordinary least squares (OLS) regression, e.g., with the lm command in R. A bespoke
fully Bayesian analog might feel like the right thing to do, but represents a huge investment
with uncertain reward. Yet there’s value in a clear (Bayesian) chain of reasoning, and the
almost automatic regularization that a posterior distribution provides. That is, assuming all
calculations are doable, both in terms of coder effort and execution time.

Those “pragmatic Bayesian” perspectives have heavily influenced my view of GP regression,
which I’ll attempt to summarize below through a sequence of loosely-connected musings. For
those of you who like magic more than mystery, feel free to skip ahead to the next chapter.
For those who want lots of theory, try another text. I’m afraid you’ll find the presentation
below to be woefully inadequate. For those who are curious, read on.

5.3.1 Bayesian linear regression?

Recall the standard multiple linear regression model, perhaps from your first or second class
in statistics.

Y (x) = x>β + ε, ε
iid∼ N (0, σ2).

For n inputs x1, . . . , xn, stacked row-wise into a design matrix Xn, the sampling model may
compactly be written as

Y ∼ Nn(Xnβ, σ
2In).

That data-generating mechanism leads to the following likelihood, using observed data values
Yn = (y1, . . . , yn)> or RV analogs (for studying sampling distributions):

L(β, σ2) =
(

1
2πσ2

)−n2
exp

{
− 1

2σ2 (Yn −Xnβ)>(Yn −Xnβ)
}
.

Using those equations alone, i.e., only the likelihood, nobody would claim to be positing a
Bayesian model for anything. A Bayesian version additionally requires priors on unknown
parameters, β and σ2.

So why is it that a slight generalization, obtained by replacing the identity with a covariance
matrix parameterized by θ and g, and mapping σ2 ≡ τ2,

Y ∼ Nn(Xnβ, τ
2Kn), Kn = Cn + gIn, Cijn = Cθ(xi, xj),

causes everyone to suddenly start talking about priors over function spaces and calling the
whole thing Bayesian? Surely this setup implies a likelihood just as before

L(β, τ2, θ, g) =
(

1
2πτ2

)−n2
|Kn|−

1
2 exp

{
− 1

2τ2 (Yn −Xnβ)>K−1
n (Yn −Xβ)

}
.
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We’ve already seen how to infer τ2, θ and g hyperparameters – no priors required. Conditional
on θ̂ and ĝ-values, defining Kn, the same MLE calculations for β̂ from your first stats class
are easy with calculus. See exercises in §5.5. There’s really nothing Bayesian about it until
you start putting priors on all unknowns: θ, g, τ2 and β. Right?

Not so fast! Here’s my cynical take, which I only halfheartedly believe and will readily admit
has as many grains of truth as it has innuendo. Nevertheless, this narrative has some merit
as an instructional device, even if a caricature of a (possibly revisionist) history.

First set the stage. The ML community of the mid–late 1990s was enamored with Bayesian
learning as an alternative to the prevailing computational learning theory (CoLT) and
probably approximately correct (PAC) trends at the time. ML has a habit of appropriating
methodology from related disciplines (statistics, operations research, mathematical program-
ming, computer science), usually making substantial enhancements – which are of great
value to all, don’t get me wrong – but at the same time re-branding them to the extent
that pedigree is all but obscured. One great example is the single-layer perceptron21 versus
logistic regression. Another is active learning22 versus sequential design, which we shall
discuss in more detail in Chapter 6. You have to admit, they’re better at naming things!

Here’s the claim. A core of innovators in ML were getting excited about GPs because
they yielded great results for prediction problems in robotics, reinforcement learning, and
e-commerce to name a few. Their work led to many fantastic publications, including the
text by Rasmussen and Williams (2006) which has greatly influenced my own work, and
many of the passages coming shortly. (In many ways, over the years machine learners have
made more – and more accessible – advances to the GP arsenal and corpus of related codes
than any other community.) I believe that those GP-ML vanguards calculated, possibly
subconsciously, that they’d be better able to promote their work to the ML community
by dressing it in a fancy Bayesian framework. That description encourages reading with a
pejorative tone, but I think this maneuver was largely successful, and those of us who have
benefited from their subsequent work owe them a debt of gratitude, because it all could’ve
flopped. At that time, in the 1990s, they were hawking humble extensions to old ideas from
1960s spatial statistics, an enterprise that was already in full swing in the computer modeling
literature. The decision to push GPs as nonparametric Bayesian learning machines served
both as catalyst for enthusiasm in a community that essentially equated “Bayesian” with
“better”, and as a feature distinguishing their work from that of other communities who were
somewhat ahead of the game, but for whom emphasizing Bayesian perspectives was not as
advantageous. That foundation blossomed into a vibrant literature that nearly twenty years
later is still churning out some of the best ideas in GP modeling, far beyond regression.

The Bayesian reinterpretation of more classical procedures ended up subsequently becoming
a fad in other areas. A great example is the connection between lasso/L1-penalized regression
and Bayesian linear modeling with independent double-exponential (Laplace) priors on β:
the so-called Bayesian lasso (Park and Casella, 2008). Such procedures had been exposed
decades earlier, in less fashionable times (Carlin and Polson, 1991) and had been all but
forgotten. Discovering that a classical procedure had a Bayesian interpretation, and attaching
to it a catchy name, breathed new life into old ideas and facilitated a great many practical
extensions.

For GPs that turned out to be a particularly straightforward endeavor. We’ve already seen
how to generate Y (x)’s independent of data, so why not call that a prior? And then we saw
how MVN identities could help condition on data, generating Y (x) | Dn, so why not call

21https://en.wikipedia.org/wiki/Perceptron
22https://en.wikipedia.org/wiki/Active_learning_(machine_learning)

https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/Active_learning_(machine_learning)
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that a posterior? Never mind that we could’ve derived those predictive equations (and we
essentially did just that in §5.1) under the “generalized” linear regression model.

But the fact that we can do it, i.e., force a Bayesian GP interpretation, begs three questions.

1. What is the prior over?
2. What likelihood is being paired with that prior (if not the MVN we’ve been using, which

doesn’t need a prior to work magic)?
3. What useful “thing” do we extract from this Bayesian enterprise that wasn’t there

before?

The answers to those questions lie in the concept of a latent random field.

5.3.2 Latent random field

Another apparatus that machine learners like is graphical models, or diagrammatic depictions
of Bayesian hierarchical models. The prevailing such representation for GPs is similar to
schematics used to represent hidden Markov models (HMMs)23. A major difference, however,
is that HMMs obey the Markov property, so there’s a direction of flow: the next time step is
independent of the past given the current time step. For GPs there’s potential for everything
to depend upon (i.e., be correlated with) everything else.

FIGURE 5.13: Diagram of the latent random field; similar to one from Rasmussen and
Williams (2006).

The diagram in Figure 5.13 resembles one from Rasmussen and Williams (2006) except it’s
more explicit about this interconnectivity. The fi-values in the middle row represent a latent
Gaussian random field, sitting between inputs xi and outputs yi. They’re latent because we
don’t observe them directly, and they’re interdependent on one another. Instead we observe
noise-corrupted y-values, but these are conditionally independent of one another given latent
f -values. The Rasmussen & Williams analog shows these latent fs residing along a bus24, to
borrow a computer engineering term, in lieu of the many interconnections shown in Figure
5.13. To emphasize that these latents are unobserved, they reside in dashed/gray rather than
solid circles. Interconnections are also dashed/gray, representing unobserved correlations and
unobserved noises connecting latents together and linking them with their observed y-values.
The rightmost (x, f, Y ) = (x, f(x), Y (x)) set of nodes in the figure represent prediction at a
new x location, exhibiting the same degree of interconnectedness and independence in noisy
output.

23https://en.wikipedia.org/wiki/Hidden_Markov_model
24https://en.wikipedia.org/wiki/Bus_(computing)

https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/Bus_(computing)


190 5 Gaussian Process Regression

The Bayesian interpretation inherited by the posterior predictive distribution hinges on
placing a GP prior on latent fi-values, not directly on measured yi’s.

F ∼ Nn(0, τ2Cn) (5.15)

Above I’m using Cn rather than Kn which is our notation for a correlation matrix without
nugget. But otherwise this uses our preferred setup from earlier. Since there are no data
(Yn) values in Eq. (5.15), we can be (more) comfortable about calling this a prior. It’s a
prior over latent functions.

Now here’s how the likelihood comes in, so that we’ll have all of the ingredients comprising
a posterior: likelihood + prior. Take an iid Gaussian sampling model for Yn ≡ (y1, . . . , yn)
around F :

Y ∼ Nn(F, σ2In).

To map to our earlier notation with a nugget, choose σ2 = gτ2. Embellishments may include
adding a linear component Xnβ into the mean, as F +Xnβ.

Now I don’t know about you, but to me this looks a little contrived. With prior F | Xn

and likelihood Yn | F,Xn, notation for the posterior is F | Dn. It’s algebraic form isn’t
interesting in and of itself, but an application of Bayes’ rule does reveal a connection to our
earlier development.

p(F | Dn) = p(Yn | F,Xn)p(F | Xn)
p(Yn | Xn)

The denominator p(Yn | Xn) above, for which we have an expression (5.8) in log form, is
sometimes called a marginal likelihood or evidence. The former moniker arises from the law
of total probability25, which allows us to interpret this quantity as arising after integrating
out the latent random field F from the likelihood Yn | F,Xn:

p(Yn | Xn) =
∫
p(Yn | f,Xn) · p(f | Xn) df.

We only get what we really want, a posterior predictive Y (x) | Dn = (Xn, Yn), through a
different marginalization, this time over the posterior of F :

p(Y (x) | Dn) =
∫
p(Y (x) | f) · p(f | Dn) df.

But of course we already have expressions for that as well (5.2). Similar logic, through joint
modeling of Yn with f(x), instead of with Y (x), and subsequent MVN conditioning can be
applied to derive f(x) | Dn. The result is Gaussian with identical mean µ(x), from Eq. (5.2),
and variance

σ̆2(x) = σ2(x)− τ̂2ĝ = τ̂2(1− k>n (x)K−1
n kn(x)). (5.16)

Thus, this latent function space interpretation justifies a trick we performed in §5.2.2, when
exploring smoothed sinusoid visuals in Figure 5.10. Recall that we obtained de-noised sample
paths (gray lines) by omitting the nugget in the predictive variance calculation. This is the

25https://en.wikipedia.org/wiki/Law_of_total_probability
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same as plugging in g = 0 when calculating K(X ,X ), or equivalently using C(X ,X ). At
the time we described that maneuver as yielding the epistemic uncertainty26 – that due
to model uncertainty – motivated by a desire for pretty-looking gray lines. In fact, sample
paths resulting from that calculation are precisely draws from f(X ) | Dn, i.e., posterior
samples of the latent function.

Error-bars calculated from that predictive variance are tighter, and characterize uncertainty
in predictive mean, i.e., without additional uncertainty coming from a residual sum of squares.
Note that ĝ is only removed from the predictive calculation, not from the diagonal of Kn

leading to K−1
n . To make an analogy to linear modeling in R with lm, the former based

on σ2(x) corresponds to interval="prediction", and σ̆2(x) to interval="confidence"
when using predict.lm. (See §3.2.3.) As n → ∞, we’ll have that σ̆2(x) → 0 for all x,
meaning that eventually we’ll learn the latent functions without uncertainty. On the other
hand, σ2(x) could be no smaller than τ̂2ĝ, meaning that when it comes to making predictions,
they’ll offer an imperfect forecast of the noisy (held-out) response value no matter how much
data, n, is available for training.

Was all that worth it? We learned something: predictive distribution Y (x) | Dn involves
integrating over a latent function space, at least notionally, even if the requisite calculations
and their derivation don’t require working that way. An examination of the properties of
those latent functions, or rather correlation functions C(·, ·) which generate those f ’s, could
provide insight into the nature of our nonparametric regression. I think that’s the biggest
feature of this interpretation.

5.3.3 Stationary kernels

Properties of the correlation function, C(x, x′), or covariance function Σ(x, x′), or generically
kernel k(x, x′) as preferred in ML, dictate properties of latent functions f . For example, a
stationary kernel k(x, x′) is a function only of r = x− x′,

k(x, x′) = k(r).

More commonly, r = |x − x′|. Our isotropic and separable Gaussian families are both
stationary kernels. The most commonly used kernels are stationary, despite the strong
restrictions they place on the nature of the underlying process. Characteristics of the function
f , via a stationary kernel k, are global since they’re determined only by displacement between
coordinates, not positions of the coordinates themselves; they must exhibit the same dynamics
everywhere. What, more specifically, are some of the properties of a stationary kernel?

Consider wiggliness, which is easiest to characterize in a single input dimension x ∈ [0, 1].
Define the number of level-u upcrossings Nu to be the number of times a random realization
of f crosses level u, from below to above on the y-axis, when traversing from left to right
on the x-axis. It can be shown that the expected number of level-u upcrossings under a
stationary kernel k(·) is

E{Nu} = 1
2π

√
−k′′(0)
k(0) exp

(
− u2

2k(0)

)
. (5.17)

For a Gaussian kernel, the expected number of zero-crossings (i.e., u = 0) works out to be
26https://en.wikipedia.org/wiki/Uncertainty_quantification#Aleatoric_and_epistemic_

uncertainty

https://en.wikipedia.org/wiki/Uncertainty_quantification#Aleatoric_and_epistemic_uncertainty
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E{N0} ∝ θ−1/2.

See Adler (2010) for more details. Hyperparameter θ appears in the denominator of squared
distance, so on the scale of inputs x, i.e., “un-squared” distance, θ is proportional to the
expected length in the input space before crossing zero: hence the name characteristic
lengthscale. Therefore θ directly controls how often latent functions change direction, which
they must do in order to cross zero more than once (from below). A function with high
E{Nu}, which comes from small θ, would have more bumps, which we might colloquially
describe as more wiggly. The same result can be applied separately in each coordinate
direction of a separable Gaussian kernel using θk, for all k = 1, . . . ,m.

Consider smoothness, in the calculus sense – not as the opposite of wiggliness. A Gaussian
kernel is infinitely differentiable, which in turn means that its latent f process has mean-
square derivatives of all orders, and this is very smooth. Not many physical phenomena –
think back to your results from Physics 101 or a first class in differential equations – are
infinitely smooth. Despite this not being realistic for most real-world processes, (separable)
Gaussian kernels are still the most widely used. Why? Because they’re easy to code up; GPs
are relatively robust to misspecifications, within reason (remember what happened when we
forced τ2 = 1); faults of infinite smoothness are easily masked by “fudges” already present
in the model for other reasons, e.g., with nugget or jitter (Andrianakis and Challenor, 2012;
Gramacy and Lee, 2012; Peng and Wu, 2014). And finally there’s the practical matter of
guaranteeing a proper, positive definite covariance regardless of input dimension.

If a Gaussian kernel isn’t working well, or if you want finer control on mean-square differen-
tiability, then consider a Matèrn family member, with

kν(r) = 21−ν

Γ(ν)

(
r

√
2ν
θ

)ν
Kν

(
r

√
2ν
θ

)
.

Above Kν is a modified Bessel function27 of the second kind, ν controls smoothness, and θ
is a lengthscale as before. As ν →∞, i.e., a very smooth parameterization, we get

kν(r)→ k∞(r) = exp
{
− r

2

2θ

}
which can be recognized as (a re-parameterized) Gaussian family, where r is measured on
the scale of ordinary (not squared) Euclidean distances.

The code below sets up this “full” Matèrn in R so we can play with it a little.

matern <- function(r, nu, theta)
{
rat <- r*sqrt(2*nu/theta)
C <- (2^(1 - nu))/gamma(nu) * rat^nu * besselK(rat, nu)
C[is.nan(C)] <- 1
return(C)
}

Sample paths of latent f under a GP with this kernel will be k times differentiable if and

27https://en.wikipedia.org/wiki/Bessel_function
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only if ν > k. Loosely speaking this means that sample paths from smaller ν will be rougher
than those from larger ν. This is quite surprising considering how similar the kernel looks
when plotted for various ν, as shown in Figure 5.14.

r <- seq(eps, 3, length=100)
plot(r, matern(r, nu=1/2, theta=1), type="l", ylab="k(r,nu)")
lines(r, matern(r, nu=2, theta=1), lty=2, col=2)
lines(r, matern(r, nu=10, theta=1), lty=3, col=3)
legend("topright", c("nu=1/2", "n=2", "nu=10"), lty=1:3, col=1:3, bty="n")
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FIGURE 5.14: Matèrn kernels versus Euclidean distance.

In all three cases the lengthscale parameter is taken as θ = 1. R code below calculates
covariance matrices for latent field draws F under these three Matèrn specifications. Careful,
as in the discussion above, the matern function expects its r input to be on the scale of
ordinary (not squared) distances.

X <- seq(0, 10, length=100)
R <- sqrt(distance(X))
K0.5 <- matern(R, nu=1/2, theta=1)
K2 <- matern(R, nu=2, theta=1)
K10 <- matern(R, nu=10, theta=1)

Notice that we’re not augmenting the diagonal of these matrices with ε jitter. One of the great
advantages to a Matèrn (for small ν) is that it creates covariance matrices that are better
conditioned28, i.e., farther from numerically non-positive definite. Using those covariances,
Figure 5.15 plots three sample paths for each case.

par(mfrow=c(1,3))
matplot(X, t(rmvnorm(3,sigma=K0.5)), type="l", col=1, lty=1,

28https://en.wikipedia.org/wiki/Condition_number
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xlab="x", ylab="y, nu=1/2")
matplot(X, t(rmvnorm(3,sigma=K2)), type="l", col=2, lty=2,
xlab="x", ylab="y, nu=2")

matplot(X, t(rmvnorm(3,sigma=K10)), type="l", col=3, lty=3, xlab="x",
ylab="y, nu=10")
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FIGURE 5.15: Sample paths under Matèrn kernels with ν = 0.5 (left), ν = 2 (middle)
and ν = 10 (right).

Surfaces under ν = 1/2, shown on the left, are very rough. Since ν < 1 they’re nowhere
differentiable, yet they still have visible correlation in space. On the right, where ν = 10,
surfaces are quite smooth; ones which are nine-times differentiable. In the middle is an
intermediate case which is smoother than the first one (being once differentiable) but not as
smooth as the last one. To get a sense of what it means to be just once differentiable, as in
the middle panel of the figure, consider the following first and second numerical derivatives
(via first differences) for a random realization when ν = 2.

F <- rmvnorm(1, sigma=K2)
dF <- (F[-1] - F[-length(F)])/(X[2] - X[1])
d2F <- (dF[-1] - dF[-length(dF)])/(X[2] - X[1])

Figure 5.16 plots these three sets of values on a common x-axis.

plot(X, F, type="l", lwd=2, xlim=c(0,13), ylim=c(-5,5),
ylab="F and derivatives")

lines(X[-1], dF, col=2, lty=2)
lines(X[-(1:2)], d2F, col=3, lty=3)
legend("topright", c("F", "dF", "d2F"), lty=1:3, col=1:3, bty="n")

Whereas the original function realization F seems reasonably smooth, its first differences
dF are jagged despite tracing out a clear spatial pattern in x. Since first differences are not
smooth, second differences d2F are erratic: this random latent function realization is not
twice differentiable. Of course, these are all qualitative statements based on finite realizations,
but you get the gist.

We’re not usually in the business of generating random (latent) functions. Rather, given
observed y-values we wish to estimate the unknown latent function f via a choice of
correlation family, and settings for its hyperparameters. What does this mean for ν, governing



5.3 Some interpretation and perspective 195

0 2 4 6 8 10 12

-4
-2

0
2

4

X

F 
an

d 
de

riv
at

ive
s

F
dF
d2F

FIGURE 5.16: Numerical derivatives for Matèrn sample paths.

smoothness? Some of the biggest advocates for the Matèrn, e.g., Stein (2012), argue that
you should learn smoothness, ν, from your training data. But that’s fraught with challenges
in practice, the most important being that noisy data provide little guidance for separating
noise from roughness, which under the Matèrn is regarded as a form of signal. This results in
a likelihood surface which has many dead (essentially flat) spots. More typically, the degree
of smoothness is regarded as a modeling choice, ideally chosen with knowledge of underlying
physical dynamics.

Another challenge involves the Bessel function Kν , the evaluation of which demands a
cumbersome numerical scheme (say using besselK in R) applied repeatedly to O(n2) pairs
of distances r between training data inputs Xn. For most moderate data sizes, n < 1000 say,
creating an n× n covariance matrix under the Matèrn is actually slower than decomposing
it, despite the O(n3) cost that this latter operation implies.

A useful re-formulation arises when ν = p+ 1
2 for non-negative integer p, in which case p

exactly determines the number of mean-square derivatives.

kν=p+ 1
2
(r) = exp

{
r

√
2ν
θ

}
Γ(p+ 1)
Γ(2p+ 1)

p∑
i=0

(p+ i)!
i!(p− i)!

(
r

√
8ν
θ

)p−1

Whether or not this is simpler than the previous specification is a matter of taste. From
this version it’s apparent that the kernel is comprised of a product of an exponential and
a polynomial of order p− 1. Although tempting to perform model search over discrete p,
this is not any easier than over continuous ν. However it is easier to deduce the form from
more transparent and intuitive components (i.e., no Bessel functions), at least for small p.
Choosing p = 0, yielding only the exponential part which is equivalent to k(r) = e−

r2
θ , is

sometimes referred to as the exponential family. This choice is also a member of the power
exponential family, introduced in more detail momentarily. We’ve already discussed how
p = 0, implying ν = 1/2, is appropriate for rough surfaces. At the risk of being even more
redundant, p → ∞ is a great choice when dynamics are super smooth, although clearly
having an infinite sum isn’t practical for implementation. From a technical standpoint, both
choices are probably too rough or too smooth, respectively, even though they (especially the
Gaussian) work fine in many contexts, to the chagrin of purists.
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Entertaining a middle ground has its merits. Practically speaking, without explicit knowledge
about higher-order derivatives, it’ll be hard to distinguish between values ν ≥ 7/2, meaning
p ≥ 3, and much larger settings (p, ν →∞) especially with noisy data. That leaves essentially
two special cases, which emit relatively tidy expressions:

k3/2(r) =
(

1 + r

√
3
θ

)
exp

(
−r
√

3
θ

)
(5.18)

or k5/2(r) =
(

1 + r

√
5
θ

+ 5r2

3θ

)
exp

(
−r
√

5
θ

)
.

The advantage of these cases is that there are no Bessel functions, no sums of factorials nor
fractions of gammas. Most folks go for the second one (p = 2) without bothering to check
against the first, perhaps appealing to physical intuition that many interesting processes are
at least twice differentiable. Worked examples with these choices are deferred to Chapter 10
on replication and heteroskedastic modeling. In the meantime, the curious reader is invited
to explore them in a homework exercise in §5.5.

The power exponential family would, at first blush, seem to have much in common with the
Matèrn,

kα(r) = exp
{
−
(
r√
θ

)α}
for 0 < α ≤ 2,

having the same number of hyperparameters and coinciding on two special cases α = 1⇔
p = 0 and α = 2⇔ p→∞. An implementation in R is provided below.

powerexp <- function(r, alpha, theta)
{
C <- exp(-(r/sqrt(theta))^alpha)
C[is.nan(C)] <- 1
return(C)
}

However the process is never mean-square differentiable except in the Gaussian (α = 2)
special case. Whereas the Matèrn offers control over smoothness, a power exponential
provides essentially none. Yet both offer potential for greater numerical stability, owing to
better covariance matrix condition numbers29, than their Gaussian special cases. A common
kludge is to choose α = 1.9 in lieu of α = 2 with the thinking that they’re “close” (which
is incorrect) but the former is better numerically (which is correct). As with Matèrn ν, or
perhaps even more so, it’s surprising that fine variation in a single hyperparameter (α) can
have such a profound effect on the resulting latent functions, especially when their kernels
look so similar as a function of r. See Figure 5.17.

plot(r, powerexp(r, alpha=1.5, theta=1), type="l", ylab="k(r,alpha)")
lines(r, powerexp(r, alpha=1.9, theta=1), lty=2, col=2)
lines(r, powerexp(r, alpha=2, theta=1), lty=3, col=3)
legend("topright", c("alpha=1.5", "alpha=1.9", "alpha=2"),
lty=1:3, col=1:3, bty="n")

29https://en.wikipedia.org/wiki/Condition_number

https://en.wikipedia.org/wiki/Condition_number
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FIGURE 5.17: Power exponential kernels versus Euclidean distance.

Despite the strong similarity for α ∈ {1.5, 1.9, 2} in kernel evaluations, the resulting sample
paths exhibit stark contrast, as shown in Figure 5.18.

Ka1.5 <- powerexp(R, alpha=1.5, theta=1)
Ka1.9 <- powerexp(R, alpha=1.9, theta=1)
Ka2 <- powerexp(R, alpha=2, theta=1) + diag(eps, nrow(R))
par(mfrow=c(1,3))
ylab <- paste0("y, alpha=", c(1.5, 1.9, 2))
matplot(X, t(rmvnorm(3, sigma=Ka1.5)), type="l", col=1, lty=1,
xlab="x", ylab=ylab[1])

matplot(X, t(rmvnorm(3, sigma=Ka1.9)), type="l", col=2, lty=2,
xlab="x", ylab=ylab[2])

matplot(X, t(rmvnorm(3, sigma=Ka2)), type="l", col=3, lty=3,
xlab="x", ylab=ylab[3])
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FIGURE 5.18: Sample paths under power exponential kernels with α = 1.5 (left), α = 1.9
(middle) and α = 2 (right).

The α = 2 case is a special one: very smooth latent function realizations. Although α = 1.9
is not as rough as α = 1.5, it still exhibits “sharp turns”, albeit fewer. That pair are more
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similar to one another in that respect than either is to the final one where α = 2, being
infinitely smooth.

The rational quadratic kernel

krq(r) =
(

1 + r2

2αθ

)−α
with α > 0

can be derived as a scale mixture of Gaussian (power exponential with α = 2) and exponential
(power exponential with α = 1) kernels over θ. Since that mixture includes the Gaussian, the
process is infinitely mean-square differentiable for all α. An implementation of this kernel in
R is provided below.

ratquad <- function(r, alpha, theta)
{
C <- (1 + r^2/(2 * alpha * theta))^(-alpha)
C[is.nan(C)] <- 1
return(C)
}

To illustrate, panels of Figure 5.19 show the kernel (left) and three MVN realizations (right)
for each α ∈ {1/2, 2, 10}.

par(mfrow=c(1,2))
plot(r, ratquad(r, alpha=1/2, theta=1), type="l",
ylab="k(r,alpha)", ylim=c(0,1))

lines(r, ratquad(r, alpha=2, theta=1), lty=2, col=2)
lines(r, ratquad(r, alpha=10, theta=1), lty=3, col=3)
legend("topright", c("alpha=1/2", "alpha=2", "alpha=10"), lty=1:3,
col=1:3, bty="n")

plot(X, rmvnorm(1, sigma=ratquad(R, alpha=1/2, theta=1)), type="l", col=1,
lty=1, xlab="x", ylab="y", ylim=c(-2.5,2.5))

lines(X, rmvnorm(1, sigma=ratquad(R, alpha=2, theta=1)), col=2, lty=2)
lines(X, rmvnorm(1, sigma=ratquad(R, alpha=10, theta=1)), type="l",
col=3, lty=3)

Although lower α yield rougher characteristics, all are smooth compared to their non-
differential analogs introduced earlier.

The idea of hybridizing two kernels, embodied in the particular by the rational quadratic
kernel above, nicely generalizes. Given two well-defined kernels, i.e., generating a positive
definite covariance structure, there are many ways they can be combined into a single well-
defined kernel. The sum of two kernels is a kernel. In fact, if f(x) =

∑
fk(xk), for random

fk(xk) with univariate kernels, then the kernel of f(x) arises as the sum of those kernels.
Durrande et al. (2012) show how such an additive GP-modeling approach can be attractive
in high input dimensions. A product of two kernels is a kernel. The kernel of a convolution
is the convolution of the kernel. Anisotropic versions of isotropic covariance functions can be
created through products, leading to a separable formulation, or through quadratic forms
like r2(x, x′) = (x− x′)>A(x− x′) where A may augment the hyperparameter space. Low
rank A are sometimes used to implement linear dimensionality reduction. Rank one choices
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FIGURE 5.19: Rational quadratic kernel evaluations (left) and paths (right).

of A lead to what are known as GP single-index models (GP-SIMs; Gramacy and Lian,
2012).

Although somewhat less popular, there are stationary kernels which are common in specialized
situations such as with spherical input coordinates, or for when periodic effects are involved.
A good reference for these and several others is an unpublished manuscript by Abrahamsen
(1997). Another good one is Wendland (2004), particularly Chapter 9, which details piecewise
polynomial kernels with compact support, meaning that they go exactly to zero which can be
useful for fast computation with sparse linear algebra libraries. The kergp package (Deville
et al., 2018) on CRAN provides a nice interface for working with GPs under user-customized
kernels.

Kernels supporting qualitative factors, i.e., categorical and ordinal inputs, and mixtures
thereof with ordinary continuous ones, have appeared in the literature. See work by Qian
et al. (2008), Zhou et al. (2011) and a recent addition from Zhang et al. (2018). None of
these ideas have made their way into public software, to my knowledge. The tgp package
supports binarized categorical inputs through treed partitioning. More detail is provided in
§9.2.2.

It’s even possible to learn all n(n− 1)/2 entries of the covariance matrix separately, under
regularization and a constraint that the resulting Σn is positive definite, with semidefinite
programming30. Lanckriet et al. (2004) describe a transductive learner31 that makes this
tractable implicitly, through the lens of prediction at a small number of testing sites. We’ll
take a similar approach to thrifty approximation of more conventional GP learning in §9.3.

This section was titled “Stationary kernels”. Convenient nonstationary GP modeling is
deferred to Chapter 9, however it’s worth closing with some remarks connecting back to
those made along with linear modeling in §5.3.1 using some simple, yet nonstationary
kernel specifications. It turns out that there are choices of kernel which recreate linear and
polynomial (mean) modeling.

30https://en.wikipedia.org/wiki/Semidefinite_programming
31https://en.wikipedia.org/wiki/Transduction_(machine_learning)

https://en.wikipedia.org/wiki/Semidefinite_programming
https://en.wikipedia.org/wiki/Transduction_(machine_learning)
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linear k(x, x′) =
m∑
k=1

βkxkx
′
k

polynomial k(x, x′) = (x>x′ + β)p

Here β is vectorized akin to linear regression coefficients, although there’s no direct corre-
spondence. These kernels cannot be rewritten in terms of displacement x−x′ alone. However,
their latent function realizations are not nonstationary in a way that many regard in practice
as genuine because, as linear and polynomial models, their behavior is rigidly rather than
flexibly defined. In other words, the nature of nonstationarity is prescribed rather than
emergent in the data-fitting process. The fact that you can do this – choose a kernel to
encode mean structure in the covariance – lends real credence to the characterization “it’s all
in the covariance” when talking about GP models. You can technically have a zero-mean GP
with a covariance structure combining linear and spatial structures through sums of kernels,
but you’d only do that if you’re trying to pull the wool over someone’s eyes. (Careful not to
do it to yourself.) Most folks would sensibly choose the more conventional model of linear
mean and spatial (stationary) covariance. But the very fact that you can do it again begs
the question: why get all Bayesian about the function space? If an ordinary linear model –
which is not typically thought of as Bayesian without additional prior structure – arises as a
special choice of kernel, then why should introduction of a kernel automatically put us in a
Bayesian state of mind?

GP regression is just multivariate normal modeling, and you can get as creative as you want
with mean and covariance. There are some redundancies, as either can implement linear and
polynomial modeling, and much more. Sometimes you know something about prevailing
input–output relationships, and for those settings GPs offer potential to tailor as a means of
spatial regularization, which is a classical statistician’s roundabout way of saying “encode
prior beliefs”. For example, if a(x) is a known deterministic function and g(x) = a(x)f(x),
where f(x) is a random process, then Cov(g(x), g(x′)) = a(x)k(x, x′)a(x′). This can be used
to normalize kernels by choosing a(x) = k−1/2(x, x) so that

k̄(x, x′) = k(x, x′)√
k(x, x)

√
k(x′, x′)

.

That’s a highly stylized example which is not often used in practice, yet it offers a powerful
testament to potential for GP customization. GP regression can either be out-of-the-box
with simple covariance structures implemented by library subroutines, ready for anything,
or can be tailored to the bespoke needs of a particular modeling enterprise and data type.
You can get very fancy, or you can simplify, and inference for unknowns need not be too
onerous if you stick to likelihood-based criteria paired with mature libraries for optimization
with closed-form derivatives.

5.3.4 Signal-to-noise

As with any statistical model, you have to be careful not to get too fancy or it may come
back to bite you. The more hyperparameters purporting to offer greater flexibility or a
better-tuned fit, the greater the estimation risk. By estimation risk I mean both potential
to fit noise as signal, as well as its more conventional meaning (particularly popular in
empirical finance) which fosters incorporation of uncertainties, inherent in high variance
sampling distributions for optimized parameters, that are often overlooked. Nonparametric
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models and latent function spaces exacerbate the situation. Awareness of potential sources
of such risk is particularly fraught, and assessing its extent even more so. At some point
there might be so many knobs that its hard to argue that the “hyperparameter” moniker
is apt compared to the more canonical “parameter”, giving the practitioner the sense that
choosing appropriate settings is key to getting good fits.

To help make these concerns a little more concrete, consider the following simple data
generating mechanism.

f(x) = sin(πx/5) + 0.2 cos(4πx/5), (5.19)

originally due to Higdon (2002). Code below observes that function with noise on an n = 40
grid.

x <- seq(0, 10, length=40)
ytrue <- (sin(pi*x/5) + 0.2*cos(4*pi*x/5))
y <- ytrue + rnorm(length(ytrue), sd=0.2)

The response combines a large amplitude periodic signal with another small amplitude one
that could easily be confused as noise. Rather than shove these data pairs into a GP MLE
subroutine, consider instead a grid of lengthscale and nugget values.

g <- seq(0.001, 0.4, length=100)
theta <- seq(0.1, 4, length=100)
grid <- expand.grid(theta, g)

Below the MVN log likelihood is calculated for each grid pair, and the corresponding predictive
equations evaluated at a second grid of X ≡ xx inputs, saved for each hyperparameter pair
on the first, hyperparameter grid.

ll <- rep(NA, nrow(grid))
xx <- seq(0, 10, length=100)
pm <- matrix(NA, nrow=nrow(grid), ncol=length(xx))
psd <- matrix(NA, nrow=nrow(grid), ncol=length(xx))
for(i in 1:nrow(grid)) {
gpi <- newGP(matrix(x, ncol=1), y, d=grid[i,1], g=grid[i,2])
p <- predGP(gpi, matrix(xx, ncol=1), lite=TRUE)
pm[i,] <- p$mean
psd[i,] <- sqrt(p$s2)
ll[i] <- llikGP(gpi)
deleteGP(gpi)

}
l <- exp(ll - max(ll))

The code above utilizes isotropic (newGP/predGP) GP functions from laGP. Since the data
is in 1d, these are equivalent to separable analogs illustrated earlier in §5.2.6. For now,
concentrate on (log) likelihood evaluations; we’ll come back to predictions momentarily.
Figure 5.20 shows the resulting likelihood surface as an image in the θ× g plane. Notice that
the final line in the code above exponentiates the log likelihood, so the figure is showing
z-values (via color) on the likelihood scale.
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image(theta, g, matrix(l, ncol=length(theta)), col=cols)
contour(theta, g, matrix(l, ncol=length(g)), add=TRUE)
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FIGURE 5.20: Log likelihood surface over lengthscale θ and nugget g for mixed sinusoid
data (5.19).

Since the data is random, it’s hard to anticipate an appropriate range for θ and g axes. It’s
worth repeating these codes in your own R session to explore variations that arise under
new datasets generated under novel random noise, adding another layer to the sense of
estimation risk, i.e., beyond that which is illustrated here. What can be seen in Figure 5.20?
Maybe it looks like an ordinary log likelihood surface in 2d: pleasantly unimodal, convex,
etc., and easy to maximize by eyeball norm. (Who needs fancy numerical optimizers after
all?) There’s some skew to the surface, perhaps owing to positivity restrictions placed on
both hyperparameters.

In fact, that skewness is hiding a multimodal posterior distribution over functions. The modes
are “higher signal/lower noise” and “lower signal/higher noise”. Some random realizations
reveal this feature through likelihood more than others, which is one reason why repeating
this in your own session may be helpful. Also keep in mind that there’s actually a third
hyperparameter, τ̂2, being optimized implicitly through the concentrated form of the log
likelihood (5.8). So there’s really a third dimension to this view which is missing, challenging
a more precise visualization and thus interpretation. Such signal–noise tension is an ordinary
affair, and settling for one MLE tuple in a landscape of high values – even if you’re selecting
the very highest ones – can grossly underestimate uncertainty. What is apparent in Figure
5.20 is that likelihood contours trace out a rather large area in hyperparameter space. Even
the red “outer-reaches” in the viewing area yield non-negligible likelihood, which is consistent
across most random realizations. This likelihood surface is relatively flat.

The best view of signal-to-noise tension is through the predictive surface, in particular
what that surface would look like for a multitude of most likely hyperparameter settings.
To facilitate that, code below pre-calculates quantiles derived from predictive equations
obtained for each hyperparameter pair.
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q1 <- pm + qnorm(0.95, sd=psd)
q2 <- pm + qnorm(0.05, sd=psd)

Figure 5.21 shows three sets of lines (mean and quantile-based interval) for every hyperpa-
rameter pair, but not all lines are visualized equally. Transparency is used to downweight low
likelihood values. Multiple low likelihood settings accumulate shading, when the resulting
predictive equations more or less agree, and gain greater opacity.

plot(x,y, ylim=c(range(q1, q2)))
matlines(xx, t(pm), col=rgb(0,0,0,alpha=(l/max(l))/2), lty=1)
matlines(xx, t(q1), col=rgb(1,0,0,alpha=(l/max(l))/2), lty=2)
matlines(xx, t(q2), col=rgb(1,0,0,alpha=(l/max(l))/2), lty=2)

FIGURE 5.21: Posterior predictive equations in terms of means (solid-black) and quantiles
(dashed-red).

The hyperparameter grid is 100 × 100, but clearly there are not 3 × 10000 distinct lines
visible in the figure. Nevertheless it’s easy to see two regimes. Some of the black/red lines
are more wavy, explaining the low-amplitude periodic structure as signal; others are less
wavy, explaining it as noise. Although the likelihood was unimodal, we have a multimodal
posterior predictive surface.

For all the emphasis on a Bayesian perspective, marginalizing over latent functions and
whatever, it’s surprising that Bayesian inference is rarely used where it’s needed most.
Clearly the MLE/MAP is missing an important element of uncertainty. Only fully Bayesian
posterior inference, after specifying priors on hyperparameters and running Markov chain
Monte Carlo (MCMC) for posterior sampling, could provide a full assessment of estimation
risk and provide posterior predictive quantities with full UQ. Very few libraries offer this
functionality, tgp, spBayes and plgp being three important exceptions, yet these rely
on rather conventional covariance specifications. The tgp package has some extra, highly
non-standard, features which will be discussed in more detail in §9.2.2. As covariance
kernels incorporate more hyperparameters – smoothness, separable vectorized lengthscales,
rank-one anisotropy, latent noise structures (Chapter 10), whatever Franken-kernel results
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from adding/convolving/multiplying – and likewise incorporate well-thought-out parametric
mean structures, it’s obvious that a notionally nonparametric GP framework can become
highly and strongly parameterized. In such settings, one must be very careful not to get
overconfident about point-estimates so-derived. The only way to do it right, in my opinion,
is to be fully Bayesian.

With that in mind, it’s a shame to give the (at worst false, at best incomplete) impression
of being Bayesian without having to do any of those things. In that light, ML marketing of
GPs as Bayesian updating is a double-edged sword. Just because something can be endowed
with a Bayesian interpretation, doesn’t mean that it automatically inherits all Bayesian
merits relative to a more classical approach. A new ML Bayesian perspective on kriging
spawned many creative ideas, but it was also a veneer next to the real thing.

5.4 Challenges and remedies

This final section wraps up our GP chapter on somewhat of a lower note. GPs are remarkable,
but they’re not without limitations, the most limiting being computational. In order to
calculate K−1

n and |Kn| an O(n3) decomposition is required for dense covariance matrices
Kn, as generated by most common kernels. In the case of MLE inference, that limits training
data sizes to n in the low thousands, loosely, depending on how many likelihood and gradient
evaluations are required to perform numerical maximization. You can do a little better with
the right linear algebra libraries installed. See Appendix A.1 for details. (It’s easier than you
might think.)

Fully Bayesian GP regression, despite many UQ virtues extolled above, can all but be
ruled out on computational grounds when n is even modestly large (n > 2000 or so),
speedups coming with fancy matrix libraries notwithstanding. If it takes dozens or hundreds
of likelihood evaluations to maximize a likelihood, it will take several orders of magnitude
more to sample from a posterior by MCMC. Even in cases where MCMC is just doable, it’s
sometimes not clear that posterior inference is the right way to spend valuable computing
resources. Surrogate modeling of computer simulation experiments is a perfect example. If
you have available compute cycles, and are pondering spending them on expensive MCMC
to better quantify uncertainty, why not spend them on more simulations to reduce that
uncertainty instead? We’ll talk about design and sequential design in the next two chapters.

A full discussion of computational remedies, which mostly boils down to bypassing big
matrix inverses, will be delayed until Chapter 9. An exception is GP approximation by
convolution which has been periodically revisited, over the years, by geostatistical and
computer experiment communities. Spatial and surrogate modeling by convolution can
offer flexibility and speed in low input dimension. Modern versions, which have breathed
new life into geospatial (i.e., 2d input) endeavours by adding multi-resolution features and
parallel computing (Katzfuss, 2017), are better reviewed in another text. With emphasis
predominantly being on modestly-larger-dimensional settings common in ML and computer
surrogate modeling contexts, the presentation here represents somewhat of a straw man
relative to Chapter 9 contributions. More favorably said: it offers another perspective on,
and thus potentially insight into, the nature of GP regression.
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5.4.1 GP by convolution

In low input dimension it’s possible to avoid decomposing a big covariance matrix and obtain
an approximate GP regression by taking pages out of a splines/temporal modeling play-book.
Higdon (2002) shows that one may construct a GP f(x) over a general region x ∈ X by
convolving a continuous Gaussian white noise process β(x) with smoothing kernel k(x):

f(x) =
∫
X
k(u− x)β(u) du, for x ∈ X . (5.20)

The resulting covariance for f(x) depends only on relative displacement r = x− x′:

c(r) = Cov(f(x), f(x′)) =
∫
X
k(u− x)k(u− x′) du =

∫
X
k(u− r)k(u) du.

In the case of isotropic k(x) there’s a 1:1 equivalence between smoothing kernel k and
covariance kernel c.

e.g., k(x) ∝ exp
{
−1

2 ‖x‖
2
}
→ c(r) ∝ exp

{
−1

2

∥∥∥r2∥∥∥2
}
.

Note the implicit choice of lengthscale exhibited by this equivalence.

This means that rather than defining f(x) directly through its covariance function, which is
what we’ve been doing in this chapter up until now, it may instead be specified indirectly,
yet equivalently, through the latent a priori white noise process β(x). Sadly, the integrals
above are not tractable analytically. However by restricting the latent process β(x) to spatial
sites ω1, . . . , ωm, we may instead approximate the requisite integral with a sum. Like knots
in splines32, the ωj anchor the process at certain input locations. Bigger m means better
approximation but greater computational cost.

Now let βj = β(ωj), for j = 1, . . . , `, and the resulting (approximate yet continuous) latent
function under GP prior may be constructed as

f(x) =
∑̀
j=1

βjk(x− ωj),

where k(·−ωj) is a smoothing kernel centered at ωj . This f is a random function because the
βj are random variables. Choice of kernel is up to the practitioner, with the Gaussian above
being a natural default. In spline/MARS regression, a “hockey-stick” kernel k(· − ωj) =
(· − ωi)+ ≡ (· − ωj) · I{·−ωj>0} is a typical first choice.

For a concrete example, here’s how one would generate from the prior under this formulation,
choosing a normal density with mean zero and variance one as kernel and an evenly spaced
grid of ` = 10 locations ωj , j = 1, . . . , `. It’s helpful to have the knot grid span a slightly
longer range in the input domain (e.g., about 10% bigger) than the desired range for
realizations.

32http://bobby.gramacy.com/surrogates/splines.html
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ell <- 10
n <- 100
X <- seq(0, 10, length=n)
omega <- seq(-1, 11, length=ell)
K <- matrix(NA, ncol=ell, nrow=n)
for(j in 1:ell) K[,j] <- dnorm(X, omega[j])

The last line in the code above is key. Calculating the sum approximating integral (5.20)
requires kernel evaluations at every pair of x and ωj locations. To obtain a finite dimensional
realization on an n = 100-sized grid, we can store the requisite evaluations in a 100 × 10
matrix. The final ingredient is random βs – the Gaussian white noise process. For each
realization we need ` such deviates.

beta <- matrix(rnorm(3*ell), ncol=3)

To visualize three sample paths from the prior, the code above takes 3` samples for three
sets of ` deviates in total, stored in an `× 3 matrix. The sum is most compactly calculated
as a simple matrix–vector product between K and beta values. (Accommodating our three
sets of beta vectors, the code below utilizes a matrix–matrix product.)

F <- K %*% beta

Figure 5.22 plots those three realizations, showing locations of knots ωj as vertical dashed
bars.

matplot(X, F, type="l", lwd=2, lty=1, col="gray",
xlim=c(-1,11), ylab="f(x)")

abline(v=omega, lty=2, lwd=0.5)
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FIGURE 5.22: Three draws from a GP prior by convolution; knots ωj indicated by vertical
dashed bars.



5.4 Challenges and remedies 207

Generating from priors is fun, but learning from data is where real interest lies. When
training data come along, possibly observed under noise, the generating mechanism above
suggests the following model for the purposes of inference. Let

y(x) = f(x) + ε, ε ∼ N (0, σ2),

which may be fit through an OLS regression, e.g.,

Yn = Knβ + ε, where Kij
n = k(xi − ωj),

and xi are training input x-values in the data, i.e., with x>i filling out rows of Xn. Whereas
previously β was random, in the regression context their role changes to that of unknown
parameter. Since that vector can be high dimensional, of length ` for ` knots, they’re usually
inferred under some kind of regularization, i.e., ridge, lasso, full Bayes or through random
effects. Notice that while Kn is potentially quite large (n× `), if ` is not too big we don’t
need to decompose a big matrix. Consequently, such a variation could represent a substantial
computational savings relative to canonical GP regression.

So the whole thing boils down to an ordinary linear regression, but instead of using the
Xn inputs directly it uses features Kn derived from distances between xi and ωj-values. By
contrast, canonical GP regression entertains distances between all xi and xj in Xn. This
swap in distance anchoring set is similar in spirit to inducing point/pseudo input/predictive
process approaches, reviewed in greater depth in Chapter 9. To see it in action, let’s return
to the multi-tiered periodic example (5.19) from §5.3.4, originally from Higdon’s (2002)
convolution GP paper.

First build training data quantities.

n <- length(x)
K <- as.data.frame(matrix(NA, ncol=ell, nrow=n))
for(j in 1:ell) K[,j] <- dnorm(x, omega[j])
names(K) <- paste0("omega", 1:ell)

Then fit the regression. For simplicity, OLS is entertained here without regularization. Since
n is quite a bit bigger than ` in this case, penalization to prevent numerical instabilities or
high standard errors isn’t essential. Naming the columns of K helps when using predict
below.

fit <- lm(y ~ . -1, data=K)

Notice that an intercept is omitted in the regression formula above: we’re assuming a
zero-mean GP. Also it’s worth noting that the σ̂2 estimated by lm is equivalent to τ̂2ĝ in
our earlier, conventional GP specification.

Prediction on a grid in the input space at X ≡ XX involves building out predictive feature
space by evaluating the same kernel(s) at those new locations . . .

xx <- seq(-1, 11, length=100)
KK <- as.data.frame(matrix(NA, ncol=ell, nrow=length(xx)))
for(j in 1:ell) KK[,j] <- dnorm(xx, omega[j])
names(KK) <- paste0("omega", 1:ell)
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. . . and then feeding those in as newdata into predict.lm. It’s essential that KK have the
same column names as K.

p <- predict(fit, newdata=KK, interval="prediction")

Figure 5.23 shows the resulting predictive surface summarized as mean and 95% predictive
interval(s).

plot(x, y)
lines(xx, p[,1])
lines(xx, p[,2], col=2, lty=2)
lines(xx, p[,3], col=2, lty=2)
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FIGURE 5.23: Posterior predictive under GP convolution.

That surface seems to agree with surfaces provided in Figure 5.21, which synthesized a
grid of hyperparameter settings. Entertaining smaller lengthscales is a simple matter of
providing a kernel with smaller variance. For example, the kernel below possesses an effective
(square-root) lengthscale which is half the original, leading to a wigglier surface. See Figure
5.24.

for(j in 1:ell) K[,j] <- dnorm(x, omega[j], sd=0.5)
fit <- lm(y ~ . -1, data=K)
for(j in 1:ell) KK[,j] <- dnorm(xx, omega[j], sd=0.5)
p <- predict(fit, newdata=KK, interval="prediction")
plot(x, y)
lines(xx, p[,1])
lines(xx, p[,2], col=2, lty=2)
lines(xx, p[,3], col=2, lty=2)

Fixing the number ` and location of kernel centers, the ωj ’s, and treating their common scale
as unknown, inference can be performed with the usual suspects: likelihood (MLE or Bayes
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FIGURE 5.24: Predictive surface under a smaller kernel width/effective lengthscale;
compare to Figure 5.23.

via least squares), CV, etc. Since this exposition is more of a side note, we’ll leave details
to the literature. A great starting point is the Ph.D. dissertation of Chris Paciorek (2003),
with references and links therein. One feature that this method accommodates rather more
gracefully than a canonical GP approach involves relaxations of stationarity, which is the main
methodological contribution in Chris’ thesis. Allowing kernels and their parameterization to
evolve in space represents a computationally cheap and intuitive mechanism for allowing
distance-based dynamics to vary geographically. The culmination of these ideas is packaged
neatly by Paciorek and Schervish (2006). There has been a recent resurgence in this area
with the advent of deep Gaussian processes (Dunlop et al., 2018; Damianou and Lawrence,
2013).

One downside worth mentioning is the interplay between kernel width, determining effective
lengthscale, and density of the ωj ’s. For fixed kernel, accuracy of approximation improves
as that density increases. For fixed ωj , however, accuracy of approximation diminishes if
kernel width becomes narrower (smaller variance in the Gaussian case) because that has
the effect of increasing kernel-distance between ωj ’s, and thus distances between them and
inputs Xn. Try the code immediately above with sd=0.1, for example. A kernel width of
0.1 may be otherwise ideal, but not with the coarse grid of ωj ’s in place above; an order of
magnitude denser grid (much bigger `) would be required. At the other end, larger kernel
widths can be problematic numerically, leading to ill-conditioned Gram matrices33 K>nKn

and thus problematic decompositions when solving for β̂. This can happen even when the
column dimension ` is small relative to n.

Schemes allowing scale and density of kernels to be learned simultaneously, and which
support larger effective lengthscales (even with fixed kernel density), require regularization
and consequently demand greater computation as matrices K and KK become large and
numerically unwieldy. Some kind of penalty on complexity, or shrinkage prior on β, is needed
to guarantee a well-posed least-squares regression problem and to prevent over-fitting, as can
happen in any setting where bases can be expanded to fit noise at the expense of signal. This
issue is exacerbated as input dimension increases. Bigger input spaces lead to exponentially

33https://en.wikipedia.org/wiki/Gramian_matrix
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increasing inter-point distances, necessitating many more ωj ’s to fill out the void. The result
can be exponentially greater computation and potential to waste those valuable resources
over-fitting.

Speaking of higher input dimension, how do we do that? As long as you can fill out the input
space with ωj ’s, and increase the dimension of the kernel, the steps are unchanged. Consider
a look back at our 2d data from earlier, which we conveniently saved as X2 and y2, in §5.2.4.

An ` = 10 × 10 dense grid of ωj ’s would be quite big – bigger than the data size n = 80,
comprised of two replicates of forty, necessitating regularization. We can be more thrifty by
taking a page out of the space-filling design literature, using LHSs for knots ωj ’s in just the
same way we did for design Xn. R code below chooses ` = 20 maximin LHS (§4.3) locations
to ensure that ωj ’s are as spread out as possible.

ell <- 20
omega <- maximinLHS(ell, 2)
omega[,1] <- (omega[,1] - 0.5)*6 + 1
omega[,2] <- (omega[,2] - 0.5)*6 + 1

Next build the necessary training data quantities. Rather than bother with a library imple-
menting bivariate Gaussians for the kernel in 2d, code below simply multiplies two univariate
Gaussian densities together. Since the two Gaussians have the same parameterization, this
treatment is isotropic in the canonical covariance-based GP representation.

n <- nrow(X2)
K <- as.data.frame(matrix(NA, ncol=ell, nrow=n))
for(j in 1:ell)
K[,j] <- dnorm(X2[,1], omega[j,1])*dnorm(X2[,2], omega[j,2])

names(K) <- paste0("omega", 1:ell)

Kernel-based features in hand, fitting is identical to our previous 1d example.

fit <- lm(y2 ~ . -1, data=K)

Now for predictive quantities on testing inputs. Code below re-generates predictive X = XX
values on a dense grid to ease visualization. Otherwise this development mirrors our build of
training data features above.

xx <- seq(-2, 4, length=gn)
XX <- expand.grid(xx, xx)
KK <- as.data.frame(matrix(NA, ncol=ell, nrow=nrow(XX)))
for(j in 1:ell)
KK[,j] <- dnorm(XX[,1], omega[j,1])*dnorm(XX[,2], omega[j,2])

names(KK) <- paste0("omega", 1:ell)

Since it’s easier to show predictive standard deviation than error-bars in this 2d context,
the code below provides se.fit rather than interval="prediction" to predict.lm.
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p <- predict(fit, newdata=KK, se.fit=TRUE)

Figure 5.25 shows mean (left) and standard deviation (right) surfaces side-by-side. Training
data inputs are indicated as open circles, and ωj ’s as filled circles.

par(mfrow=c(1,2))
image(xx, xx, matrix(p$fit, ncol=gn), col=cols, main="mean",
xlab="x1", ylab="x2")

points(X2)
points(omega, pch=20)
image(xx, xx, matrix(p$se.fit, ncol=gn), col=cols, main="sd",
xlab="x1", ylab="x2")

points(X2)
points(omega, pch=20)
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FIGURE 5.25: Convolution GP posterior predictive via mean (left) and standard deviation
(right); compare with Figure 5.11. Design is indicated with open circles; knots as filled dots.

For my money, this doesn’t look as good as our earlier results in Figure 5.11. The signal
isn’t as clear in either plot. Several explanations suggest themselves upon reflection. One is
differing implicit lengthscale, in particular the one used immediately above is not fit from
data. Another has to do with locations of the ωj , and their multitude: ` = 20. Notice how
both mean and sd surfaces exhibit “artifacts” near some of the ωj . Contrasts are most stark
in the sd surface, with uncertainty being much higher nearby filled circles which are far
from open ones, rather than resembling sausages as seen earlier. Such behavior diminishes
with larger ` and when learning kernel widths from data, but at the expense of other
computational and fitting challenges.

In two dimensions or higher, there’s potential for added flexibility by parameterizing the full
covariance structure of kernels: tuning O(m2) unknowns in an m-dimensional input space,
rather than forcing a diagonal structure with all inputs sharing a common width/effective
lengthscale, yielding isotropy. A separable structure is a first natural extension, allowing
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each coordinate to have its own width. Rotations, and input-dependent scale (i.e., as a
function of the ωj) is possible too, implementing a highly flexible nonstationary capability if
a sensible strategy can be devised to infer all unknowns.

The ability to specify a flexible kernel structure that can warp in the input domain (expand,
contract, rotate) as inferred by the data is seductive. That was Higdon’s motivation in his
original 2001 paper, and the main subject of Paciorek’s thesis. But details and variations,
challenges and potential solutions, are numerous enough in today’s literature (e.g., Dunlop
et al., 2018), almost twenty years later, to fill out a textbook of their own. Unfortunately,
those methods extend poorly to higher dimension because of the big ` required to fill out
an m-dimensional space, usually ` ∝ 10m with O(`3) computation. Why is this a shame?
Because it’s clearly desirable to have some nonstationary capability, which is perhaps the
biggest drawback of the canonical (stationary) GP regression setup, as demonstrated below.

5.4.2 Limits of stationarity

If Σ(x, x′) ≡ k(x− x′), which is what it means for a spatial process to be stationary, then
covariance is measured the same everywhere. That means we won’t be able to capture
dynamics whose nature evolves in the input space, like in our motivating NASA LGBB
example (§2.1). Recall how dynamics in lift exhibit an abrupt change across the sound
barrier. That boundary separates a “turbulent” lift regime for high angles of attack from
a relatively flat relationship at higher speeds. Other responses show tame dynamics away
from mach 1, but interesting behavior nearby.

Taking a global view of the three-dimensional input space, LGBB lift exhibits characteristi-
cally nonstationary behavior. Locally, however, stationary dynamics reign except perhaps
right along the mach 1 boundary, which may harbor discontinuity. How can we handle data
of this kind? One approach is to ignore the problem: fit an ordinary stationary GP and hope
for the best. As you might guess, ordinary GP prediction doesn’t fail spectacularly because
good nonparametric methods have a certain robustness about them, as demonstrated in
several variations in this chapter. But that doesn’t mean there isn’t room for improvement.

As a simpler illustration, consider the following variation on the multi-scale periodic process34

from §5.3.4.

X <- seq(0,20,length=100)
y <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6)
lin <- X>9.6
y[lin] <- -1 + X[lin]/10
y <- y + rnorm(length(y), sd=0.1)

The response is wiggly, identical to (5.19) from Higdon (2002) to the left of x = 9.6, and
straight (linear) to the right. This example was introduced by Gramacy and Lee (2008a) as
a cartoon mimicking LGBB behavior (§2.1) in a toy 1d setting. Our running 2d example
from §5.1.2 was conceived as a higher-dimensional variation. To keep the discussion simpler
here, we’ll stick to 1d and return to the others in Chapter 9.

Consider the following stationary GP fit to these data using methods from laGP.

34https://www.sfu.ca/~ssurjano/hig02grlee08.html
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gpi <- newGP(matrix(X, ncol=1), y, d=0.1, g=0.1*var(y), dK=TRUE)
mle <- jmleGP(gpi)

Above, isotropic routines are used rather than separable ones. It makes no difference in
1d. As an aside, we remark that the jmleGP function is similar to mleGPsep with argument
param="both"; “j” here is for “joint”, meaning both lengthscale and nugget. Rather than
using a gradient over both parameters, as mleGPsep does, jmleGP performs a coordinate-wise,
or profile-style, maximization iterating until convergence for one hyperparameter conditional
on the other, etc. Sometimes this approach leads to more numerically stable behavior;
jmleGPsep works similarly for separable Gaussian kernels.

Once hyperparameters have been estimated, prediction proceeds as usual.

p <- predGP(gpi, matrix(X, ncol=1), lite=TRUE)
deleteGP(gpi)

Now we’re ready to visualize the fit, as provided by predictive mean and 95% intervals in
Figure 5.26.

plot(X, y, xlab="x")
lines(X, p$mean)
lines(X, p$mean + 2*sqrt(p$s2), col=2, lty=2)
lines(X, p$mean - 2*sqrt(p$s2), col=2, lty=2)
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FIGURE 5.26: GP fit to an inherently nonstationary input–output relationship.

Observe how the predictive equations struggle to match disparate behavior in the two regimes.
Since only one lengthscale must accommodate the entire input domain, the likelihood is
faced with a choice between regimes and in this case it clearly favors the left-hand one.
A wiggly fit to the right-hand regime is far better than a straight fit to left. As a result,
wiggliness bleeds from the left to right.

Two separate GP fits would have worked much better. Consider . . .
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left <- X < 9.6
gpl <- newGP(matrix(X[left], ncol=1), y[left], d=0.1,
g=0.1*var(y), dK=TRUE)

mlel <- jmleGP(gpl)
gpr <- newGP(matrix(X[!left], ncol=1), y[!left], d=0.1,
g=0.1*var(y), dK=TRUE)

mler <- jmleGP(gpr, drange=c(eps, 100))

To allow the GP to acknowledge a super “flat” right-hand region, the lengthscale (d) range
has been extended compared to the usual default. Notice how this approximates a (more)
linear fit; alternatively – or perhaps more parsimoniously – a simple lm command could be
used here instead.

Now predicting . . .

pl <- predGP(gpl, matrix(X[left], ncol=1), lite=TRUE)
deleteGP(gpl)
pr <- predGP(gpr, matrix(X[!left], ncol=1), lite=TRUE)
deleteGP(gpr)

. . . and finally visualization in Figure 5.27.

plot(X, y, xlab="x")
lines(X[left], pl$mean)
lines(X[left], pl$mean + 2*sqrt(pl$s2), col=2, lty=2)
lines(X[left], pl$mean - 2*sqrt(pl$s2), col=2, lty=2)
lines(X[!left], pr$mean)
lines(X[!left], pr$mean + 2*sqrt(pr$s2), col=2, lty=2)
lines(X[!left], pr$mean - 2*sqrt(pr$s2), col=2, lty=2)
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FIGURE 5.27: Partitioned GP fit to a nonstationary input–output relationship. Compare
to Figure 5.26.
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Aesthetically this is a much better fit. Partitioning can be a powerful tool for flexible
modeling, and not just for GPs. Divide-and-conquer can facilitate nonstationarity, through
spatial statistical independence, and yield faster calculations with smaller datasets and much
smaller O(n3) matrix decompositions. The two fits can even be performed in parallel.

But how to know where to partition without knowing the data generating mechanism? It
turns out that there are several clever solutions to that problem. Read on in Chapter 9. In
the meantime, we shall see going forward that even stationary GPs have many interesting
applications and success stories – as response surfaces, for optimization, calibration and
input sensitivity analysis, and more – without worrying (much) about how ideal fits are.

5.4.3 Functional and other outputs

Focus has been on Y (x) ∈ R; i.e., surrogate modeling for scalar, real-valued outputs. That
will remain so throughout the text, but it’s worthwhile commenting on what’s available in
greater generality. Modeling a small handful of real-valued outputs simultaneously is easy
and hard at the same time. It’s easy because treating each scalar output independently works
surprisingly well. Gramacy and Lee (2009) modeled six LGBB outputs (§2.1) independently
and without any perceivable ill-effect. It’s hard because just about anything else you try can
both be unwieldy and underwhelming. Effective, general-purpose multi-output surrogate
modeling lies on the methodological frontier, as it were.

If there’s a small number p of outputs following the same underlying spatial field, but
experiencing correlated random shocks of varying magnitude, then cokriging (Ver Hoef and
Barry, 1998) could help. The idea is to combine p × p covariances Σ(Y )

p with the usual
n× n inverse distance-based ones Σn = τ2(Kn + Ing) in a Kronecker layout35. Inference for
Σ(Y )
n is relatively straightforward. MLE and Bayesian posterior are available in closed form

conditional on Σn. Trouble is, this isn’t a very realistic situation, at least not when data are
generated through computer simulation. One exception may be when outputs differ from
one another only in resolution or fidelity of simulations. Cokriging has been applied with
some success in such multifidelity settings (Le Gratiet and Garnier, 2014; Le Gratiet and
Cannamela, 2015).

The linear model of coregionalization (LMC; Journel and Huijbregts, 1978; Goovaerts, 1997)
is a special case or generalization of cokriging depending upon your perspective. Sometimes
cokriging, as described above, is referred to an intrinsic coregionalization model (ICM)36.
As the name suggests, LMC allows for a more flexible, linear and covarying relationship
between outputs. LMC’s most prominent success stories in computer surrogate modeling
involve simulators providing additional derivative information. Taylor’s theorem justifies
a linear structure. For examples, see Bompard et al. (2010) and references therein. For a
machine learning perspective and Python implementation, see GPy37.

Functional output is rather more common in our field. Simulators may provide realizations
Y (x, t) ∈ R across an entire index set t = 1, . . . , T , simultaneously for each x. I’ve chosen t
to represent output indices because functions of time are common. Two-dimensional indexing
for image data is also typical. Theoretically, such processes are easy to model with GP
surrogates as long as indices are naturally ordered, or otherwise emit a reasonable set of

35https://en.wikipedia.org/wiki/Kronecker_product
36https://en.wikipedia.org/wiki/Kernel_methods_for_vector_output#Intrinsic_

coregionalization_model_(ICM)
37https://sheffieldml.github.io/GPy/
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https://en.wikipedia.org/wiki/Kernel_methods_for_vector_output#Intrinsic_coregionalization_model_(ICM)
https://en.wikipedia.org/wiki/Kernel_methods_for_vector_output#Intrinsic_coregionalization_model_(ICM)
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pairwise distances so that off-the-shelf covariance kernels apply. In other words, treating the
output index t as another set of input coordinates is an option. Some have taken to calling
this a “left to right mapping”: moving output indices from the left side of the (probability)
conditioning bar to the right. A similar tack may be taken with small-p outputs (previous
paragraph) as long as an appropriate kernel for mixed quantitative and qualitative inputs
can be found (Qian et al., 2008; Zhang et al., 2018). The trouble is, this idea is hard to put
into practice if N = n×T is big, as it would be with any nontrivial T . Working with N ×N
matrices becomes unwieldy except by approximation (Chapter 9), or when the design in
x-space has special structure (e.g., high degrees of replication, as in Chapter 10).38

A more parsimonious approach leverages functional bases for outputs and independent
surrogate modeling of weights corresponding to a small number of principal components of
that basis (Higdon et al., 2008). This idea was originally developed in a calibration setting
(§8.1), but has gained wide traction in a number of surrogate modeling situations. MATLAB
software is available as part of the GPMSA toolkit (Gattiker et al., 2016). Fadikar et al.
(2018) demonstrate use in a quantile regression setting (Plumlee and Tuo, 2014) for an
epidemiological inverse problem pairing a disease outbreak simulator to Ebola data from
Liberia. Sun et al. (2019b) describe a periodic basis for GP smoothing of hourly simulations
of solar irradiance across the continental USA. A cool movie showing surrogate irradiance
predictions over the span of a year can be found here39.

Finally, how about categorical Y (x)? This is less common in the computer surrogate modeling
literature, but GP classification remains popular in ML. See Chapter 3 of Rasmussen and
Williams (2006). Software is widely available in Python (e.g., GPy40) and MATLAB/Octave
(see gpstuff41 Vanhatalo et al. (2012)). R implementation is provided in kernlab (Karatzoglou
et al., 2018) and plgp (Gramacy, 2014). Bayesian optimization under constraints (§7.3)
sometimes leverages classification surrogates to model binary constraints. GP classifiers work
well here (Gramacy and Lee, 2011), but so too do other common nonparametric classifiers
like random forests (Breiman, 2001). See §7.3.2 for details.

5.5 Homework exercises

These exercises give the reader an opportunity to explore Gaussian process regression,
properties, enhancements and extensions, and related methods.

#1: Bayesian zero-mean GP

Consider the following data-generating mechanism Y ∼ Nn(0, τ2Kn) and place prior τ2 ∼
IG
(
a
2 ,

b
2
)
on the scale parameter. Use the following parameterization of inverse gamma

IG(θ;β, α) density, expressed generically for a parameter θ > 0 given shape α > 0 and scale
β > 0: f(θ) = βα

Γ(α)θ
−(α+1)e−β/θ, where Γ is the gamma function42.

38Qian et al. (2008)’s method for categorical inputs exploits a dual relationship with multiple-output
modeling. Kronecker structure in the resulting N×N matrices can make an otherwise unwieldy decomposition
manageable.

39http://bobby.gramacy.com/solar/
40https://sheffieldml.github.io/GPy/
41https://research.cs.aalto.fi/pml/software/gpstuff/
42https://en.wikipedia.org/wiki/Gamma_function
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a. Show that the IG prior for τ2 is conditionally conjugate by deriving the closed form
of the posterior conditional distribution τ2 given all other hyperparameters, i.e., those
involved in Kn.

b. Choosing a = b = 0 prescribes a reference prior (Berger et al., 2001, 2009) which is
equivalent to p(τ2) ∝ 1/τ2. This prior is improper. Nevertheless, derive the closed form of
the posterior conditional distribution for τ2 and argue that it’s proper under a condition
that you shall specify. Characterize the posterior conditional for τ2 in terms of τ̂2.

c. Now consider inference for the hyperparameterization ofKn. Derive the marginal posterior
p(Kn | Yn), i.e., as may be obtained by integrating out the scale parameter τ2 under the
IG prior above; however, you may find other means equally viable. Use generic p(Kn)
notation for the prior on covariance hyperparameterization, independent of τ2. How does
this (log) posterior density compare to the concentrated log likelihood (5.8) under the
reference prior?

d. Deduce the form of the marginal predictive equations p(Y (x) | Kn, Yn) at a new location
x, i.e., as may be obtained by integrating out τ2. Careful, they’re not Gaussian but
they’re a member of a familiar family. How do these equations change in the reference
prior setting?

#2: GP with a linear mean

Consider the following data-generating mechanism Y ∼ Nn(β0 +Xnβ, τ
2Kn) where

• Kn = Cn + gIn,
• Cn is an n × n correlation matrix defined by a positive definite function Cθ(x, x′)

calculated on the n rows of Xn, and which has lengthscale hyperparameters θ,
• and g is a nugget hyperparameter, which must be positive.

There are no restrictions on the coefficients β0 and β, except that the dimension m of β
matches the column dimension of Xn.

a. Argue, at a high level, that this specification is essentially equivalent to the following
semiparametric model y(x) = β0 + x>β + w(x) + ε, and describe what each component
means, and/or what distribution it’s assumed to have.

b. Conditional on hyperparameters θ and g, obtain closed form expressions for the MLE τ̂2,
β̂0 and β̂. You might find it convenient to assume, for the purposes of these calculations,
that Xn contains a leading column of ones, and that β ≡ [β0, β].

c. Provide a concentrated (log) likelihood expression `(θ, g) that plugs-in expressions for
τ̂2, β̂0 and β̂ (or a combined β̂) which you derived above.

d. Using point estimates for β̂, τ̂2 and conditioning on θ and g settings, derive the predictive
equations.

#3: Bayesian linear-mean GP

Complete the setup in #2 above with prior p(β, τ2) = p(β | τ2)p(τ2) where β | τ2 ∼
Nm+1(B, τ2V ) and τ2 ∼ IG

(
a
2 ,

b
2
)
. Notice that the intercept term β0 is subsumed into β in

this notation.

a. Show that the MVN prior for β | τ2 is conditionally conjugate by deriving the closed form
of the posterior conditional distribution β | τ2, Yn and given all other hyperparameters,
i.e., those involved in Kn.

b. Show that the IG prior for τ2 is conditionally conjugate by deriving the closed form of
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the posterior conditional distribution τ2 | β, Yn and given all other hyperparameters, i.e.,
those involved in Kn.

c. Under the reference prior p(β, τ2) ∝ 1/τ2, which is improper, how do the forms of
the posterior conditionals change? Under what condition(s) are these conditionals still
proper? (Careful, proper conditionals don’t guarantee a proper joint.) Express the β
conditional as function of β̂ from exercise #2.

For the remainder of this question, parts #d–f, use the reference prior to keep the math
simple.

d. Derive the marginalized posterior distribution τ2 | Yn and given Kn, i.e., as may be
obtained by integrating out β, however you may choose to utilize other means. Express
your distribution as a function of β̂ and τ̂2 from exercise #2.

e. Now consider inference for the hyperparameterization ofKn. Derive the marginal posterior
p(Kn | Yn) up to a normalizing constant, i.e., as may be obtained by integrating out
both linear mean parameter β and scale τ2 under their joint reference prior. Use generic
p(Kn) notation for the prior on covariance hyperparameterization, independent of τ2

and β. How does the form of this density compare to the concentrated log likelihood in
#2c above? Under what condition(s) is this density proper?

f. Deduce the form of the marginal predictive equations p(Y (x) | Kn, Yn) at a new location
x, i.e., as may be obtained by integrating out β and τ2. Careful, they’re not Gaussian
but they’re a member of a familiar family.

#4: Implementing the Bayesian linear-mean GP

Code up the marginal posterior p(Kn | Yn) from #3e and the marginal predictive equations
p(Y (x) | Kn, Yn) from #3f and try them out on the Friedman data. Take the reference
prior p(β, τ2) ∝ 1/τ2 and define p(Kn) as independent gamma priors on isotropic (Gaussian
family) lengthscale and nugget as follows:

θ ∼ G(3/2, 1) and g ∼ G(3/2, 1/2),

providing shape and rate parameters to dgamma in R, respectively.

i. Use the marginal posterior as the basis of a Metropolis–Hastings scheme for sampling
from the posterior distribution of lengthscale θ and nugget g hyperparameters. Provide
a visual comparison between these marginal posterior densities and the point estimates
we obtained in the chapter. How influential was the prior?

ii. Use the marginal posterior predictive equations to augment Table 5.1’s RMSEs and
scores collecting out-of-sample results from comparators in §5.2.5–5.2.6. (You might
consider more random training/testing partitions as in our bakeoff in §5.2.7, extended in
#7 below.)

iii. Use boxplots to summarize the marginal posterior distribution of regression coefficients
β. Given what you know about the Friedman data generating mechanism, how do these
boxplots compare with the “truth”? You will need #3d and #3a for this part.

Suppose you knew, a priori, that only the first three inputs contributed nonlinearly to
response. How would you change your implementation to reflect this knowledge, and how do
the outputs/conclusions (#ii–iii) change?
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#5: Matèrn kernel

Revisit noise-free versions of our 1d sinusoidal (§5.1.1 and Figure 5.3) and 2d exponential
(§5.1.2 and Figure 5.5) examples with Matèrn ν = 3/2 and ν = 5/2 kernels (5.18). Extend
concentrated log likelihood and gradient functions to learn an m-vector of lengthscale
hyperparameters θ̂ using nugget g = 0 and no ε jitter. Define this separable Matèrn in
product form as kν,θ(r) =

∏m
`=1 kν,θ`(r(`)) where r(`) is based on (original, not squared)

distances calculated only on the `th input coordinate. Provide visuals of the resulting surfaces
using the predictive grids established along with those examples. Qualitatively (looking at
the visuals) and quantitatively (via Mahalanobis distance (5.7) calculated out of sample),
how do these surfaces compare to the Gaussian kernel alternative (with jitter and with
estimated lengthscale(s))?

For another sensible vectorized lengthscale option, see “ARD Matèrn” here43. ARD stands
for “automatic relevance determination”, which comes from the neural networks/machine
learning literature, allowing a hyperparameter to control the relative relevance of each input
coordinate. For the Gaussian family the two definitions, product form and ARD, are the
same. But for Matèrn they differ ever-so-slightly.

#6: Splines v. GP

Revisit the 2d exponential data (§5.1.2 and Figure 5.5), and make a comparison between
spline and GP predictors. For a review of splines, see the supplement linked here44. Generate
a random uniform design of size n = 100 in [−2, 4]2 and observe random responses under
additive Gaussian error with a mean of zero and a standard deviation of 0.001. This is your
training set. Then generate a dense 100× 100 predictive grid in 2d, and obtain (again noisy)
responses at those locations, which you will use as a testing set.

Ignoring the testing responses, use the training set to obtain predictions on the testing input
grid under

a. a spline model with a tensor product basis provided in splines2d.R45;
b. a zero-mean GP predictor with an isotropic Gaussian correlation function, whose hy-

perparameters (including nugget, scale, and lengthscale) are inferred by maximum
likelihood;

c. MARS in the mda package for R.

You may wish to follow the format in splines2d.R for your GP and MARS comparators.
Consider the following benchmarking metrics:

i. computation time for inference and prediction combined;
ii. RMSE on the testing set.

Once you’re satisfied with your setup using one random training/testing partition, put a
“for” loop around everything and do 99 more MC repetitions of the experiment (for 100
total), each with novel random training and testing set as defined above. Make boxplots
collecting results for #i–ii above and thereby summarize the distribution of those metrics
over the randomized element(s) in the experiment.

43https://www.mathworks.com/help/stats/kernel-covariance-function-options.html
44http://bobby.gramacy.com/surrogates/splines.html
45http://bobby.gramacy.com/surrogates/splines2d.R

https://www.mathworks.com/help/stats/kernel-covariance-function-options.html
http://bobby.gramacy.com/surrogates/splines.html
http://bobby.gramacy.com/surrogates/splines2d.R
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#7: MARS v. GP redux

Revisit the MARS v. GP bakeoff (§5.2.7) with five additional predictors.

i. MARS via mda with degree=2.
ii. MARS via earth with default arguments.
iii. MARS via earth with degree=2.
iv. Bayesian MARS via the bass function with default arguments from the BASS package

(Francom, 2017) on CRAN.
v. Bayesian GP with jumps to the limiting linear model (LLM; Gramacy and Lee, 2008b)

via bgpllm with default arguments in the tgp package on CRAN.

Rebuild the RMSE and time boxplots to incorporate these new predictors; ignore proper
score unless you’d like to comb tgp and BASS documentation to figure out how to extract
predictive covariance matrices, which are not the default.

BASS supports a simulated tempering46 scheme to avoid Markov chains becoming stuck in
local modes of the posterior. Devin Francom recommends the following call for best results
on this exercise.

fit.bass <- bass(X, y, verbose=FALSE, nmcmc=40000, nburn=30000, thin=10,
temp.ladder=(1+0.27)^((1:9)-1))

A similar importance tempering feature (Gramacy et al., 2010) is implemented in tgp and
is described in more detail in the second package vignette (Gramacy and Taddy, 2010).
Also see ?default.itemps in the package documentation. The curious reader may wish to
incorporate these gold standards for brownie points.

#8: Langley Glide-Back Booster

In this problem, revisit #6 on the “original” LGBB drag response.

lgbb <- read.table("lgbb/lgbb_original.txt", header=TRUE)
X <- lgbb[,1:3]
y <- lgbb$drag

However note that the scales of LGBB’s inputs are heterogeneous, and quite different from
#6. In the least, it’d be wise to code your inputs. For best results, you might wish to upgrade
the isotropic GP comparator from #6 to a separable version.

A. Consider the subset of the data where the side-slip angle is zero, so that it’s a 2d problem.
Create a random training and testing partition in the data so that about half are for
training and half for testing, and then perform exactly #a–c with #i–ii from #6, above,
and report on what you find.

B. Put a “for” loop around everything and do 100 MC repetitions of the above experiment,
each with novel random training and testing set as defined above. Then, make boxplots
for RMSE results collected for #i–ii above and thereby summarize the distribution of
those metrics over randomized element(s) in the experiment.

46https://en.wikipedia.org/wiki/Parallel_tempering

https://en.wikipedia.org/wiki/Parallel_tempering
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C. Now return to the full set of data, i.e., for all side-slip angles. Since the number of
observations, n, is bigger than 3000, you won’t be able to get very far with a random
50:50 split. Instead, do a 20:80 split or whatever you think you can manage. Also, it’ll
be tough to do a spline approach47 with a tensor product basis in 3d, so perhaps ignore
comparator #6a unless you’re feeling particularly brave. Otherwise perform exactly #a–c
with #i–ii from #6, above, and report on what you find. (That is, do like in part #A,
without the “for” loop in #B.)

D. Repeat #C with a GP scheme using an axis-aligned partition. Fit two GP models in 3d
where the first one uses the subset of the training data with mach < 2 and the second
uses mach >= 2. Since you’re dividing-and-conquering, you can probably afford a 50:50
split for training and testing.

#9: Convolution kernel width

Revisit the 1d multi-tiered periodic example (5.19) as treated by convolution in §5.4.1.

a. Write down a concentrated log likelihood for the kernel width parameter θ, notated as
sd in the example, and provide an implementation in code.

b. Plot the concentrated log likelihood over the range sd ≡ θ ∈ [0.4, 4] and note the optimal
setting.

c. Verify the result with optimize on your concentrated log likelihood.
d. How does the value you inferred compare to the two settings entertained in §5.4.1? How

do the three predictive surfaces compare visually?

47http://bobby.gramacy.com/surrogates/splines.html

http://bobby.gramacy.com/surrogates/splines.html




6
Model-based Design for GPs

Chapter 4 offered a model-free perspective on design, choosing to spread out Xn where Yn
will be observed, with the aim of fitting a flexible nonlinear, nonparametric, but ultimately
generic regression. Gaussian processes (GPs) were on our mind, but only as a notion. Now
that we know more about them, we can study how one might design an experiment differently
– optimally, in some statistical sense – if committed to a GP and particular choices of its
formulation: covariance family, hyperparameters, etc. At first that will seem like a subtle
shift, in part because the search algorithms involved are so similar. Ultimately emphasis will
be on sequential design – or active learning1 in machine learning (ML) jargon – motivated by
drawbacks inherent in the canonical setting of model-based one-shot (or batch) design, with
an eye towards the inherently sequential nature of surrogate-assisted numerical (Bayesian)
optimization in Chapter 7.

We’ll see how GPs encourage space-filling designs that aren’t much different than ones
we already know about from Chapter 4, like Latin hypercube sampling (LHS; §4.1) and
maximin (§4.2), potentially representing overkill on the one hand (greater computational
effort), and unnecessary risk on the other (calculating an “optimally pathological” design
that precludes, rather than facilitates, learning). Although a sequential approach may be
sub-optimal in theory, we’ll see that in practice it helps to avoid such pathologies. Baby
steps provide an opportunity to learn about response surface dynamics while simultaneously
improving quality of fit.

Before diving in, and at the risk of being redundant, it’s worth reiterating the following.
Without knowing much about the response surface you intend to model a priori, a space
filling/Chapter 4 criteria – i.e., LHS, maximin distance, or a hybrid – represents a good
choice indeed. Methods herein are not better by default, but they do offer potential for
improvements in learning when used correctly, in particular when you do know something
about the response surface you intend to model. Plus, our technical development of the
subject provides valuable insight into how data influence fitted model and subsequent
prediction, which makes the presentation relevant even if most of the designs are ultimately
dismissed on practical grounds.

Model-based alternatives all assume something, like a GP kernel hyperparameterization,
which is where the risk comes from. Before data are collected, what you think you know is
often wrong and, if too highly leveraged, could hurt in unexpectedly bad ways. Seemingly
modest assumptions can be amplified into foregone conclusions after data/responses arrive.
One way around that risk is to first learn hyperparameters from a small (model-free) space-
filling design. Such bootstrapping, in the colloquial rather than statistical sense, is sensible
but no free lunch. Spreading points out biases inference towards longer lengthscales. A new
sense of space-filling, in terms of pairwise distances, may be more appropriate for most
kernel choices.

1https://en.wikipedia.org/wiki/Active_learning
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6.1 Model-based design

A model-based design is one where the model says what Xn it wants according to a
criterion targeting some aspect of its fit. Example targets include the quality of estimates
for parameters or hyperparameters, or accuracy of predictions at particular inputs out-
of-sample, or over the entire input space. With a first-order linear model, you may recall
from an elementary design course that maximizing spread in Xn maximizes leverage and
therefore minimizes the standard error of β̂-values. An optimal design for learning regression
coefficients places inputs at the corners of the experimental region, for better or worse.

Linear models are highly parametric. Parameter settings are intimately linked to the un-
derlying predictor. With GPs, a nonparametric model whose hyperparameterization is only
loosely connected to the predictive distribution, you might think a different strategy is
required. But principles are largely the same. Without delving into the subtlety of myriad
alternatives, we’ll skip to the two most popular approaches. Those are to choose Xn that
either

1. “maximize learning” from prior to posterior, thinking about the Bayesian interpretation;
or

2. minimize predictive variance averaged over a region of interest (e.g., the entire input
space).

Let’s begin by looking at those two options in turn. The general program is to specify a
criterion J(Xn), and optimize that criterion with respect to Xn. Assuming maximization,

X?
n = argmaxXnJ(Xn),

which is typically solved numerically. Except when essential for clarity, I shall generally drop
the ? superscript in X?

n, indicating an optimally chosen design.

6.1.1 Maximum entropy design

The entropy2 of a density p(x) is defined as

H(X) = −
∫
X
p(x) log p(x) dx.

Entropy is larger when p(x) is more uniform. You can think of it as a measure of surprise in
random draws from the distribution corresponding to p. A uniform draw always yields a
surprising, unpredictable, random value. Entropy is maximized for this choice of p. At the
other end of the spectrum, a point-spike p, where all density is concentrated on a single
point, offers no surprise. A draw from such a distribution yields the same value every time.
Its entropy is zero.

Information is the negative of entropy, I = −H. More information is less uniformity, less
surprise. To see how information and entropy can relate to design, consider the following.
Suppose X is a fixed, finite set of points in the input space. Place latent functions F at X
under a GP prior p(F | X ); see §5.3.2. Let IX denote the information of that prior. Now,

2https://en.wikipedia.org/wiki/Entropy

https://en.wikipedia.org/wiki/Entropy
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denote F restricted to X ⊂ X as FX with implied prior p(FX | X) and information IX . For
a particular choice Xn ⊂ X , we have that

IX = IXn + EFXn {IX−Xn|Dn}, (6.1)

where Dn = (Xn, Yn) is the completion of Xn with a noise-augmented Fn. Eq. (6.1) partitions
information between the amount soaked up, and amount left over after selectingXn. Choosing
Xn to maximize the expected information in prediction of latent function values, i.e., the
amount soaked up by second term, is equivalent to minimizing the information IXn left
over (maximizing entropy, HXn) in the distribution of FXn . A solution to that optimization
problem is a so-called maximum entropy (or maxent) design. For more details see Shewry
and Wynn (1987), who introduced the concept as a design criterion for spatial models.
Maxent was appropriated for computer experiments by Currin et al. (1991) and Mitchell
and Scott (1987).

That distribution – either for FXn or it’s noisy analog for Dn = (Xn, Yn), depending on your
preferred interpretation (§5.3.2) – ultimately involves

Yn ∼ Nn(0, τ2Kn) with Kij
n = Cθ(xi, xj) + gδij . (6.2)

MVN conditionals yield the posterior predictive Y (x) | Dn. One can show that the entropy
of that distribution (6.2), for Yn observed at Xn, is maximized when |Kn| is maximized. For
a complete derivation, see Section 6.2.1 of Santner et al. (2018). Recall that Kn depends on
design Xn, usually through inverse exponentiated pairwise squared distances.

Kn and thus |Kn| also depend on hyperparameters, exemplified by θ and g in Eq. (6.2),
so a maximum entropy design is hyperparameter dependent. This creates a chicken-or-
egg problem because we hope to use data, which we’ve not yet observed since we’re still
designing the experiment, to learn hyperparameter settings. We’ll see shortly that the choice
of lengthscale θ can have a substantial impact on maximum entropy designs. The role of the
nugget g is more nuanced.

It might help to first perform an initial or seed experiment, perhaps using a small space-filling
design from Chapter 4, to help choose sensible values. Rather than discard that data after
using it to learn hyperparameter settings, one might instead search for a sequential maximum
entropy design (§6.2). But we’re getting a little ahead of ourselves. Suppose we already
had some fortuitously chosen hyperparameter settings to work with. What would a maxent
design look like?

Our stochastic exchange mymaximin implementation (§4.2.1) may easily be altered to op-
timize |Kn|. Note that the code uses log |Kn| for greater numerical stability, assumes a
separable Gaussian family kernel, but allows the user to tweak default settings of its hyper-
parameterization.

library(plgp)
maxent <- function(n, m, theta=0.1, g=0.01, T=100000)
{
if(length(theta) == 1) theta <- rep(theta, m)
X <- matrix(runif(n*m), ncol=m)
K <- covar.sep(X, d=theta, g=g)
ldetK <- determinant(K, logarithm=TRUE)$modulus
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for(t in 1:T) {
row <- sample(1:n, 1)
xold <- X[row,]
X[row,] <- runif(m)
Kprime <- covar.sep(X, d=theta, g=g)
ldetKprime <- determinant(Kprime, logarithm=TRUE)$modulus
if(ldetKprime > ldetK) { ldetK <- ldetKprime
} else { X[row,] <- xold }

}
return(X)

}

As with mymaximin this is a simple, yet inefficient implementation from a computational
perspective. Many proposed swaps will be rejected either because the outgoing point (xold)
isn’t that bad, or because the incoming runif(m) location is chosen too clumsily. Rules of
thumb about how to make improvements here are harder to come by, however. One reason
is that the effect of hyperparameterization is more difficult to intuit. Heuristics which favor
swapping out points with small Euclidean distances can indeed reduce rejections. Derivatives
can be helpful for local refinement. A homework exercise (§6.4) asks the curious reader to
entertain such enhancements. In spite of its inefficiencies, maxent as coded above works well
in the illustrative examples below.

First let’s try two input dimensions, using the default hyperparameterization.

X <- maxent(25, 2)

Figure 6.1 offers a visual.

plot(X, xlab="x1", ylab="x2")
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FIGURE 6.1: A maximum entropy design.

What do we see? Actually, it’s not much different than a maximin design, at least qualitatively.
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Points are, for the most part, all spaced out. Lots of sites have been pushed to the boundary,
and marginals are a bit clumpy. The number of unique settings of x1 and x2 is low, but
no “worse” than with maximin. Worse is in quotes because it can’t really be worse. After
all, this design is the best for GP learning in a certain sense. Perhaps having a degree of
axis alignment is beneficial when it comes to learning – to maximizing information – even if
it would seem to be disadvantageous on an intuitive level, or perhaps on more pragmatic
terms. For example, if we had doubts about the model, or later decide to study a subset
of the inputs (say only x1), the design in Figure 6.1 is sub-optimal. LHS (§4.1) would fare
much better.

One reason for the high degree of similarity between maxent and maximin designs is that the
default maxent hyperparameterization is isotropic (i.e., radially symmetric), using the same
θk-values in each input direction, k ∈ {1, 2}. So both are using the same Euclidean distances
under the hood. On the rare occasion where we prefer a Franken-kernel (§5.3.3), rather than
the friendly Gaussian, I suppose we could end up with a very interesting looking maximum
entropy design. In a more common separable (Gaussian) setup, one might speculate desire for
more spread in some directions rather than others through θk. Whether or not that’s a good
idea depends upon confidence in whatever evidence led to preferring differing lengthscales
before collecting any data.

To illustrate, consider a setup where we knew we wanted the lengthscale for x2 to be five
times longer than for x1, keeping the same value as before.

X <- maxent(25, 2, theta=c(0.1, 0.5))

Accordingly, Figure 6.2 reveals a design which has more “truly distinct” values in the first
coordinate than the second one.

plot(X, xlab="x1", ylab="x2")
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FIGURE 6.2: Maximum entropy design under a separable covariance structure.

This makes sense: more unique values, or denser sampling more generally, are needed in x1
compared to x2 because correlation decays more rapidly in the former compared to the latter.
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Shorter pairwise distances are needed in x1 to better “anchor” the predictive distribution,
at new x away from Xn-values, in that coordinate. If axis alignment in design benefits GP
learning, then the behavior above represents a logical extension to settings where inputs
interface unequally with the response.

Surely, you might say, I can measure distance a little differently in a maximin design and
accomplish the same effect. Probably. But there’s comfort in knowing the design obtained
is optimal for the specified kernel and hyperparameter setting. Maximin designs make no
promises vis-a-vis the GP being fit, except in a certain asymptotic sense where an equivalence
may be drawn (Johnson et al., 1990; Mitchell et al., 1994).

In general, model-based optimality comes at potentially substantial computational cost. Each
iteration of maxent involves a determinant calculation that requires decomposing an n× n
matrix, at O(n3) cost. Maximin, by contrast, is only O(n2) via pairwise distances. Maximin
can be further improved to O(n), which you may have discovered in an exercise from §4.4.
A similar trick can be performed with the log determinant to get an O(n2) implementation
when proposing a change in just one coordinate, leveraging the following decomposition.

log |Kn| = log |Kn−1|+ log(1 + g − Cθ(xn, Xn−1)K−1
n−1Cθ(Xn−1, xn)) (6.3)

The origin of this result – see Eq. (6.10) – will be discussed in more detail when we get to
sequential updating of GP models later in §6.3. To be useful in the context of maxent search
it must be applied twice: first backward (a “downdate”) for the input being removed, and
then forward for the new one being added.

Before moving on, consider application in 3d.

X <- maxent(25, 3)

Figure 6.3 shows the position of all pairs of inputs with numbers indexing rows of Xn.

Is <- as.list(as.data.frame(combn(ncol(X),2)))
par(mfrow=c(1,length(Is)))
for(i in Is) {

plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n",
xlab=paste0("x", i[1]), ylab=paste0("x", i[2]))

text(X[,i], labels=1:nrow(X))
}
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FIGURE 6.3: Projections of pairs of inputs involved in a 3d maximum entropy design.
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The picture here is pretty much the same as for maximin design. Projections down into lower
dimension don’t enjoy any uniformity, so careful inspection across pairs is required to check
that points are indeed well-spaced in the 3d study region. Observe that two indices which
look close in one projection pair are not close in the others. Still, the outcome is somewhat
disappointing on an aesthetic level.

6.1.2 Minimizing predictive uncertainty

As the basis of another criterion, consider predictive uncertainty. At a particular location
x ∈ X , the predictive variance is

σ2
n(x) = τ2[1 + g − k>n (x)K−1

n kn(x)] where kn(x) ≡ k(Xn, x).

This is the same as what some call mean-squared prediction error (MSPE):

MSPE[ŷ(x)] = E{(ŷ − Y (x))2} ≡ σ2
n(x).

An integrated MSPE (IMSPE) criterion is defined as MSPE (divided by τ2), averaged over
the entire input region X , which is expressed below as a function of design Xn.

J(Xn) =
∫
X

σ2
n(x)
τ2 w(x) dx (6.4)

Above, function w(·) is an optional, user-specified non-negative weight on inputs satisfying∫
X w(x) dx = 1. In the simplest setup, w(x) ∝ 1, bestowing equal importance to predicting

well at all locations in X . It’s worth noting that the IMSPE criterion is a generalization of
A-optimality3 from classical design.

That’s an m-dimensional integral for m-dimensional X . Fortunately if X is rectangular, and
where covariance kernels take on familiar forms such as isotropic or separable Gaussian and
Matèrn ν ∈ {3/2, 5/2, . . . }, closed forms are analytically tractable, or at least nearly so (e.g.,
depending on fast/accurate numerical evaluations of an error function/standard Gaussian
distribution function, say.) Details are left to Eq. (10.9) and §10.3.1, on heteroskedastic (i.e.,
input-dependent noise) GPs, where the substance of such developments is of greater value
to the narrative. Here it represents too much of a digression.

We will, however, borrow the implementation in the supporting hetGP package (Binois and
Gramacy, 2019) on CRAN. The relevant function is called IMSPE. Since heteroskedastic
GPs involve a few more bells and whistles, the function below strips down IMSPE’s interface
somewhat so that the setup better matches our ordinary GP setting.

library(hetGP)
imspe.criteria <- function(X, theta, g, ...)
{
IMSPE(X, theta=theta, Lambda=diag(g, nrow(X)), covtype="Gaussian",
mult=rep(1, nrow(X)), nu=1)

}

3https://en.wikipedia.org/wiki/Optimal_design#Minimizing_the_variance_of_estimators

https://en.wikipedia.org/wiki/Optimal_design#Minimizing_the_variance_of_estimators
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In case you’re curious, hetGP involves an n-vector of nuggets (in Lambda), supports the three
covariance structures listed above, and nu is our τ2. The mult argument is a discussion for
Chapter 10. Ellipses (...) are not used in what immediately follows below, but will come in
handy later when we try an alternative approximation.

Now we’re ready to use IMSPE in a design search. R code below is ported from maxent
(§6.1.1) with modifications to minimize rather than maximize.

imspe <- function(n, m, theta=0.1, g=0.01, T=100000, ...)
{
if(length(theta) == 1) theta <- rep(theta, m)
X <- matrix(runif(n*m), ncol=m)
I <- imspe.criteria(X, theta, g, ...)

for(t in 1:T) {
row <- sample(1:n, 1)
xold <- X[row,]
X[row,] <- runif(m)
Iprime <- imspe.criteria(X, theta, g, ...)
if(Iprime < I) { I <- Iprime
} else { X[row,] <- xold }

}
return(X)

}

Like maxent, IMSPE depends on θ and g hyperparameters (and to a lesser extent on τ2 ≡
nu), so again calculations require flops in O(n3). Similar shortcuts can reduce it to O(n2)
per iteration, or better; more soon in §6.3, Eq. (6.9). A homework exercise (§6.4) guides
the curious reader through suggestions for a more efficient implementation, in particular
leveraging other IMSPE-related subroutines from the hetGP package.

Let’s illustrate in 2d. The code below provides the search . . .

X <- imspe(25, 2)

. . . followed by a visualization in Figure 6.4 of the Xn = X that was returned.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))

You can see that the resulting design is quite similar to maxent or maximin analogs, but
there’s one important distinction: chosen sites avoid the boundary of the input space. There’s
an intuitive explanation for this. IMSPE considers variance integrated over the entire input
space (6.4). Design sites at the boundary don’t “cover” that space as efficiently as interior
ones. Points on a boundary in 2d cover half as much of the input space as (deep) interior
ones do. Points in the corner of a 2d space, i.e., at the intersection of two boundaries, cover
one quarter of the space compared to ones in the interior. Thus boundary locations are far
less likely to be chosen by IMSPE compared to maxent, say.

This effect is even more pronounced in higher input dimension. Consider 3d.
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FIGURE 6.4: IMSPE optimal design.

X <- imspe(25, 3)

Our usual triplet of projections follows in Figure 6.5.

Is <- as.list(as.data.frame(combn(ncol(X),2)))
par(mfrow=c(1,length(Is)))
for(i in Is) {

plot(X[,i], xlim=c(0,1), ylim=c(0,1), type="n",
xlab=paste0("x", i[1]), ylab=paste0("x", i[2]))

text(X[,i], labels=1:nrow(X))
}
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FIGURE 6.5: Two-dimensional projections of a 3d IMSPE design.

Compared to the 2d version, selected sites are even more “off the boundary”, but otherwise
positioning behavior is quite similar to maxent or maximin. Many practitioners find these
designs to be more aesthetically pleasing than the maxent analog. Points off of the boundary
make sense, and the criteria itself is easier to intuit. Desire for a design which predicts
equally well everywhere is easy to justify to non-experts. One downside to IMSPE, however,
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is that when good predictions are desired in non-rectangular regions of the input space, or
where that space is not weighted equally (i.e., non-constant w(·) in Eq. (6.4)), no known
closed form calculation is available.

A simple approximation offers far greater flexibility, but implies a sometimes limiting
accuracy-versus-computation trade-off. Our presentation features this approximation in an
unfavorable light, however a sequential analog in §6.2.2 and optimization in §7.2.3 fares
better, justifying its prominence here. This approach also plays a key role in local GP
approximation (§9.3), where the goal is to develop accurate predictors for particular inputs,
and sets of inputs lying on submanifolds of the input space.

The idea is to replace the integral in Eq. (6.4) with a (possibly weighted) sum over a reference
grid in X , implementing a poor-man’s quadrature. Reference grids need not be regular; or
they could follow a space-filling construction. So the tail doesn’t wag the dog, a cheap LHS
may make more sense here than an expensive maximin design. Or the grid can be random,
even weighted according to w(·). Many variations supported by this approximation amount
to changes in the form or nature of reference grids. Grid density is intimately linked to
approximation accuracy.

Concretely, the idea is

J(Xn) =
∫
X

σ2
n(x)
τ2 w(x) dx ≈



1
T

T∑
t=1

σ2
n(xt)
τ2 w(xt) xt ∼ Unif(X ), or

1
T

T∑
t=1

σ2
n(xt)
τ2 xt ∼ W(X ),

(6.5)

where W(X ) is the measure of w(·) applied in the input domain X .

To implement and illustrate this scheme, the subroutine below calculates GP predictive
variance at reference locations Xref for design X = Xn and then approximates the integral
(6.4) by a mean over Xref. The function below re-defines our imspe.criteria from above,
and ellipses (...) allows re-use of the imspe searching function above under the new
approximate criterion.

imspe.criteria <- function(X, theta, g, Xref)
{
K <- covar.sep(X, d=theta, g=g)
Ki <- solve(K)
KXref <- covar.sep(X, Xref, d=theta, g=0)
return(mean(1 + g - diag(t(KXref) %*% Ki %*% KXref)))
}

To apply in 2d, code below creates a regular grid (also in 2d) and passes that into imspe as
reference locations Xref.

g <- expand.grid(seq(0,1,length=10), seq(0,1, length=10))
X <- imspe(25, 2, Xref=g)

Figure 6.6 shows the resulting design as open circles, with the grid of reference locations
indicated as smaller closed gray dots.
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plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
points(g, pch=20, cex=0.25, col="gray")
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FIGURE 6.6: Approximate IMSPE design (6.5) by averaging over a reference set (gray
dots). Compare to Figure 6.4.

This is a good approximation to Figure 6.4’s closed-form analog, but not perfect. You might
say it’s missing a distinct feature of IMSPE-based design: avoiding boundaries. Design sites
are not perfectly aligned with the boundary, but nearly so. Trouble is, design locations want
to be close to reference set elements, and the reference set has almost as many points on the
boundary as in the interior. A continuous analog, by contrast, would put measure zero on
the boundary (a 1d manifold) relative to the full volume of the space (a 2d surface).

A different setting of the hyperparameters (say theta=0.5) reveals other inefficiencies due
to discrete Xref. I encourage the curious reader to try this offline. Such drawbacks are an
artifact of proposed random swaps having two hurdles to overcome in order to be accepted: 1)
be farther from the previous “closest”; 2) but still just as close to a reference location. In the
limit of a fully dense reference grid, i.e., an integral over an uncountable space, this second
hurdle is always surmounted. Search based on our approximate criteria is more discrete than
its closed form cousin, or even than maxent, and thus more difficult to solve. (Discrete and
mixed continuous-discrete optimizations are harder than purely continuous ones.) A denser
grid offers a partial solution, making the approximate criteria more accurate (at greater
computational expense) but the nature of search is no less discrete.

Pivot now to the positive and consider how the approximate method can be applied in
greater generality. What if we make the reference set occupy a smaller non-regular space?
For example, as a somewhat contrived but certainly illustrative scenario, suppose we’re
interested in predicting within intersecting ellipsoids centered on (x1, x2) = (0.25, 0.25).
Code below utilizes a random reference grid from two bivariate Gaussians meeting that
description, effectively up-weighting locations closer to (0.25, 0.25); an implicit w(·).

Xref <- rmvnorm(100, mean=c(0.25, 0.25),
sigma=0.005*rbind(c(2, 0.35), c(0.35, 0.1)))
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Xref <- rbind(Xref,
rmvnorm(100, mean=c(0.25, 0.25),
sigma=0.005*rbind(c(0.1, -0.35), c(-0.35, 2))))

X <- imspe(25, 2, Xref=Xref)

Figure 6.7 shows the chosen design and reference set.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
points(Xref, pch=20, cex=0.25, col="gray")
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FIGURE 6.7: Approximate IMSPE design (6.5) with a reference set concentrated on a
target study area.

Observe how the criteria organically attracts design locations to the reference set, but
otherwise encourages some spread among selected sites. Spacing isn’t perfect, but that can
be attributed to the nature of the approximate criteria, and to imperfect stochastic search.
Both are improved with a larger reference set and more stochastic exchange proposals, at
the expense of further computation. More efficient variations stem from a sequential design
adaptation, presented shortly, and from a derivative-based search, which will have to wait
until §9.3.5. Notice that some sites are chosen outside of the outermost Xref locations. It’s
tempting to attribute this to approximation inefficiency, but in fact that phenomena is a
direct consequence of the underlying IMSPE criterion. IMSPE resolves a tension between
spreading out sites relative to one another, yet having them close to X . Recall that we have
a stationary model, meaning that spread (on multiple scales) in the design is a prime player,
even if we’re only interested in predicting locally, say in a sub-region of the input space. A
more detailed discussion is left to §9.3.
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6.2 Sequential design/active learning

A greedy4, sequential approach to design is not just easier, it can also be more practical
than the one-shot approach presented above. In many situations, selecting one design point
at a time works better than static, single-batch design. For the technical junkie there are
connections to non-sequential analogs, framed as approximations, but to settings where “true”
hyperparameterization is known. Truth is in quotes since that’s never known in practice.

Sequential selection is also more computationally reasonable, being both better behaved
numerically and also faster. That’s not to say that sequential methods always use fewer
flops than batch selection. Often they do not. Yet extra computation versus alternatives
(e.g., additional matrix decompositions), in situations where it’s warranted, have redeemed
value in terms of the guidance that appropriately estimated quantities, tempered over many
iterations of design acquisition, provide to searches that target both modeling and design
goals. It’s easy to forget that design and modeling go hand-in-hand. Design impacts inference
and calculations thereupon impact design, and all too often that’s not acknowledged when
formally describing design goals. In case it’s not obvious, I’m uncomfortable with the idea of
committing to a design before collecting (a modest amount of) data.

Figure 6.8 summarizes a sequential design setup. Although there are variations, here I shall
emphasize the simple setup of augmenting an initial design by one, repeated until a desired
size is reached.

FIGURE 6.8: Diagram of sequential design/active learning/design augmentation.

To supplement that cartoon, consider Algorithm 6.1. The development here is a little
backwards, saying what the algorithm is before delving into its key components, in particular
Step 3 where a criterion is optimized to choose the next design element. Figure 6.8 is
suggestive of indefinite updating, augmenting a design by one in each pass through the
circuit. Algorithm 6.1 assumes a fixed total design size N , iterating in n = n0, . . . , N , starting
from a small seed design of size n0.

Some commentary is in order. Consider Step 2. Numerical optimization of the likelihood to
infer hyperparameters can require initial values. Random initialization is common when n is
small, e.g., n = n0. Initializing with hyperparameters found in earlier iterations of sequential
design – a warm start – offers computationally favorable results (faster convergence) and
negligible deleterious effects when n is large. Earlier on, periodic random reinitialization can
confer a certain robustness in the face of multimodal likelihoods (§5.3.4), which are not an
uncommon occurrence. Skipping expensive O(n3) calculations in Step 2, e.g., using MLE
calculations from earlier n, is risky but could represent a huge computational savings: taking
flops in O(n3) down to O(n2) using the updating equations in §6.3.

4https://en.wikipedia.org/wiki/Greedy_algorithm

https://en.wikipedia.org/wiki/Greedy_algorithm
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Algorithm 6.1 Sequential Design/Active Learning

Assume a flexible surrogate, e.g., a GP model, but with potentially unknown hyper-
parameterization.

Require a function f(·) providing outputs y ∼ f(x) for inputs x, either deterministic
or observed with noise; a choice of initial design size n0 and final size N ; and criterion
J(x) to search for design augmentation.

Then
1. Run a small seed, or bootstrapping experiment.

a. Create an initial seed design Xn0 with n0 runs. Typically Xn0 is a model-free
choice, e.g., derived from a static LHS or maximin design.

b. Evaluate yi ∼ f(xi) under each x>i in the ith row of Xn0 , for i = 1, . . . , n0,
obtaining Dn0 = (Xn0 , Yn0).

c. Set n← n0, indexing iterations of sequential design.
2. Fit the surrogate (and hyperparameters) using Dn, e.g., via MLE.
3. Solve criterion J(x) based on the fitted model from Step 2, resulting in a choice

of xn+1 | Dn: xn+1 = argmaxx∈X J(x) | Dn.
4. Observe the response at the chosen location by running a new simulation, yn+1 ∼
f(xn+1).

5. Update Dn+1 = Dn ∪ (xn+1, yn+1); set n← n+ 1 and repeat from Step 2 unless
n = N .

Return the chosen design and function evaluations DN , along with surrogate fit (i.e.,
after a final application of Step 2).

Step 3 in the algorithm presumes maximization, but it may be that minimization is more
appropriate for the chosen criterion. Many flavors of optimization can be employed here. For
example: evaluating J(x) on a candidate set of inputs X in a discrete and/or randomized
search; numerical optimization with optim in the case of compact X , potentially with help
from closed-form derivatives. Warm-starting with xn from previous iterations could be advan-
tageous depending on the criterion, especially under variations considered for optimization
in Chapter 7. When targeting global predictive accuracy or maximum information through
learning, a more diverse (even random) initialization may be preferred in order to cope with
highly multimodal objective surfaces. Note that J(x) evaluations can require forms for the
predictive distribution Y (X ) | Dn, e.g., kriging equations (5.3) in the GP case, or other
aspects of fit conditional on hyperparameters from Step 2, and/or derivatives thereof.

In what follows, I introduce several criteria paired with an implementation of Steps 2–3 of
Algorithm 6.1. Each is positioned as a pragmatic compromise between myriad alternatives.
For example, I always warm start MLE calculations, but optimize criteria with optim under
both random and warm-started initialization. Derivatives are used for the former but not the
latter. Criteria are often easy to differentiate, and pointers are provided for the curious reader,
however these are not implemented by our preferred library (laGP) under all variations
considered below. §9.3.5 and Chapter 10 furnish derivatives accompanied by library routines
for two important IMSPE-based sequential criteria in a slightly more ambitious setting.
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6.2.1 Whack-a-mole: active learning MacKay

The simplest sequential design scheme for GPs, but it’s of course more widely applicable,
involves choosing the next point to maximize predictive variance. Given data Dn = (Xn, Yn),
infer unknown hyperparameters (τ2, θ, g) by maximizing the likelihood, say, and choose xn+1
as

xn+1 = argmaxx∈X σ2
n(x).

Obtain yn+1 = Y (xn+1) = f(xn+1) + ε; combine to form the new dataset: Dn+1 =
([Xn;x>n+1], [Yn; yn+1]); repeat. In other words, the criterion provided to Algorithm 6.1
is J(x) | Dn ≡ σ2

n(x), where σ2
n(x) comes from kriging equations (5.3) applied using

(τ̂2
n, θ̂

2
n, ĝn) trained on data compiled from earlier sequential design iterations: Dn = (Xn, Yn).

The n in the subscript is included to remind readers that the estimator is trained on data
Dn.

Simple right? But does it work well? In many cases, yes. MacKay (1992) argues that, in
a certain sense, repeated application of such selection approximates a maximum entropy
design. MacKay was working with neural networks. Almost a decade later, Seo et al. (2000)
ported the idea to GPs, dubbing the method Active learning MacKay (ALM). After deriving
GP updating equations in §6.3 we’ll be able to make a direct link between σ2

n(xn+1) and
|Kn+1|, establishing for GPs the connection MacKay made for neural networks.

Active learning5 is ML jargon for sequential design. Online data selection is sometimes
viewed as an example of reinforcement learning6, which is itself a special case of optimal
control7. Criteria for sequential data selection, and their solvers, are known as acquisition
functions in the active learning literature. In many ways, machine learners have been more
“active” in sequential design research of late than statisticians have, so many have adopted
their nomenclature. Active learning is where the learning algorithm gets to actively acquire
the examples it’s trained on, creating a virtuous cycle between information acquisition and
inference.

To demonstrate ALM, let’s revisit our favorite 2d dataset from §5.1.2, seeding with a small
LHS of size n0 = 12. The code chunk below implements Step 1 of Algorithm 6.1 with this
choice of f(·).

library(lhs)
ninit <- 12
X <- randomLHS(ninit, 2)
f <- function(X, sd=0.01)
{
X[,1] <- (X[,1] - 0.5)*6 + 1
X[,2] <- (X[,2] - 0.5)*6 + 1
y <- X[,1] * exp(-X[,1]^2 - X[,2]^2) + rnorm(nrow(X), sd=sd)
}
y <- f(X)

Step 2 involves fitting a model. Below, an isotropic GP is fit using laGP library routines.

5https://en.wikipedia.org/wiki/Active_learning
6https://en.wikipedia.org/wiki/Reinforcement_learning
7https://en.wikipedia.org/wiki/Optimal_control

https://en.wikipedia.org/wiki/Active_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Optimal_control
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library(laGP)
g <- garg(list(mle=TRUE, max=1), y)
d <- darg(list(mle=TRUE, max=0.25), X)
gpi <- newGP(X, y, d=d$start, g=g$start, dK=TRUE)
mle <- jmleGP(gpi, c(d$min, d$max), c(g$min, g$max), d$ab, g$ab)

Lest you spot it on your own and think it’s a sleight-of-hand, notice how darg specifies a
maximum lengthscale of θmax = 0.25, a stark departure from earlier examples with these
data. This kludge for d$max is crucial to obtaining consistently good results in repeated
Rmarkdown builds. Pathological random n0 = 12-sized seed LHS designs X, and associated
noisy y-values, sometimes lead to GP fits that characterize a high-noise/low-signal regime via
long lengthscales θ̂n0 in an unconstrained setting. As a consequence, the predictive variance
σ2(·) is highest at the edges of the design space, leading to xn+1-values being selected there.
Since the true f(·) is nearly zero at all points on the boundary, that acquisition perpetuates
a high-noise regime, creating a feedback loop where sites are never (or almost never) selected
in the interior. The curious reader may wish to re-run the entirety of the code in this section
with max=0.25 deleted to see what can happen. (It might take a few tries to get a bad
result.)

Specifying preference for a relatively low θ̂n0 , effectively providing a strong prior on small
lengthscale values and entirely precluding large ones, serves as a workaround. Using a larger
n0 also helps, but would have diminished the value of our illustration. Better workarounds
include a more thoughtful initial design, e.g., targeting a diversity of pairwise distances for
more reliable θ̂n0 (Zhang et al., 2020), and/or a more aggregate criteria like ALC (§6.2.2).
But let’s table that for now, and continue with the illustration.

Before embarking on iterations of sequential design, it’ll help to establish some predictive
quantities for later comparisons. R code below creates a testing grid and saves true (noiseless)
responses at those locations.

x1 <- x2 <- seq(0, 1, length=100)
XX <- expand.grid(x1, x2)
yytrue <- f(XX, sd=0)

For example, we may use these to calculate RMSE . . .

rmse <- sqrt(mean((yytrue - predGP(gpi, XX, lite=TRUE)$mean)^2))

. . . in order to benchmark out-of-sample progress over iterations of design acquisition, n,
against commensurately-sized designs derived from similar criteria.

Predictive variance σ2
n(x) produces football/sausage-shaped error-bars, so it must have many

local maxima. In fact, it’s easy to see how the number of local maxima could grow linearly
in n. Optimizing globally over that surface presents challenges. Global optimization is a
hard sequential design problem in its own right, hence Chapter 7. Here we shall stick to
our favorite library-based local solver, optim with method="L-BFGS-B" (Byrd et al., 1995).
Code below establishes the ALM objective as minus predictive variance, with the intention
of passing to optim whose default is to search for minima.
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obj.alm <- function(x, gpi)
- sqrt(predGP(gpi, matrix(x, nrow=1), lite=TRUE)$s2)

Our success on a more global front will depend upon how clever we can be about initializing
local solvers in a multi-start scheme. Suppose we “design” a collection of starting locations
placed in parts of the input space known to have high variance, i.e., at the widest part
of the sausage – as far as possible from existing design locations. This is basically what
our sequential mymaximin function (§4.2.1) was created to do, encouraging spread in new
(ALM search starting) locations relative to one another and to existing locations (Xn from
previous iterations). Rather than paste mymaximin in here, it’s loaded in the Rmarkdown
source behind the scenes. Alternatively, any of the variations entertained in response to §4.4
homework exercises may be preferred for more computationally efficient initialization.

Since there are about as many modes in σ2
n(x) as inputs Xn, it seems sensible to default

to n space-filling multi-start locations for ALM searches. The function below facilitates
search for xn+1, coded as xnp1, implementing of Step 3 of Algorithm 6.1. It’s designed to
be somewhat generic to searching objective (obj), which we provide as obj.alm by default
but anticipate variations on the horizon. Execution begins by creating a sequential maximin
design of multi-start initializers. It then iterates over optim calls with obj. Notice that this
implementation is tailored to 2d inputs, as is everything supporting the rest of this example.
However it wouldn’t be hard to make things more generic with small edits in a few places.

xnp1.search <- function(X, gpi, obj=obj.alm, ...)
{
start <- mymaximin(nrow(X), 2, T=100*nrow(X), Xorig=X)
xnew <- matrix(NA, nrow=nrow(start), ncol=ncol(X) + 1)
for(i in 1:nrow(start)) {
out <- optim(start[i,], obj, method="L-BFGS-B", lower=0,

upper=1, gpi=gpi, ...)
xnew[i,] <- c(out$par, -out$value)

}
solns <- data.frame(cbind(start, xnew))
names(solns) <- c("s1", "s2", "x1", "x2", "val")
return(solns)
}

On output, a data.frame is returned combining starting and ending locations with a final
column recording the value of the objective found by optim. Such comprehensive output is
probably overkill for most situations, because all that matters is c(x1, x2) coordinates in
the row having the smallest val. Other rows are furnished primarily to aid in illustration.
For example, Figure 6.9 draws arrows connecting starting c(s1, s2) coordinates to locally
optimal variance-maximizing solutions, with a red dot at the terminus of the best val arrow.
(Any arrows with near-zero length are omitted, and occasionally such an arrow “terminates”
at the red dot.)

solns <- xnp1.search(X, gpi)
plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)
m <- which.max(solns$val)
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prog <- solns$val[m]
points(solns$x1[m], solns$x2[m], col=2, pch=20)
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FIGURE 6.9: First iteration of ALM search. Each arrow represents an origin and outcome
(terminus) of multi-start exploration of predictive variance. Variance-maximizing location is
indicated as a red dot.

Considering the random nature of this Rmarkdown example, it’s hard to speculate on details
in Figure 6.9. Often several arrows terminate at the same location. At this early stage of
sequential design the most likely location for the red dot, and indeed the terminus of many
arrows, is somewhere along the boundary of the input space.

Step 4 in Algorithm 6.1 involves running y ∼ f(xn+1) at the new input location – the red
dot. Then add the new pair into the design in Step 5.

xnew <- as.matrix(solns[m, 3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))

Implementing an intermediate calculation, spanning Step 5 of the current iteration and Step
2 of the next, the updateGP function below augments an existing GP object, referenced
here by gpi, with new input–output pairs. This is a very fast update, leveraging O(n2)
calculations detailed in §6.3. However, the penultimate line in the code chunk below updates
MLE calculations on hyperparameters at O(n3) expense, completing a loop back up to Step
2 of Algorithm 6.1. Often convergence is achieved after very few likelihood evaluations when
carrying on from where search terminated in the previous sequential design iteration, i.e.,
at the MLE setting under just one fewer training data points. The final line below records
an RMSE value (under the new design) on the hold-out testing set (which is the same as
before). This step is not formally part of Algorithm 6.1.

updateGP(gpi, xnew, y[length(y)])
mle <- rbind(mle, jmleGP(gpi, c(d$min, d$max), c(g$min, g$max),
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d$ab, g$ab))
rmse <- c(rmse, sqrt(mean((yytrue - predGP(gpi, XX, lite=TRUE)$mean)^2)))

Updated fit in hand, we’re ready for another active learning acquisition. The code below
represents a second full pass through the loop in Algorithm 6.1, comprising the sequence of
Steps 3 → 4 → 5 → 2, ending with new MLE and RMSE calculations on the augmented
design.

solns <- xnp1.search(X, gpi)
m <- which.max(solns$val)
prog <- c(prog, solns$val[m])
xnew <- as.matrix(solns[m, 3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGP(gpi, xnew, y[length(y)])
mle <- rbind(mle, jmleGP(gpi, c(d$min, d$max), c(g$min, g$max),
d$ab, g$ab))

p <- predGP(gpi, XX, lite=TRUE)
rmse <- c(rmse, sqrt(mean((yytrue - p$mean)^2)))

The outcome of that search is summarized by Figure 6.10, again with arrows and a red dot.
Notice that the red dot from the previous iteration has been promoted to an open circle,
now fully incorporated into the design.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)
m <- which.max(solns$val)
points(solns$x1[m], solns$x2[m], col=2, pch=20)
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FIGURE 6.10: Second iteration of ALM search after Figure 6.9.

Again, it’s hard to speculate about the outcome of this search for the largest variance
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input location. Usually the result is intuitive considering locations of existing design points
(open circles), and the origin and terminus of the arrows. Before turning to a more in-depth
investigation into merits of this scheme, let’s do several more iterations through the loop,
for a total of N = 25 runs. Again, this is Steps 3→ 4→ 5→ 2 wrapped in a for loop.

for(i in nrow(X):24) {
solns <- xnp1.search(X, gpi)
m <- which.max(solns$val)
prog <- c(prog, solns$val[m])
xnew <- as.matrix(solns[m, 3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGP(gpi, xnew, y[length(y)])
mle <- rbind(mle, jmleGP(gpi, c(d$min, d$max), c(g$min, g$max),
d$ab, g$ab))

p <- predGP(gpi, XX, lite=TRUE)
rmse <- c(rmse, sqrt(mean((yytrue - p$mean)^2)))

}

The mle object, shown in part below (every other iteration to save space), summarizes steps
of our search vis-a-vis estimated lengthscale and nugget hyperparameters.

mle[seq(1,nrow(mle),by=2),]

## d g tot.its dits gits
## 1 0.05689 0.001575 23 8 15
## 3 0.05241 0.001578 7 4 3
## 5 0.04752 0.001580 7 4 3
## 7 0.04931 0.001578 7 4 3
## 9 0.04947 0.001580 7 4 3
## 11 0.03758 0.001589 9 5 4
## 13 0.04121 0.001587 7 4 3

Bigger movements and more MLE iterations, especially for θ (d and dits), are usually
associated with earlier sequential design steps. More often than not, in repeated Rmarkdown
builds, later searches are associated with smaller relative MLE moves, converging rapidly
in just a few iterations, benefiting from warm starts provided by values stored in the GP
object gpi from previous iterations. Perhaps full MLE updates, with jmlegp above, may
not be required for subsequent sequential design iterations. That could represent substantial
computational savings as n gets big, making updates take flops in O(n2) rather than O(n3).

Figure 6.11 summarizes the predictive surface after N = 25 design sites have been selected in
this way. A mean surface is shown on the left, and standard deviation on the right. Numbers
plotted indicate the iteration in which each site was chosen. Recall that the first n0 = 12
came from an LHS.

par(mfrow=c(1,2))
cols <- heat.colors(128)
image(x1, x2, matrix(p$mean, ncol=length(x1)), col=cols, main="mean")
text(X, labels=1:nrow(X), cex=0.75)



6.2 Sequential design/active learning 243

image(x1, x2, matrix(sqrt(p$s2), ncol=length(x1)), col=cols, main="sd")
text(X, labels=1:nrow(X), cex=0.75)
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FIGURE 6.11: Predictive mean (left) and standard deviation (right) after ALM-based
sequential design.

Those surfaces look reasonable, at least from a purely aesthetic perspective. A fair criticism
is that the chosen sites are no better, or could perhaps be even worse, than what would have
been obtained with a simple N = 25 space-filling design, i.e., calculated in a single batch
at the outset. One nice feature, or byproduct, of a sequential model-based alternative is a
measure of progress, namely the maximal variance used as the basis of each sequential design
decision. We’ve been saving that as prog in the code above, so that these may be plotted like
in Figure 6.12. Note that prog saves predGP(...)$s2, involving a τ̂2

n estimate that changes
from one acquisition to the next, n→ n+ 1. Within a particular iteration this scale estimate
has no impact on selection criteria, but between iterations it can cause prog to “jump”, up
or down, depending on incoming yn+1-values and corresponding hyperparameter updates.
At this time, laGP doesn’t provide direct access to τ̂2 in order to correct this, if so desired.

plot((ninit+1):nrow(X), prog, xlab="n")

Whether jumps are present in the figure or not – it depends on the random Rmarkdown build
– it’s clear that progress has not yet leveled off. Consider 75 more iterations of active learning,
stopping at N = 100. The code below duplicates the for loop above after reinitializing θ̂ ≡
d, and removing the restrictive θ̂max = 0.25 setting. After n = 25 samples are chosen, an
aggressive prior is not as important in order to avoid pathological behavior. (A conservative
Bayesian approach has greatest value to the practitioner when data are few.)

d <- darg(list(mle=TRUE), X)
for(i in nrow(X):99) {
solns <- xnp1.search(X, gpi)
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FIGURE 6.12: ALM-progress over sequential design iterations.

m <- which.max(solns$val)
prog <- c(prog, solns$val[m])
xnew <- as.matrix(solns[m, 3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGP(gpi, xnew, y[length(y)])
mle <- rbind(mle, jmleGP(gpi, c(d$min, d$max), c(g$min, g$max),
d$ab, g$ab))

p <- predGP(gpi, XX, lite=TRUE)
rmse <- c(rmse, sqrt(mean((yytrue - p$mean)^2)))

}

An inspection of MLEs found during each iteration reveals small changes in θ̂n and ĝn on
both relative and absolute terms. The number of iterations required for convergence can
vary somewhat more substantially over longer search horizons, but is usually small.

mle[seq(14,nrow(mle), by=10),]

## d g tot.its dits gits
## 14 0.03698 0.001588 8 5 3
## 24 0.02567 0.001586 6 3 3
## 34 0.02549 0.001575 7 4 3
## 44 0.03144 0.001513 11 6 5
## 54 0.03413 0.001348 10 5 5
## 64 0.03159 0.001697 11 6 5
## 74 0.03174 0.003289 42 21 21
## 84 0.03102 0.002330 38 18 20

As shown in Figure 6.13, progress metrics are starting to level off. The magnitude and
frequency of jumps in prog, shown on the left, generally decreases over acquisition iterations.
(If there were no jumps before, there are almost certainly some in this view.) Accuracy,
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measured by RMSE in the right panel, shows similar behavior, having leveled off substantially
in the latter thirty-five iterations or so. Although an out-of-sample testing set is seldom
available for use in this context, it’s nice to see a substantial degree of correlation between
predictive accuracy and (maximal) predictive uncertainty, which is what was used to guide
design.

par(mfrow=c(1,2))
plot((ninit+1):nrow(X), prog, xlab="n: design size", ylab="ALM progress")
plot(ninit:nrow(X), rmse, xlab="n: design size", ylab="OOS RMSE")
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FIGURE 6.13: Maximum variance (left, lower is better) and out-of-sample RMSE (right)
over 100 ALM acquisitions.

Figure 6.14 shows the posterior surface and the location of the chosen design sites.

par(mfrow=c(1,2))
image(x1, x2, matrix(p$mean, ncol=length(x1)), col=cols, main="mean")
text(X, labels=1:nrow(X), cex=0.75)
image(x1, x2, matrix(sqrt(p$s2), ncol=length(x1)), col=cols, main="sd")
text(X, labels=1:nrow(X), cex=0.75)

Observe dense coverage along the boundary, a telltale sign of maxent design. The degree of
space-fillingness could be improved, but by proceeding sequentially less faith is required in
the quality of an initial hyperparameterization. It can be instructive to repeat selection of
these 100 design sites to explore variability in outcomes. ALM can misbehave, especially if
the starting design is unlucky to miss strong signal in the data. When that happens, initial
fits of hyperparameters favor noise, even when restricted by θ̂max = 0.25, sparking a feedback
loop from which the sequential procedure may fail to recover.

A more graceful solution, besides simply initializing with a larger design, could involve a more
aggregate criteria. Maximizing variance is myopic. ALM doesn’t recognize that acquisitions
impact predictive equations globally. Instead it “wacks down” the highest variance locations,
a set of measure zero, potentially ignoring a continuum of fatter regions where uncertainty
may cumulatively be much larger. This is why we end up with lots of sites on the boundary.
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FIGURE 6.14: Predictive mean (left) and standard deviation (right) after ALM-based
sequential design.

Variance is high there because there are fewer data points nearby – there are none beyond
the boundary, a situation which could not be remedied by any sequential data acquisition
scheme. Yet those boundary locations are perhaps least useful when it comes to predicting
elsewhere, being as far as possible from almost any notion of elsewhere.

6.2.2 A more aggregate criteria: active learning Cohn

You could say that ALM has somewhat of a scale problem. Just because predictive variance
is high doesn’t mean that there’s value in adding more data. (I’m thinking ahead a little
bit to Chapters 9–10 where noise variances may not be uniform in the input space.) One
could instead work with epistemic variance (5.16), i.e., the variance of the latent field
(§5.3.2), or variance of the mean. Operationally speaking, this amounts to using a zero
nugget when calculating out-of-sample covariances among X ≡ XX. But that only helps to a
degree. High variance may well be an accurate inference for the problem at hand, which
would mean seriously diminishing returns to further data acquisition. A better metric might
be reduction in variance. That is, how helpful is a potential new design site at reducing
predictive uncertainty? If a lot, relative to previous reductions and relative to other new
design sites, then it could be quite helpful to perform a new run at that location. If not,
perhaps another location would be preferred or perhaps we have enough data already.

But this begs the question where; where should the reduction be measured? One option
is everywhere, integrating over the entire input space like IMSPE does for global design
(§6.1.2). Such an integral is tractable analytically for rectangular input spaces, but I shall
defer that discussion to Chapter 10. At the other extreme is measuring reduction in variance
at a particular reference location, or at a collection of locations, thereby approximating
the integral with a sum like we did with IMSPE (6.5). The first person to suggest such
an acquisition heuristic in a nonparametric regression context was Cohn (1994), for neural
networks. As with ALM, Seo et al. (2000) adapted Cohn’s idea to GPs and called it active
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learning Cohn (ALC). The result is essentially a sequential analog of IMSPE design, and in
fact the sequential version can be shown to approximate a full A-optimal design8.

How does it all work? Recall that predictive variance follows

σ2
n(x) = τ̂2

n[1 + ĝn − k>n (x)K−1
n kn(x)] where kn(x) ≡ Cθ̂n(Xn, x),

written here with an n subscript on all estimated quantities in order to emphasize their
dependence on data Dn = (Xn, Yn) via τ̂2

n, ĝn, and θ̂n hidden inside Kn. Let σ̃2
n+1(x) denote

the deduced variance based on design Xn+1 combining Xn and a new input location x>n+1
residing in its n+ 1st row. Otherwise, σ̃2

n+1(x) conditions on the same estimated quantities
as σ2

n(x), i.e., τ̂2
n, ĝn, and θ̂n, all estimated from Yn. Since Yn doesn’t directly appear in

σ2
n(x), nor would it directly appear in σ̃2

n+1(x). Therefore, quite simply

σ̃2
n+1(x) = τ̂2

n[1 + ĝn − k>n+1(x)K−1
n+1kn+1(x)] where kn+1(x) ≡ Cθ̂n(Xn+1, x). (6.6)

Using that definition, the ALC criteria is the average (integrated over X or any other subset
of the input space) reduction in variance from n→ n+ 1 measured through a choice of xn+1,
augmenting the design:

∆σ2
n(xn+1) =

∫
x∈X

σ2
n(x)− σ̃2

n+1(x) dx

= c−
∫
x∈X

σ̃2
n+1(x) dx.

Wishing predictive uncertainty to be reduced as much as possible, that translates into finding
an xn+1 maximizing ∆σ2

n(xn+1). But that’s the same as minimizing the integrated deduced
variance. Therefore the criterion that must be solved in each iteration of sequential design,
occupying Step 3 of Algorithm 6.1, is

xn+1 = argminx∈X
∫
x∈X

σ̃2
n+1(x) dx. (6.7)

A closed form for rectangular X , complete with derivatives for maximizing, is provided later
in Chapter 10. Often in practice the integral is approximated by a sum over a reference
set (6.5) as this offers the simplest, most general, implementation. Although a singleton
reference set (X = xref , dropping the integral or sum entirely) represents a degenerate case
where xn+1 = xref , any larger reference set demands xn+1 make a trade-off that considers
broader impact on variance reduction when new data are added into the design. The laGP
package has functions called alcGP and alcGPsep that automate this objective, providing
evaluations of ∆σ2

n(xn+1) to within additive and multiplicative constants. More specifically,
the output is scale-free, having “divided out” τ̂2

n in a manner similar to IMSPE (§6.1.2).
Since we wish to maximize this quantity, the wrapper below negates the output of alcGP. It
also uses the square root, which conveys a more numerically stable objective for optimization
with optim. Since the square root is a monotone transformation, the location of stationary
points is unchanged.

obj.alc <- function(x, gpi, Xref)
- sqrt(alcGP(gpi, matrix(x, nrow=1), Xref))

8https://en.wikipedia.org/wiki/Optimal_design#Minimizing_the_variance_of_estimators

https://en.wikipedia.org/wiki/Optimal_design#Minimizing_the_variance_of_estimators
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Our xnp1.search from §6.2.1, solving for the next input xn+1, was designed to be generic
enough to accommodate other objective functions and arguments, like obj.alc and Xref,
through ellipses (...). Before jumping into an illustration, we must clean up our ALM
search and reinitialize a new GP with the same ninit starting values. This will help control
variability for subsequent comparison between ALC and ALM-based sequential designs.

deleteGP(gpi)
X <- X[1:ninit,]
y <- y[1:ninit]
g <- garg(list(mle=TRUE, max=1), y)
d <- darg(list(mle=TRUE, max=0.25), X)
gpi <- newGP(X, y, d=d$start, g=g$start, dK=TRUE)
mle <- jmleGP(gpi, c(d$min, d$max), c(g$min, g$max), d$ab, g$ab)
p <- predGP(gpi, XX, lite=TRUE)
rmse.alc <- sqrt(mean((yytrue - p$mean)^2))

The code below invokes the first iteration of ALC search. A 100-element LHS is chosen for
reference set Xref, but otherwise the process is similar to that for ALM except that obj.alc
and Xref are provided to xnp1.search.

Xref <- randomLHS(100, 2)
solns <- xnp1.search(X, gpi, obj=obj.alc, Xref=Xref)
m <- which.max(solns$val)
xnew <- as.matrix(solns[m, 3:4])
prog.alc <- solns$val[m]

Figure 6.15 offers a visual summary of the search, with arrows and a red dot showing the
chosen xn+1 location. Smaller filled-gray dots denote Xref.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)
points(solns$x1[m], solns$x2[m], col=2, pch=20)
points(Xref, cex=0.25, pch=20, col="gray")

Domains of attraction from the ALC criterion are similar to ALM’s, however global optima
are more likely to be in the interior for ALC. In part, this is because ALC prefers candidates
which are far from Xn and close to Xref. Since Xref is an LHS, very few are found near the
boundary. Although it’s hard to speculate on a location selected for a particular Rmarkdown
build, especially considering the random nature of the reference set used by ALC, the chosen
location for xn+1 in the version I’m looking at now is indeed in the interior. Code below
gathers y(xn+1), and updates the GP predictor to get ready for the next acquisition by
ALC.

X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGP(gpi, xnew, y[length(y)])
mle <- rbind(mle, jmleGP(gpi, c(d$min, d$max), c(g$min, g$max),
d$ab, g$ab))
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FIGURE 6.15: First iteration of ALC search in the style of Figure 6.9. Gray dots denote
reference locations.

p <- predGP(gpi, XX, lite=TRUE)
rmse.alc <- c(rmse.alc, sqrt(mean((yytrue - p$mean)^2)))

Skipping ahead a bit, the loop below fills out the rest of the design in this way, up to
N = 100. This for loop is identical to the ALM analog, except using ALC with obj.alc
and Xref instead. Notice that Xref is refreshed for each acquisition. This helps encourage
diversity in search from one iteration to the next. Although any single reference set may
lead to a poor sum-based approximation of the integral behind ALC (6.7) in any particular
acquisition iteration, a diversity of (even small) reference sets limits the influence of bad
behavior on aggregate.

d <- darg(list(mle=TRUE), X)
for(i in nrow(X):99) {
Xref <- randomLHS(100, 2)
solns <- xnp1.search(X, gpi, obj=obj.alc, Xref=Xref)
m <- which.max(solns$val)
prog.alc <- c(prog.alc, solns$val[m])
xnew <- as.matrix(solns[m, 3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGP(gpi, xnew, y[length(y)])
mle <- rbind(mle, jmleGP(gpi, c(d$min, d$max), c(g$min, g$max),
d$ab, g$ab))

p <- predGP(gpi, XX, lite=TRUE)
rmse.alc <- c(rmse.alc, sqrt(mean((yytrue - p$mean)^2)))

}

Updates to hyperparameter MLEs are saved above, however the values recorded look similar
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to those from ALM so they’re not shown here. Figure 6.16 provides a view into progress
over iterations of ALC-based acquisition.

par(mfrow=c(1,2))
plot((ninit+1):nrow(X), prog.alc, xlab="n: design size",
ylab="ALC progress")

plot(ninit:nrow(X), rmse, xlab="n: design size", ylab="OOS RMSE")
points(ninit:nrow(X), rmse.alc, col=2, pch=20)
legend("topright", c("alm", "alc"), pch=c(21,20), col=1:2)
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FIGURE 6.16: Progress in ALC sequential design in terms of integrated reduction in
variance (left, lower is better) and out-of-sample RMSE (right), with comparison to ALM
from Figure 6.12.

The left panel, showing progress on obj.alc, is less jumpy than the ALM analog, but also
perhaps more noisy. It’s less jumpy because alcGP and alcGPsep factor out scale τ̂2

n. Noise
arises due to novel random Xref in each iteration of design; a fixed Xref would smooth things
out considerably, but bias search. Observe that progress on the ALC criteria is flattening
out in later iterations. On the right is out-of-sample RMSE as compared to ALM. Notice
how they end at about the same place, but ALC gets there faster. While ALM is busy filling
out boundaries in early iterations, ALC is filling in interior regions which are closer to the
vast majority of inputs in the testing set. Figure 6.17 shows predictive mean and standard
deviation, with locations and order of selected design sites overlayed.

par(mfrow=c(1,2))
image(x1, x2, matrix(p$mean, ncol=length(x1)), col=cols, main="mean")
text(X, labels=1:nrow(X), cex=0.75)
image(x1, x2, matrix(sqrt(p$s2), ncol=length(x1)), col=cols, main="sd")
text(X, labels=1:nrow(X), cex=0.75)

Coverage of the boundary is sparser, but perhaps not as sparse as what we saw from static
IMSPE design in §6.1.2. Predictive uncertainty is higher for ALC than ALM along that
boundary, but those regions are not favored by ALC as their remote location makes them
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FIGURE 6.17: Predictive mean (left) and standard deviation (right) after ALC-based
sequential design.

poor for driving down variance at reference sites; i.e., they’re less than ideal for driving down
uncertainty aggregated across the entirety of the input space.

6.2.3 Other sequential criteria

Several other heuristics have been proposed in the literature, some of which will be the subject
of future chapters – particularly when the target is optimization. One that pops up often
involves the Fisher information (FI) of kernel hyperparameters, particularly lengthscale(s)
θ. The equations are a little cumbersome, involving second derivatives and expectations as
FI calculations often do. Rather than duplicate these here, allow me to refer the interested
reader to the appendix of Gramacy and Apley (2015). Search via FI is implemented by
fishGP in the laGP package.

obj.fish <- function(x, gpi)
- sqrt(fishGP(gpi, matrix(x, nrow=1)))

One attractive aspect of FI, compared to ALC say, is that no reference set is required. The
criterion’s emphasis on learning parameters means that it’s less sensitive to initial choices for
those parameters, but since FI is ultimately evaluated under θ̂n, from the previous iteration
n, there’s still some degree of sensitivity and so we still have to be careful about initial
values. A disadvantage is that FI doesn’t directly emphasize predictive accuracy, rather
hyperparameter estimation. It usually does not lead to designs with the most accurate
predictors. To see why, feed obj.fish into xnp1.search to sequentially build up a design
with N = 100 input–output pairs.

X <- X[1:ninit,]
y <- y[1:ninit]
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d <- darg(list(mle=TRUE, max=0.25), X)
gpi <- newGP(X, y, d=0.1, g=0.1*var(y), dK=TRUE)
mle <- jmleGP(gpi, c(d$min, d$max), c(g$min, g$max), d$ab, g$ab)
rmse.fish <- sqrt(mean((yytrue - predGP(gpi, XX, lite=TRUE)$mean)^2))
prog.fish <- c()
for(i in nrow(X):99) {
solns <- xnp1.search(X, gpi, obj=obj.fish)
m <- which.max(solns$val)
prog.fish <- c(prog.fish, solns$val[m])
xnew <- as.matrix(solns[m, 3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGP(gpi, xnew, y[length(y)])
mle <- rbind(mle, jmleGP(gpi, c(d$min, d$max), c(g$min, g$max),
d$ab, g$ab))

p <-predGP(gpi, XX, lite=TRUE)
rmse.fish <- c(rmse.fish, sqrt(mean((yytrue - p$mean)^2)))

}

Figure 6.18 shows the design and the resulting fit, which illustrates striking differences
compared to earlier analogs.

par(mfrow=c(1,2))
image(x1, x2, matrix(p$mean, ncol=length(x1)), col=cols, main="mean")
text(X, labels=1:nrow(X), cex=0.75)
image(x1, x2, matrix(sqrt(p$s2), ncol=length(x1)), col=cols, main="sd")
text(X, labels=1:nrow(X), cex=0.75)
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FIGURE 6.18: Predictive mean (left) and standard deviation (right) after an FI-based
sequential design.

There’s a certain “clumpiness”, but also definitely a pattern in selected sites. Whole swaths
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of the input space are missing locations. This is the result of FI preferring distances between
inputs on different scales, which makes sense in order to best learn lengthscale. Whether
or not the densely sampled locations coincide with the “interesting part” of the response
surface, in this case the “bumps” in the lower-left-hand quadrant, is largely a matter of
luck. Repeated builds of this Rmarkdown document lead to dramatically different RMSE
progress metrics over time, as shown for one instance in the right panel of Figure 6.19. This
happens even though progress on the FI metric, as shown in the left panel, is remarkably
consistent. If design acquisitions are lucky to cluster near the bumps, then the fact that
the responses are conveniently zero elsewhere – and that our GP is zero-mean reverting –
leads to excellent RMSEs compared to ALM and ALC. An unlucky clumping can lead to
disastrous RMSE calculations.

par(mfrow=c(1,2))
plot((ninit+1):nrow(X), prog.fish, xlab="n: design size",
ylab="FI progress")

plot(ninit:nrow(X), rmse, xlab="n: design size", ylab="OOS RMSE")
points(ninit:nrow(X), rmse.alc, col=2, pch=20)
points(ninit:nrow(X), rmse.fish, col=3, pch=19)
legend("topright", c("alm", "alc", "fish"), pch=21:19, col=1:3)
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FIGURE 6.19: Progress in terms of FI (left, higher is better) and out-of-sample RMSE as
compared to previous heuristics.

Readers are strongly encouraged to repeat the code above to explore that variability. If ALC
and ALM are somewhat unsatisfying in that they basically produce space-filling designs with
the burden of initializing GP hyperparameters for stable performance over the iterations,
FI is unsatisfying in that design targeting good hyperparameters is insufficient for what’s
usually the primary goal: prediction. A hybrid approach however, first FI to learn parameters
then ALC for accurate prediction, may represent an advantageous compromise. Still, FI
needs an initial θ̂n0 from somewhere.

Regarding θ̂n, sequential design acquisitions above are grossly inefficient from a computational
perspective. MLE optimizations in O(n3) are carried out in each iteration, from n =
n0, . . . , N , so the overall scheme demands flops in O(N4). This is true even when solutions
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from earlier iterations are used to warm start solvers. If a smartly chosen seed design could
yield reliable hyperparameters, perhaps those expensive MLE calculations could be avoided.
A betadist initializing design (Zhang et al., 2020) represents an attractive alternative in this
context, circumventing chicken-or-egg paradoxes in sequential design. A homework exercise
in §6.4 takes the diligent student through some of the details, including Monte Carlo (MC)
benchmarking exercises. Nevertheless, K−1

n and |Kn| would still be required for subsequent
ALC and ALM selection, respectively. Since those are still O(n3), the overall scheme would
still be quartic. Or are they?

6.3 Fast GP updates

It turns out that they need not be. In fact, updates to all relevant quantities for the
model-based sequential design schemes outlined above may be calculated in O(n2) time,
making the whole scheme O(N3). That is, as long as we’re content not to repeatedly update
hyperparameter estimates. Being able to quickly update a model fit, as data comes in, is often
overlooked as an important aspect in model choice. In the context of active learning, and in
computer experiments where automation, and loops over inputs to simulations naturally
create a sequential inference (and design) environment, fast updating can be crucial to the
relevance of nonparametric surrogate models with otherwise large computational demands –
especially as datasets get large. Fortunately, GPs offer such a feature.

The key to fast GP updates as new data arrive, as implemented by updateGP/updateGPsep,
is fast decomposition of covariance as Kn → Kn+1. In the case of the inverse, the partitioned
inverse equations are helpful. These are often expressed generically for blocks of arbitrary
size, but we only need them for one new (symmetric) row/column.

If Kn+1(xn+1) =
[

Kn kn(xn+1)
k>n (xn+1) K(xn+1, xn+1)

]
,

then K−1
n+1 =

[
[K−1

n + gn(xn+1)g>n (xn+1)vn(xn+1)] gn(xn+1)
g>n (xn+1) v−1

n (xn+1)

]
, (6.8)

where gn(xn+1) = −v−1
n (xn+1)K−1

n kn(xn+1) and the scale-free variance follows vn(xn+1) =
K(xn+1, xn+1) − k>n (xn+1)K−1

n kn(xn+1). Computational cost for the update is in O(n2).
Use of Eq. (6.8) here is similar in spirit to a rank one Sherman–Morrison update9, as may be
applied in classical linear regression to update (X>n Xn)−1 → (X>n+1Xn+1)−1. Under a linear
mean GP specification (e.g., exercise #2 in §5.5), partitioned inverse and Sherman–Morrison
fomulae may be combined to efficiently update mean and covariance as new training data
arrive.

Observe that vn(x) in Eq. (6.8) is the same as our scale-free predictive variance. That is,
σ2
n(x) = τ̂2

nvn(x). As a consequence, updating predictive variance at locations x is also fast:

vn(x)− vn+1(x) = k>n (x)Gn(xn+1)vn(xn+1)kn(x) (6.9)
+ 2k>n (x)gn(xn+1)K(xn+1, x) +K(xn+1, x)2/vn(xn+1),

9https://en.wikipedia.org/wiki/Sherman-Morrison_formula

https://en.wikipedia.org/wiki/Sherman-Morrison_formula
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where Gn(x′) ≡ gn(x′)g>n (x′), and gn(x′) = −K−1
n kn(x′)/vn(x′). Taking stock of matrix–

vector sizes and calculations thereupon, the computational cost is again in O(n2). No
quantities bigger than O(n2) multiply quantities bigger than O(n).

As a consequence, ALC (and IMSPE analogs in Chapter 10) may be calculated in O(n2)
time for each choice of xn+1. We’ll use this update again in Chapter 9 when constructing
a local approximate GP. An exercise in §6.4 asks the reader to develop a fast update for
τ̂2
n → τ̂2

n+1 as well.

We saw earlier (6.3) how the determinant can be quickly updated, but for completeness I
shall restate it here. There’s nothing special about this update, as determinants are naturally
specified recursively. However, it can be instructive to provide equations in the notation of
the partitioned inverse (6.8).

log |Kn+1| = log |Kn|+ log(K(xn+1, xn+1) + g>n (xn+1)kn(xn+1)vn(xn+1))
= log |Kn|+ log vn(xn+1). (6.10)

Computational cost is in O(n2). Notice that the determinant changes by the variance of the
point xn+1 added into the old fit. This explains why ALM approximates maximum entropy
designs. Choosing xn+1 to maximize vn(xn+1) is identical to choosing it to maximize the
(n+ 1)× (n+ 1) determinant involved in the maxent criterion.

Although the overall cost, at O(N3) for N applications of O(n2) operations for n = 1, . . . , N ,
is the same as for a one-shot calculation, proceeding sequentially represents more work.
There must be a bigger constant hidden in the order notation. If you already have a design
of the desired size N , just perform inference and build the predictor the old fashioned way,
all at once (i.e., with newGPsep, mleGPsep and predGPsep). But if you have decisions to
make along the way, based on intermediate designs (such as with ALM or ALC), then it’s
way better for those to be O(n2) rather than O(n3) calculations, lest you shall find your
scheme is actually in O(N4) – unbearably slow for N in the few hundreds.

That said, a tacit goal in sequential design is to limit N – not just because GP calculations
get onerous but because running simulations or otherwise collecting data is even more so.
If extra resources can be put to getting that right, through careful MLE calculations even
after fast updates say, then those may pay dividends in smaller N . Nowhere is the need for
striking such a balance more acute than in the context of blackbox, or so-called Bayesian
optimization (BO). In BO the goal is to rule out, rather than exhaustively explore, inferior
regions of the input space. We want to find the best input configuration in the least number
of evaluations N of an expensive to run, complicated, and opaque function.

6.4 Homework exercises

These exercises reinforce themes in batch and sequential model-based design and updates
for Gaussian process regression.
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#1: Derivative-based maxent design

Consider leveraging chain-rule identities and kernel derivatives (5.9) from §5.2.3 in order to
deploy a library-based optimizer (e.g., optim with method="L-BFGS-B") toward maximum
entropy design. Consider #a and #b below in the context of upgrades to maxent with
illustrations provided in the n = 25 and m = 2 case (see §6.1.1) for both θ = (0.1, 0.1) and
θ = (0.1, 0.5). Throughout use g = 0.01.

a. Start by modifying one point in the design at a time in a stochastic exchange format. As
in maxent, randomly select one point to swap out. Instead of randomly swapping another
one back in, consider derivative-based search targeting a locally-optimal location for its
coordinates. In other words, if Xn−1 denotes the (n− 1)×m design comprised of Xn

without the randomly chosen “swapped out” row, which you may think of as residing in
the nth row without loss of generality, the criteria is xn = arg maxx′ |K ′n| where K ′n is
managed with partition inverse equations. Implement your search in a manner similar to
xnp1.search in §6.2.1, i.e., with optim, except don’t bother with a multi-start scheme.
Here are a few hints/suggestions which you should address in your solution: i) briefly
describe how a similar derivative-based optimization could be applied with obj.alm; ii)
develop an efficient scheme that avoids calculating a full n × n determinant, or other
decomposition, more than once; iii) why is a multi-start scheme unnecessary?; iv) how
should you initialize and what are appropriate bounds for your x′n searches?; v) is there
a variation where you can guarantee progress in each “swap out–in” pair; vi) do you
need a stopping rule? Finally, compare progress against maxent’s random “swap-in”
proposals via compute times over up to T=10000 search iterations under a common,
random initializing design.

b. Now consider how derivatives can be deployed towards optimizing all n×m coordinates
of Xn at once, in a single optim call. Provide a mathematical expression for the partial
derivative you intend to use, and code functions implementing the corresponding objective
and gradient. Feed these to optim and try them out. Think about how hint iv), above in
#a, on initialization and search bounds might port to this higher-dimensional setting.
Considering these bounds, do you need to perform more than one optim to converge to
a final solution? What stopping criteria could be used to determine how many? (Hint: It
might help to try optim without derivatives first.) Compare timings and progress to your
one-at-a-time searches from part #a.

#2: Sequential ISMPE-based design

The hetGP package (Binois and Gramacy, 2019) on CRAN offers a bare-bones GP capability
similar to laGP’s. The two packages differ somewhat in their strategy toward inference, im-
plementation, and support of covariance kernels. But those are largely cosmetic distinctions.
Their fancier features, which target computationally tractable mean and variance nonsta-
tionarity, are quite distinct and are covered in detail in Chapter 10 and §9.3, respectively.
Another difference lies in their support of integrated-variance-based sequential design. As we
saw above, laGP (Gramacy and Sun, 2018) supports ALC design augmentation (§6.2.2) via
sums over reference sets, whereas hetGP supports batch IMSPE (§6.1.2) through closed form
integration over rectangular domains. The reasons for this disparity are intimately related
to the nature of their fancier features. Finally, both alcGP/alcGPsep and IMSPE support
candidate-based search without derivatives, as we have illustrated above.

The hetGP package additionally provides a sequential IMSPE analog automating search for
xn+1 with derivatives in a carefully optimized Rcpp implementation. See IMSPE_optim in that
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package. Your task in this exercise is to empirically explore sequential design under IMSPE
and compare it to ALC. Note that alcoptGP and alcoptGPsep support derivatives, so you
may optionally/additionally choose to use one of these rather than what’s implemented in
the chapter.

a. Wrap our 2d ALC sequential design code from §6.2.2 into a function that initializes
with a design Xn0 ≡ Xinit, provided as an argument, and iterates to an N = 100-sized
design. Use updateGP to incorporate each selection, but skip MLE updates in order
to better compare apples-to-apples with hetGP. Use (θ, g) = (0.1, 0.01). Keep track of
progress over the iterations, as well as total compute time. Calculate RMSE to testing
data provided, where both testing and training data come from our 2d test function
introduced in §5.1.2 and coded as f in §6.2.1. A multi-start scheme with n locations
in search of xn+1, which was tailored to ALM’s highly multimodal surface, is overkill
for ALC. IMSPE_optim uses far fewer than that. Modify xnp1.search to use just five,
specifying T=100*5 iterations of mymaximin.

b. Create a sequential IMPSE analog to #a using IMSPE_optim and hetGP’s update
capability. The package doesn’t have a newGP analog, but calling mleHomGP with
known=list(theta=theta, g=g) and maxit=0 implements a similar setup – skipping
MLE calculations.

c. Compare alternatives from #a and #b (creating two designs initialized with the same
n0 = 12-sized seed design Xn0 ≡ X) qualitatively through views on the design(s), and
quantitatively through compute time and progress over sequential design iterations with
out-of-sample RMSE.

d. Repeat #c one hundred times, each with a new initializing LHS Xn0 ≡ X, and report on
compute times and the distribution of RMSEs over the iterations.

#3: Distance-distributed design

Zhang et al. (2020) argue that designs based on a diversity of pairwise distances between rows
of Xn, i.e., those quantities which appear in evaluating inverse exponentiated distance-based
kernels, are better for estimating lengthscales θ̂ than space-filling designs. In fact, random
designs are better than maximin and sometimes also better than LHS.

a. Show that maximin designs offer a highly multimodal pairwise (un-squared) Euclidean
distance distribution that would bias inference for θ̂ towards certain ranges. Moreover,
argue that they may entirely preclude reliable estimation of small θ̂-values. Specifically,
use mymaximin from §4.2.1, or any of its upgrades from your solution to homework
exercises in §4.4, to generate 100 n = 8-sized maximin designs in the m = 2-dimensional
domain [0, 1]2. Calculate all 100 · 8 · 7/2 = 2800 pairwise distances, plot their histogram
or kernel density and comment.

b. One way to obtain a greater diversity of pairwise Euclidean distances would be to
deliberately target their uniform distribution. Zhang et al. (2020) calculate that, in 2d,
pairwise distances distributed as Beta(2, 5) are better than uniform. Develop a scheme in
the style of mymaximin or maxent which searches for a betadist design whose distribution
of pairwise distances (divided by

√
2 for [0, 1]2) follows Beta(α, β). Uniform and Beta(2, 5)

may be calculated as special cases. Use Kolmogorov–Smirnov distance10 via ks.test in
R to measure the distance between the empirical distribution of pairwise distances in
your X designs to the target distribution. Keep track of progress in your search. Visualize

10https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test

https://en.wikipedia.org/wiki/Kolmogorov-Smirnov_test
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a couple of n = 8-sized Beta(2, 5)-dist designs in terms of their locations in 2d, progress
in search, and their empirical distribution of distances compared to the target.

c. One of the best uses for betadist designs is in sequential application. Getting reliable θ̂n0

is crucial to avoiding vicious cycles in learning and sequential selection of augmenting
designs. Using the 2d test function introduced in §5.1.2 and coded as f in §6.2.1,
along with associated 100× 100 out-of-sample testing grid, calculate sequential designs
under ALM with the following setup: (i) update MLE calculations for θ̂n ∈ (0,

√
2] and

ĝn ∈ (0, 1), as n → n + 1 with searches initialized at (θ0, g0) = (0.5, 1); (ii) seed with
n0 = 8 points under maximin, random, LHS, and Beta(2, 5)-dist criteria and subsequently
perform 56 sequential design iterations for N = 64 total; (iii) visualize RMSE progress
over the 56 iterations for the four initializing comparators.

d. Repeat #c thirty times in an MC fashion and visualize progress for the four initializing
comparators through mean and upper-90% quantile summarizing the distribution of
RMSEs.

#4: Sequential GP updates

This exercise fleshes out some of the details behind fast updates of GP hyperparameters in
§6.3.

a. Consider the MLE for τ2 conditional on the hyperparameters (e.g., θ and g) to the
covariance structure of a GP. Derive an updating rule for τ2 as we increase from n to
n+ 1 data points, i.e., τ̂2

n → τ̂2
n+1 that uses only the previous estimate, i.e., τ̂2

n, and rows
and columns of K−1

n+1 as prescribed by the partitioned inverse equations (6.8). What
is the computational order of your update (i.e., additional to the cost of decomposing
K−1
n+1 using partition inverse equations)?

b. Revisit exercise #3 from §5.5 which augments the GP with a linear mean, via coefficients
β. Derive updates for the MLE β̂n → β̂n+1, and revise your updates for τ̂2

n → τ̂2
n+1

accordingly. Note that, in both cases, it’s not necessary that you express the update
for the n+ 1st estimator (e.g., β̂n+1) directly in terms of nth one (i.e., β̂n). Rather, you
may express it in terms of updates to it’s relevant sub-calculations (e.g., X>n K−1

n Xn →
X>n+1K

−1
n+1Xn+1). Say what the computational order is of the updates in each case, i.e.,

additional to the cost of decomposing K−1
n+1 with partitioned inverse equations, and

other quantities already calculated up to point n.

#5: Sequential design in a nonstationary regime

Consider again the LGBB data (e.g., from exercise #8 in §5.5), but this time with the “fill”
version, which is on a much denser grid, and using the side response. Keep things in 2d,
where visualization is easiest, and consider only the subset of these data where the side-slip
angle beta is two.

load("lgbb/lgbb_fill.RData")
X <- lgbb.fill[,1:2]
y <- lgbb.fill$side
btwo <- lgbb.fill$beta == 2
X <- X[btwo,]
y <- y[btwo]
length(y)



6.4 Homework exercises 259

## [1] 4212

Finally, treat these data as deterministic evaluations. Now, we’re not going to use these data
directly. This will represent our full cache of potential runs. We’re going to build up our
own active cache by active learning.

a. Appropriate your mymaximin.cand function from §4.4 exercise #4, or try
mymaximin.cand from the maximin library (Sun and Gramacy, 2019) on CRAN. Gen-
erate a space-filling training design Xn of size n = 200 from among the candidates in
X. Get the Yn-values at those inputs (a subset of the full ys) and fit a separable GP to
those (Xn, Yn) pairs. Obtain predictions at the entire set of X locations, including both
training and remaining candidates, and report on the RMSE of those predictions by
comparing them to the true y values.

b. Write code to build ALM and ALC sequential designs by choosing from the X candidates,
and incorporate the y values of the chosen design elements Xn as n = 31, . . . , 200 after
initializing with a n0 = 30-sized maximin.cand design. Do this for the three different
GP specifications as described below. Track and report RMSE on the entire set of X
locations, including both training and remaining candidates, for each sequential design
iteration n = 31, . . . , 200. Additionally provide image/contour plots of predictive surfaces
at the end of the design iterations. Note that in the case of #2, below, you’ll need to
think carefully about how you’re going to combine across the GPs in the partition(s).
1. A separable GP with a parameterization that updates as the designs grow, on a

schedule that you determine is sufficient.
2. Two separable GPs on a partition of the input space: GP1 governs speeds less

than mach 2; GP2 governs speeds greater than or equal to mach 2. Both GP’s
hyperparameters should be updated as designs grow, on a schedule that you deem
sufficient.

c. Repeat building designs in this way (#b), and tracking progress, as many times as you
can (up to thirty, say), in order to report average progress with quantiles.
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Optimization

In this chapter, the goal is to demonstrate how Gaussian process (GP) surrogate modeling
can assist in optimizing a blackbox objective function. That is, a function about which one
knows little – one opaque to the optimizer – and that can only be probed through expensive
evaluation. We view optimization as an example of sequential design or active learning
(§6.2}). Many names have been given to this enterprise, and some will be explained alongside
their origins below. Recently Bayesian Optimization (BO)1 has caught on, especially in the
machine learning (ML) community, and likely that’ll stick in part because it’s punchier than
the alternatives. BO terminology goes back to a paper predating use of GPs toward this
end, and refers primarily to decision criteria for sequential selection and model updating.
Modern ML vernacular prefers acquisition functions. BO’s recent gravitas is primarily due
to the prevailing view of GP learning as marginalization over a latent random field (§5.3.2).

The role of modeling in optimization, more generically, has a rich history, and we’ll barely
scratch the surface here. Models deployed to assist in optimization can be both statistical and
non-statistical, however the latter often have strikingly similar statistical analogs. Potential
for modern nonparametric statistical surrogate modeling in this context is just recently
being recognized by communities for which optimization is bread-and-butter: mathematical
programming, statistics, ML, and more. Optimization has played a vital role in stats and
ML for decades. All those "L-BFGS-B" searches (Byrd et al., 1995) from optim in earlier
chapters, say to find MLEs or optimal designs, are cases in point. It’s intriguing to wonder
whether statistical thinking might have something to give back to the optimization world,
as it were.

Whereas many communities have long settled for local refinement, statistical methods based
on nonparametric surrogate models offer promise for greater scope. True global optimization,
whatever that means, may always remain illusive and enterprises motivated by such lofty goals
may be folly. But anyone suggesting that wider perspective is undesirable, and that systematic
frameworks developed toward that end aren’t worth exploring, is ignoring practitioners and
clients who are optimistic that the grass is greener just over the horizon.

Statistical decision criteria can leverage globally scoped surrogates to balance exploration
(uncertainty reduction; Chapter 6) and exploitation (steepest ascent; Chapter 3) in order to
more reliably find global optima. But that’s just the tip of the iceberg. Statistical models
cope handily with noisy blackbox evaluations – a situation where probabilistic reasoning
ought to have a monopoly – and thus lend a sense of robustness to solutions and to a
notion of convergence. They offer the means of uncertainty quantification (UQ) about many
aspects, including the chance that local or global optima were missed. Extension to related,
optimization-like criteria such as level-set/contour finding (e.g., Ranjan et al., 2008) is
relatively straightforward, although these topics aren’t directly addressed in this chapter.
See §10.3.4 for pointers along these lines.

It’s important to disclaim that thinking statistically need not preclude application of more

1https://bayesopt.github.io/
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classical approaches. Surrogate modeling naturally lends itself to hybridization. Ideas from
mathematical programming not only have merit, but their software is exceedingly well
engineered. Let’s not throw the baby out with the bath water. It makes sense to borrow
strengths from multiple toolkits and leverage solid implementation and decades of stress
testing.

Although the main ideas on statistical surrogate modeling for optimization originate in the
statistics literature, it’s again machine learners who are making the most noise in this area
today. This is, in part, because they’re more keen to adopt the rich language of mathematical
programming, and therefore better able to connect with the wider optimization community.
Statisticians tend to get caught up in modeling details and forget that optimization is as
much about execution as it’s about methodology. Practitioners want to use these tools, but
rarely have the in-house expertise required to code them up on their own. General purpose
software leveraging surrogates has been slow to come online. An important goal of this
chapter is to show how that might work, and to expose substantial inroads along those lines.

We’ll see how modern nonparametric surrogate modeling and clever (yet arguably heuristic)
criteria, that often can be solved in closed form, may be combined to effectively balance
exploration and exploitation. Emphasis here is on GPs, but many methods are agnostic to
choices of surrogate. We begin by targeting globally scoped numerical optimization, leveraging
only blackbox evaluations of an objective function supplied by the user. Subsequently, we
shall embellish that setup with methods for handling constraints, known and unknown (i.e.,
also blackbox); hybridize with modern methods from mathematical programming; and talk
about applications from toy to real data.

7.1 Surrogate-assisted optimization

Statistical methods in optimization, in particular of noisy blackbox functions, probably goes
back to Box and Draper (1987), a precursor to a canonical response surface methods text by
the same authors (Box and Draper, 2007). Modern Bayesian optimization (BO) is closest in
spirit to methods described by Mockus et al. (1978) in a paper entitled “The application of
Bayesian methods for seeking the extremum”. Yet many strategies suggested therein didn’t
come to the fore until the late 1990’s, perhaps because they emphasized rather crude (linear)
modeling. As GPs became established for modeling computer simulations, and subsequently
in ML in the 2000s, new life was breathed in.

In the computer experiments literature, folks have been using GPs to optimize functions for
some time. One of the best references for the core idea might be Booker et al. (1999), with
many ingredients predating that paper. They called it surrogate-assisted optimization, and
it involved a nice collaboration between optimization and computer modeling researchers.
Non-statistical surrogates had been in play in optimization for some time. Nonparametric
statistical ones, with more global scope, offered fresh perspective.

The methodology is simple: train a GP on function evaluations obtained so far; minimize the
fitted surrogate predictive mean surface of the GP to select the next location for evaluation;
repeat. This is an instance of Algorithm 6.1 in §6.2 where the criterion J(x) in Step 3
is based on GP predictive mean µn(x) = E{Y (x) | Dn} provided in Eq. (5.2). Although
Step 3 deploys its own inner-optimization, minimizing µn(x) is comparatively easy since it
doesn’t involve evaluating a computationally intensive, and potentially noisy, blackbox. It’s
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something that can easily be solved with conventional methods. As a shorthand, and to
connect with other acronyms like EI and PI below, I shall refer to this “mean criterion” as
the EY heuristic for surrogate-assisted (Bayesian) optimization (BO).

Before we continue, let’s be clear about the problem. Whereas the RSM literature (Chapter
3) orients toward maxima, BO and math programming favor minimization, which I shall
adopt for our discussions here. Specifically, we wish to find

x? = argminx∈X f(x)

where X is usually a hyperrectangle, a bounding box, or another simply constrained region.
We don’t have access to derivative evaluations for f(x), nor do we necessarily want them (or
want to approximate them) because that could represent additional substantial computational
expense. As such, methods described here fall under the class of derivative-free optimization.
See, e.g., Conn et al. (2009), for which many innovative algorithms have been proposed,
and many solid implementations are widely available. For a somewhat more recent review,
including several of the surrogate-assisted/BO methods introduced here, see Larson et al.
(2019).

All we get to do is evaluate f(x), which for now is presumed to be deterministic. Gener-
alizations will come after introducing main concepts, including simple extensions for the
noisy case. The literature targets scenarios where f(x) is expensive to evaluate (in terms of
computing time, say), but otherwise is well-behaved: continuous, relatively smooth, only
real-valued inputs, etc. Again, these are relaxable modulo suitable surrogate and/or kernel
structure. Several appropriate choices are introduced in later chapters.

Implicit in the computational expense of f(x) evaluations is a tacit “constraint” on the
solver, namely that it minimize the number of such evaluations. Although it’s not uncommon
to study aspects of convergence in these settings, often the goal is simply to find the best
input, x? minimizing f , in the fewest number of evaluations. So in empirical comparisons we
typically track the best objective value (BOV) found as a function of the number of blackbox
evaluations. In many applied contexts it’s more common to have a fixed evaluation budget
than it is to enjoy the luxury of running to convergence. Nevertheless, monitoring progress
plays a key role when deciding if further expensive evaluations may be required.

7.1.1 A running example

Consider an implementation of Booker et al.’s method on a re-scaled/coded version of
the Goldstein–Price2 function. See §1.4 homework exercises for more on this challenging
benchmark problem.

f <- function(X)
{
if(is.null(nrow(X))) X <- matrix(X, nrow=1)
m <- 8.6928
s <- 2.4269
x1 <- 4*X[,1] - 2
x2 <- 4*X[,2] - 2

2http://www.sfu.ca/~ssurjano/goldpr.html

http://www.sfu.ca/~ssurjano/goldpr.html
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a <- 1 + (x1 + x2 + 1)^2 *
(19 - 14*x1 + 3*x1^2 - 14*x2 + 6*x1*x2 + 3*x2^2)

b <- 30 + (2*x1 - 3*x2)^2 *
(18 - 32*x1 + 12*x1^2 + 48*x2 - 36*x1*x2 + 27*x2^2)

f <- log(a*b)
f <- (f - m)/s
return(f)
}

Although this f(x) isn’t opaque to us, and not expensive to evaluate, we shall treat it as
such for purposes of illustration. Not much insight can be gained by looking at its form
in any case, except to convince the reader that it furnishes a suitably complicated surface
despite residing in modest input dimension (m = 2).

Begin with a small space-filling Latin hypercube sample (LHS; §4.1) seed design in 2d.

library(lhs)
ninit <- 12
X <- randomLHS(ninit, 2)
y <- f(X)

Next fit a separable GP to those data, with a small nugget for jitter. All of the same caveats
about initial lengthscales in GP-based active learning – see §6.2.1 – apply here. To help
create a prior on θ that’s more stable, darg below utilizes a large auxiliary pseudo-design in
lieu of X, which at early stages of design/optimization (n0 = 12 runs) may not yet possess a
sufficient diversity of pairwise distances.

library(laGP)
da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, 2))
gpi <- newGPsep(X, y, d=da$start, g=1e-6, dK=TRUE)
mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)$msg

## [1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"

Just like our ALM/C searches from §6.2, consider an objective based on GP predictive
equations. This represents an implementation of Step 3 in Algorithm 6.1 for sequential
design/active learning, setting EY as sequential design criterion J(x), or defining the
acquisition function in ML jargon.

obj.mean <- function(x, gpi)
predGPsep(gpi, matrix(x, nrow=1), lite=TRUE)$mean

Now the predictive mean surface (like f , through the evaluations it’s trained on) may have
many local minima, but let’s punt for now on the ideal of global optimization of EY – of the
so-called “inner loop” – and see where we get with a search initialized at the current best
value. R code below extracts that value: m indexing the best y-value obtained so far, and
uses its x coordinates to initialize a "L-BFGS-B" solver on obj.mean.
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m <- which.min(y)
opt <- optim(X[m,], obj.mean, lower=0, upper=1, method="L-BFGS-B", gpi=gpi)
opt$par

## [1] 0.4465 0.3256

So this is the next point to try. Surrogate optima represent a sensible choice for the next
evaluation of the expensive blackbox, or so the thinking goes. Before moving to the next
acquisition, Figure 7.1 provides a visualization. Open circles indicate locations of the size-n0
LHS seed design. The origin of the arrow indicates X[m,]: the location whose y-value is
lowest based on those initial evaluations. Its terminus shows the outcome of the optim call:
the next point to try.

plot(X[1:ninit,], xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(X[m,1], X[m,2], opt$par[1], opt$par[2], length=0.1)
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FIGURE 7.1: First iteration of EY-based search initialized from the value of the objective
obtained so far.

Ok, now evaluate f at opt$par, update the GP and its hyperparameters . . .

ynew <- f(opt$par)
updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)
mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)
X <- rbind(X, opt$par)
y <- c(y, ynew)

. . . and solve for the next point.

m <- which.min(y)
opt <- optim(X[m,], obj.mean, lower=0, upper=1, method="L-BFGS-B", gpi=gpi)
opt$par
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## [1] 0.4983 0.2847

Figure 7.2 shows what that looks like in the input domain, as an update on Figure 7.1. In
particular, the terminus of the arrow in Figure 7.1 has become an open circle in Figure 7.2,
as that input–output pair has been promoted into the training data with GP fit revised
accordingly.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(X[m,1], X[m,2], opt$par[1], opt$par[2], length=0.1)
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FIGURE 7.2: Second iteration of EY search following Figure 7.1.

If the origin of the new arrow resides at the newly minted open circle, then we have progress:
the predictive mean surface was accurate and indeed helpful in finding a new best point,
minimizing f . If not, then the origin is back at the same open circle it originated from before.

Now incorporate the new point into our dataset and update the GP predictor.

ynew <- f(opt$par)
updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)
mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)
X <- rbind(X, opt$par)
y <- c(y, ynew)

Let’s fast-forward a little bit. Code below wraps what we’ve been doing above into a while
loop with a simple check on convergence in order to “break out”. If two outputs in a row are
sufficiently close, within a tolerance 1e-4, then stop. That’s quite crude, but sufficient for
illustrative purposes.

while(1) {
m <- which.min(y)
opt <- optim(X[m,], obj.mean, lower=0, upper=1,
method="L-BFGS-B", gpi=gpi)
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ynew <- f(opt$par)
if(abs(ynew - y[length(y)]) < 1e-4) break;
updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)
mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)
X <- rbind(X, opt$par)
y <- c(y, ynew)

}
deleteGPsep(gpi)

To help measure progress, code below implements some post-processing to track the best
y-value (bov: best objective value) over those iterations. The function is written in some
generality in order to accommodate application in several distinct settings, coming later.

bov <- function(y, end=length(y))
{
prog <- rep(min(y), end)
prog[1:min(end, length(y))] <- y[1:min(end, length(y))]
for(i in 2:end)

if(is.na(prog[i]) || prog[i] > prog[i-1]) prog[i] <- prog[i-1]
return(prog)
}

In our application momentarily, note that we treat the n0 = 12 seed design the same as later
acquisitions, even though they were not derived from the surrogate/criterion.

prog <- bov(y)

That progress meter is shown visually in Figure 7.3. A vertical dashed line indicates n0, the
size of seed LHS design.

plot(prog, type="l", col="gray", xlab="n: blackbox evaluations",
ylab="best objective value")

abline(v=ninit, lty=2)
legend("topright", "seed LHS", lty=2, bty="n")

Although it’s difficult to comment on particulars due to random initialization, in most
variations substantial progress is apparent over the latter 14 iterations of active learning.
There may be plateaus where consecutive iterations show no progress, but these are usually
interspersed with modest “drops” and even large “plunges” in BOV. When comparing
optimization algorithms based on such progress metrics, the goal is to have BOV curves hug
the lower-left-hand corner of the plot to the greatest extent possible: to have the best value
of the objective in the fewest number of iterations/evaluations of the expensive blackbox.

To better explore diversity in progress over repeated trials with different random seed
designs, an R function below encapsulates our code from above. In addition to a tolerance
on successive y-values, an end argument enforces a maximum number of iterations. The full
dataset of inputs X and evaluations y is returned.
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FIGURE 7.3: EY progress in terms of BOV over sequential design iterations.

optim.surr <- function(f, m, ninit, end, tol=1e-4)
{
## initialization
X <- randomLHS(ninit, m)
y <- f(X)
da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, m))
gpi <- newGPsep(X, y, d=da$start, g=1e-6, dK=TRUE)
mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

## optimization loop
for(i in (ninit+1):end) {
m <- which.min(y)
opt <- optim(X[m,], obj.mean, lower=0, upper=1,

method="L-BFGS-B", gpi=gpi)
ynew <- f(opt$par)
if(abs(ynew - y[length(y)]) < tol) break;
updateGPsep(gpi, matrix(opt$par, nrow=1), ynew)
mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)
X <- rbind(X, opt$par)
y <- c(y, ynew)

}

## clean up and return
deleteGPsep(gpi)
return(list(X=X, y=y))
}

Consider re-seeding and re-solving the optimization problem, minimizing f, in this way over
100 Monte Carlo (MC) repetitions. The loop below combines calls to optim.surr with prog
post-processing. A maximum number of end=50 iterations is allowed, but often convergence
is signaled after many fewer acquisitions.
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reps <- 100
end <- 50
prog <- matrix(NA, nrow=reps, ncol=end)
for(r in 1:reps) {
os <- optim.surr(f, 2, ninit, end)
prog[r,] <- bov(os$y, end)

}

It’s important to note that these are random initializations, not random searches. Searches
(after initialization) are completely deterministic. Surrogate-assisted/Bayesian optimization
is not a stochastic optimization, like simulated annealing3, although sometimes deterministic
optimizers are randomly initialized as we have done here. Stochastic optimizations, where
each sequential decision involves a degree of randomness, don’t make good optimizers for
expensive blackbox functions because random evaluations of f are considered too wasteful
in computational terms.

Figure 7.4 shows the 100 trajectories stored in prog.

matplot(t(prog), type="l", col="gray", lty=1,
xlab="n: blackbox evaluations", ylab="best objective value")

abline(v=ninit, lty=2)
legend("topright", "seed LHS", lty=2, bty="n")
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FIGURE 7.4: Multiple BOV progress paths following Figure 7.3 under random reinitial-
ization.

Clearly this is not a global optimization tool. It looks like there are three or four local
optima, or at least the optimizer is being pulled toward three or four domains of attraction.
Before commenting further, it’ll be helpful to have something to compare to.

3https://en.wikipedia.org/wiki/Simulated_annealing

https://en.wikipedia.org/wiki/Simulated_annealing
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7.1.2 A classical comparator

How about our favorite optimization library: optim using "L-BFGS-B"? Working optim in
as a comparator requires a slight tweak.

Code below modifies our objective function to help keep track of the full set of y-values
gathered over optimization iterations, as these are not saved by optim in a way that’s
useful for backing out a progress meter (e.g., prog) for comparison. (The optim method
works just fine, but it was not designed with my illustrative purpose in mind. It wants to
iterate to convergence and give the final result rather than bother you with the details of
each evaluation. A trace argument prints partial evaluation information to the screen, but
doesn’t return those values for later use.) So the code below updates a y object stored in
the calling environment.

fprime <- function(x)
{
ynew <- f(x)
y <<- c(y, ynew)
return(ynew)
}

Below is the same for loop we did for EY-based surrogate-assisted optimization, but with a
direct optim instead. A single random coordinate is used to initialize search, which means
that optim enjoys ninit - 1 extra decision-based acquisitions compared to the surrogate
method. (No handicap is applied. All expensive function evaluations count equally.) Although
optim may utilize more than fifty iterations, our extraction of prog implements a cap of
fifty.

prog.optim <- matrix(NA, nrow=reps, ncol=end)
for(r in 1:reps) {
y <- c()
os <- optim(runif(2), fprime, lower=0, upper=1, method="L-BFGS-B")
prog.optim[r,] <- bov(y, end)

}

How does optim compare to surrogate-assisted optimization with EY? Figure 7.5 shows that
surrogates are much better on a fixed budget. New prog measures for optim are shown in
red.

matplot(t(prog.optim), type="l", col="red", lty=1,
xlab="n: blackbox evaluations", ylab="best objective value")

matlines(t(prog), type="l", col="gray", lty=1)
legend("topright", c("EY", "optim"), col=c("gray", "red"), lty=1, bty="n")

What makes EY so much better; or optim so much worse? Several things. First, "L-BFGS-B"
spends precious blackbox evaluations on approximating derivatives. That explains the regular
plateaus every five or so iterations. Each step spends roughly 2m calls to f on calculating a
tangent plane, alongside one further call at each newly chosen location, which is often just a
short distance away. By comparison, surrogates provide a sense of derivative for “free”, not
just locally but everywhere. The curious reader may wish to try method="Nelder-Mead"
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FIGURE 7.5: Augmenting Figure 7.4 to include a "L-BFGS-B" comparator under random
restarts.

instead (Nelder and Mead, 1965), which is the default in optim. Nelder-Mead doesn’t support
search bounds, so the objective must be modified slightly to prevent search wandering well
outside our domain of interest. Nelder-Mead doesn’t approximate derivatives, so its progress
is a little “smoother” and also a little faster on this 2d problem (when constrained to the
box), but is ultimately not as good as the surrogate method. I find that "L-BFGS-B" is more
robust, especially in higher dimension, and I like that you can specify a bounding box.

Second, whereas optim, using "L-BFGS-B" or "Nelder-Mead", emphasizes local refinements
– leveraging some limited memory, which is like using a model of sorts but not a statistical
one – surrogates hold potential for large steps because their view of the response surface is
more broad. On occasion, that helps EY escape from local minima, which is more likely in
early rather than later iterations.

By and large, surrogate-assisted optimization with EY is still a local affair. Its advantages
stem primarily from an enhanced sense of perspective. It exploits, by moving to the next
best spot from where it left off, descending with its own optim subroutine on µn(x). As
implemented, it doesn’t explore places that cannot easily be reached from the current
best value. It could help to initialize optim subroutines elsewhere, but the success of such
variations is highly problem dependent. Sometimes it helps a little, sometimes it hurts.

What’s missing is some way to balance exploration and exploitation. By the way, notice
that we’re not actually doing statistics, because at no point is uncertainty being taken into
account. Only predictive means are used; predictive variance doesn’t factor in. One way to
incorporate uncertainty is through the lower confidence bound (LCB) heuristic (Srinivas
et al., 2009). LCB is a simple linear combination between mean and standard deviation:

αLCB(x) = −µn(x) + βnσn(x), and xn+1 = argmaxx αLCB(x). (7.1)

LCB introduces a sequence of tuning parameters βn, targeting a balance between exploration
and exploitation as iterations of optimization progress. Larger βn lead to more conservative
searches, until in the limit µn(x) is ignored and acquisitions reduce to ALM (§6.2.1). A
family of optimal choices β̂n may be derived by minimizing regret in a multi-armed bandit



272 7 Optimization

setting4, however in practice such theoretically automatic selections remain unwieldy for
practitioners.

There’s a twist on EY, called Thompson sampling (Thompson, 1933), that gracefully
incorporates predictive uncertainty. Rather than optimize the predictive mean directly, take
a draw from the (full covariance) posterior predictive distribution (5.3), and optimize that
instead. Each iteration of search would involve a different, independent surrogate function
draw. Therefore, a collection of many optimization steps would feel the effect of a sense of
relative uncertainty through a diversity of such draws. Sparsely sampled parts of the input
space could see large swings in surrogate optima, which would lead to exploratory behavior.
No setting of tuning parameters required.

There are several disadvantages to Thompson sampling however. One is that it’s a stochastic
optimization. Each iteration of optimization is based on an inherently random process.
Another is that you must commit to a predictive grid in advance, in order to draw from
posterior predictive equations, which rules out (continuous) library-based optimization in
the inner loop, say by "L-BFGS-B". Actually it’s possible to get around a predictive grid
with a substantially more elaborate implementation involving iterative applications of MVN
conditionals (5.1). But there’s a better, easier, and more deterministic way to accomplish
the same feat by deliberately acknowledging a role for predictive variability in acquisition
criteria.

7.2 Expected improvement

In the mid 1990s, Matthias Schonlau (1997) was working on his dissertation, which basically
revisited Mockus’ Bayesian optimization idea from a GP and computer experiments perspec-
tive. He came up with a heuristic called expected improvement (EI), which is the basis of the
so-called efficient global optimization (EGO) algorithm. This distinction is subtle: one is the
sequential design criterion (EI), and the other is its repeated application toward minimizing
a blackbox function (EGO). In the literature, you’ll see the overall method referred to by
both names/acronyms.

Schonlau’s key insight was that predictive uncertainty is underutilized by surrogate frame-
works for optimization, which is especially a shame when GPs are involved because they
provide such a beautiful predictive variance function. The basic tenets, however, are not
limited to GP surrogates. The key is to link prediction to potential for optimization via a
measure of improvement. Let fnmin = min{y1, . . . , yn} be the smallest, best blackbox objec-
tive evaluation obtained so far, i.e., the BOV quantity we tracked with prog in our earlier
illustrations. Schonlau defined potential for improvement over fnmin at an input location x as

I(x) = max{0, fmin
n − Y (x)}.

I(x) is a random variable. It measures the amount by which a response Y (x) could be below
the BOV obtained so far. Here Y (x) is shorthand for Y (x) | Dn, the predictive distribution
obtained from a fitted model. If Y (x) | Dn has non-zero probability of taking on any value
on the real line, as it does under a Gaussian predictive distribution, then I(x) has nonzero
probability of being positive for any x.

4https://en.wikipedia.org/wiki/Multi-armed_bandit

https://en.wikipedia.org/wiki/Multi-armed_bandit
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Now there are lots of things you could imagine doing with I(x). (Something must be
done because in its raw form, as a random variable, it’s of little practical value.) One
option is to convert it into a probability. The probability of improvement (PI) criterion is
PI(x) = P (I(x) > 0 | Dn), which is equivalent to P (Y (x) < fnmin | Dn). Maximizing PI is
sensible, but could result in very small steps. The most probable input x? = maxx PI(x)
may not hold the greatest potential for large improvement, which is important when
considering the tacit goal of minimizing the number of expensive blackbox evaluations.
Instead, maximizing expected improvement (EI), EI(x) = E{I(x) | Dn}, more squarely
targets potential for large improvement.

The easiest way to calculate PI or EI, where “easy” means agnostic to the form of Y (x) | Dn,
is through MC approximation. Draw y(t) ∼ Y (x) | Dn, for t = 1, . . . , T , from their posterior
predictive distribution, and average

PI(x) ≈ 1
T

T∑
t=1

I{y(t)>0} or EI(x) ≈ 1
T

T∑
t=1

max{0, fnmin − y(t)}.

In the limit as T →∞ these approximations become exact. This approach works no matter
what the distribution of Y (x) is, so long as you can simulate from it. With fully Bayesian
response surface methods leveraging Markov chain Monte Carlo (MCMC) posterior sampling,
say, such approximation may represent the only viable option.

However if Y (x) | Dn is Gaussian, as it’s under the predictive equations of a GP surrogate
conditional on a particular set of hyperparameters, both have a convenient closed form.
PI involves a standard Gaussian CDF (Φ) evaluation, as readily calculated with built-in
functions in R.

PI(x) = Φ
(
fnmin − µn(x)

σn(x)

)
(7.2)

Transparent in the formula above is that both predictive mean and uncertainty factor into
the calculation.

Deriving EI takes a little more work, but nothing an A+ student of calculus couldn’t do
using substitution and integration by parts. Details are in an appendix of Schonlau’s thesis.
I shall simply quote the final result here.

EI(x) = (fnmin − µn(x)) Φ
(
fnmin − µn(x)

σn(x)

)
+ σn(x)φ

(
fnmin − µn(x)

σn(x)

)
, (7.3)

where φ is the standard Gaussian PDF. Notice how EI contains PI as a component in a
larger expression. “One half” of EI is PI multiplied (or weighted) by the amount by which
the predictive mean is below fnmin. The other “half” is predictive variance weighted by
a Gaussian density evaluation. In this way, maximizing EI organically and transparently
balances competing goals of exploitation (µn(x) below fnmin) and exploration (large predictive
uncertainty σn(x)).

In what follows the discussion drops PI and focuses exclusively on EI. An exercise in
§7.4 encourages the curious reader to rework examples below by swapping in a simple PI
implementation, in addition to other alternatives.
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7.2.1 Classic EI illustration

As a first illustration of EI, code chunks below recreate an example and visuals presented
in the first published/journal manuscript describing EI/EGO (Jones et al., 1998). I like to
introduce Schonlau’s thesis first to give him proper credit, whereas the Journal of Global
Optimization article linked in the previous sentence is often cited as Jones, et al. (1998).
Consider data Dn = (Xn, Yn) hand-coded in R below, which was taken by eyeball from
Figure 10 in that paper, and re-centered to have a mean near zero. Observe the deliberate
gap in the input space between fourth and fifth inputs, scanning from the left.

x <- c(1, 2, 3, 4, 12)
y <- c(0, -1.75, -2, -0.5, 5)

Code below initializes a GP fit on these data with hyperparameterization chosen to match
that figure, again by eyeball. (It’s such a great example from a pedagogical perspective, I
didn’t want to blow it. We’ll do a more dynamic and novel illustration shortly.) Predictions
may then be obtained on a dense grid in the input space.

gpi <- newGP(matrix(x, ncol=1), y, d=10, g=1e-8)
xx <- seq(0, 13, length=1000)
p <- predGP(gpi, matrix(xx, ncol=1), lite=TRUE)

Ok, we have everything we need to calculate EI (7.3). R code below evaluates that equation
using predictive quantities stored in p after calculating fnmin from the small initial set of y
values.

m <- which.min(y)
fmin <- y[m]
d <- fmin - p$mean
s <- sqrt(p$s2)
dn <- d/s
ei <- d*pnorm(dn) + s*dnorm(dn)

The left panel in Figure 7.6 shows the predictive surface in terms of mean and approximate
95% error-bars. The predictive mean clearly indicates potential for a solution in the left half
of the input space. Our simple surrogate-assisted EY optimizer (§7.1.2) would exploit that
low mean and acquire the next point there. However, error-bars suggest great potential for
minima in the right half of the input space. Although means are high there, error-bars fall
well below the current best value fnmin, suggesting exploration might be warranted. EI, shown
in the right panel of the figure, synthesizes this information to strike a balance between
exploration and exploitation.

par(mfrow=c(1,2))
plot(x, y, pch=19, xlim=c(0,13), ylim=c(-4,9), main="predictive surface")
lines(xx, p$mean)
lines(xx, p$mean + 2*sqrt(p$s2), col=2, lty=2)
lines(xx, p$mean - 2*sqrt(p$s2), col=2, lty=2)
abline(h=fmin, col=3, lty=3)
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legend("topleft", c("mean", "95% PI", "fmin"), lty=1:3,
col=1:3, bty="n")

plot(xx, ei, type="l", col="blue", main="EI", xlab="x", ylim=c(0,0.15))
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FIGURE 7.6: Classic EI illustration showing predictive surface (left) and corresponding
EI surface (right).

That synthesis creates a multimodal EI surface. It’s a close call between the left and
right options in the input space. Outside of those regions EI is essentially zero, although
theoretically positive. The left mode is higher but narrower. Maximizing EI results in choosing
the input for the next blackbox evaluation, xn+1, somewhere between 2 and 3. Options
other than maximization, towards perhaps a better accounting for breadth of expected
improvement, are discussed in §7.2.3. R code below makes a more precise selection and
incorporates the new pair (xn+1, yn+1).

mm <- which.max(ei)
x <- c(x, xx[mm])
y <- c(y, p$mean[mm])

Notice that the predictive mean is being used for yn+1 in lieu of a “real” evaluation. For a
clean illustration we’re supposing that our predictive mean was accurate, and that therefore
we have a new global optima. A more realistic example follows soon. Code below updates
the GP fit based on the new acquisition and re-evaluates predictive equations on our grid.

updateGP(gpi, matrix(xx[mm], ncol=1), p$mean[mm])
p <- predGP(gpi, matrix(xx, ncol=1), lite=TRUE)
deleteGP(gpi)

Cutting-and-pasting from above, next convert those predictions into EIs based on new fnmin.
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m <- which.min(y)
fmin <- y[m]
d <- fmin - p$mean
s <- sqrt(p$s2)
dn <- d/s
ei <- d*pnorm(dn) + s*dnorm(dn)

Updated predictive surface (left) and EI criterion (right) are provided in Figure 7.7.

par(mfrow=c(1,2))
plot(x, y, pch=19, xlim=c(0,13), ylim=c(-4,9), main="predictive surface")
lines(xx, p$mean)
lines(xx, p$mean + 2*sqrt(p$s2), col=2, lty=2)
lines(xx, p$mean - 2*sqrt(p$s2), col=2, lty=2)
abline(h=fmin, col=3, lty=3)
legend("topleft", c("mean", "95% PI", "fmin"), lty=1:3,
col=1:3, bty="n")

plot(xx, ei, type="l", col="blue", main="EI", xlab="x", ylim=c(0,0.15))

FIGURE 7.7: Predictive surface (left) and EI (right) after the first acquisition; see Figure
7.6.

There are several things to notice from the plots in the figure. Perhaps the most striking
feature lies in the updated EI surface, which now contains just one bump. Elsewhere, EI
is essentially zero. Choosing max EI will result in exploring the high variance region. The
plot is careful to keep the same y-axis compared to Figure 7.6 in order to make transparent
that EI tends to decrease as data are added. It need not always decrease, especially when
hyperparameters are re-estimated when new data arrive. Since τ̂2 is analytic, laGP-based
subroutines always keep this hyperparameter up to date. The implementation above doesn’t
update lengthscale and nugget hyperparameters, but it could. Comparing left panels between
Figures 7.6 and 7.7, notice that predictive variability has been reduced globally even though
a point was added in an already densely-sampled area. Data affect GP fits globally under
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this stationary, default specification, although influence does diminish exponentially as gaps
between training and testing locations grow in the input space.

We’re at the limits of this illustration because it doesn’t really involve a function f , but
rather some data on evaluations gleaned by eyeball from a figure in a research paper. A
more interactive demo is provided as gp_ei_sin.R5 in supplementary material on the book
web page. The demo extends our basic sinusoid example from §5.1.1, but is quite similar
in flavor to the illustration above. Specifically, it combines an EI function from the plgp
package (Gramacy, 2014) with GP fitting from laGP (Gramacy and Sun, 2018) – somewhat
of a hodgepodge but it keeps the code short and sweet. For enhanced transparency on our
running Goldstein–Price example (§7.1.1), we’ll code up our own EI function here, basically
cut-and-paste from above, for use with laGP below.

EI <- function(gpi, x, fmin, pred=predGPsep)
{
if(is.null(nrow(x))) x <- matrix(x, nrow=1)
p <- pred(gpi, x, lite=TRUE)
d <- fmin - p$mean
sigma <- sqrt(p$s2)
dn <- d/sigma
ei <- d*pnorm(dn) + sigma*dnorm(dn)
return(ei)
}

Observe how this implementation combines prediction with EI calculation. That’s a little
inefficient in situations where we wish to record both predictive and EI quantities, as we did
in the example above, especially when evaluating on a dense grid. Rather, it’s designed with
implementation in Step 3 of Algorithm 6.1 in mind. The final argument, pred, enhances
flexibility in specification of fitted model and associated prediction routine.

7.2.2 EI on our running example

To set up EI as an objective for minimization, the function below acts as a wrapper around
- EI.

obj.EI <- function(x, fmin, gpi, pred=predGPsep)
- EI(gpi, x, fmin, pred)

We’ve seen that EI can be multimodal, but it’s not pathologically so like ALM and, to a
lesser extent, ALC. ALM/C inherit multimodality from the sausage-shaped GP predictive
distribution. Although EI is composed of a measure of predictive uncertainty, its hybrid
nature with the predictive mean has a calming effect. Consequently, EI is only high when
both mean is low and variance is high, each contributing to potential for low function
realization. The number of modes in EI may fluctuate throughout acquisition iterations,
but in the long run should resemble the number of troughs in f , assuming minimization.
By contrast, the number of ALM/C modes would increase with n. Like with ALM/C, a
multi-start scheme for EI searches is sensible, but need not include O(n) locations and these

5http://bobby.gramacy.com/surrogates/gp_ei_sin.R

http://bobby.gramacy.com/surrogates/gp_ei_sin.R
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need not be as carefully placed, e.g., at the widest parts of the sausages. A fixed number,
perhaps composed of the input location of the BOV (that corresponding to fnmin, where we
know the function is low) and a few other points spread around the input space, is often
sufficient for decent performance. If not for numerical issues that sometimes arise when
EI evaluations are numerically zero for large swaths of inputs, having just two multi-start
locations (one at fnmin and one elsewhere) often suffices. Working with log EI(x) sometimes
helps in such situations, but I won’t bother in our implementation here.

With those considerations in mind, the function below completes our solution to Algorithm
6.1, specifying J(x) in Step 3 for EI-based optimization. EI.search is similar in flavor to
xnp1.search from §6.2.1, but tailored to EI and the multi-start scheme described above.

eps <- sqrt(.Machine$double.eps) ## used lots below

EI.search <- function(X, y, gpi, pred=predGPsep, multi.start=5, tol=eps)
{
m <- which.min(y)
fmin <- y[m]
start <- matrix(X[m,], nrow=1)
if(multi.start > 1)
start <- rbind(start, randomLHS(multi.start - 1, ncol(X)))

xnew <- matrix(NA, nrow=nrow(start), ncol=ncol(X)+1)
for(i in 1:nrow(start)) {

if(EI(gpi, start[i,], fmin) <= tol) { out <- list(value=-Inf); next }
out <- optim(start[i,], obj.EI, method="L-BFGS-B",

lower=0, upper=1, gpi=gpi, pred=pred, fmin=fmin)
xnew[i,] <- c(out$par, -out$value)

}
solns <- data.frame(cbind(start, xnew))
names(solns) <- c("s1", "s2", "x1", "x2", "val")
solns <- solns[solns$val > tol,]
return(solns)

}

Although a degree of stochasticity is being injected through the multi-start scheme, this
is simply to help the inner loop (maximizing EI), where evaluations are cheap. From
the perspective of the outer loop – iterations of sequential design, with details coming
momentarily – the intention is still to perform a deliberate and deterministic search. Actually
more multi-start locations translate into more careful acquisitions xn+1 and subsequent
expensive blackbox evaluation. The data.frame returned on output has one row for each
multi-start location, although rows yielding effectively zero EI are culled. Multi-start locations
whose first EI evaluation is effectively zero are immediately aborted. There are many further
ways to “robustify” EI.search, but it’s surprising how well things work without much fuss.
For example, Jones et al. (1998) suggested branch and bound6 search rather than multi-start
derivative-based numerical optimization (optim in our implementation above). Providing
gradients to optim can help too. But the improvements that those enhancements offer are
at best slight in my experience.

All right, let’s initialize an EI-based optimization – same as for the two earlier comparators.

6https://en.wikipedia.org/wiki/Branch_and_bound

https://en.wikipedia.org/wiki/Branch_and_bound


7.2 Expected improvement 279

X <- randomLHS(ninit, 2)
y <- f(X)
gpi <- newGPsep(X, y, d=0.1, g=1e-6, dK=TRUE)
da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, 2))

Code below solves for the next input to try, extracting the best row from the output
data.frame.

solns <- EI.search(X, y, gpi)
m <- which.max(solns$val)
maxei <- solns$val[m]

Before acting on that solution, Figure 7.8 summarizes the outcome of search with arrows
indicating starting and ending locations of each multi-start EI optimization. Open circles
mark the original/existing design. The red dot corresponds to the best row.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)
points(solns$x1[m], solns$x2[m], col=2, pch=20)
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FIGURE 7.8: First iteration of EI search on Goldstein–Price objective in the style of
Figure 7.1.

One of the arrows originates from an open circle. This is the multi-start location corresponding
to fnmin. Up to four other arrows come from an LHS. If the total number of arrows is fewer
than 5, the default multi.start in EI.search, that’s because some were initialized in
numerically-zero EI locations, and consequently that search was voided at the outset. Usually
two or more arrows appear, sometimes with distinct terminus indicating a multi-modal
criterion.

Moving on now, code below incorporates the new data at the chosen input location (red
dot) and updates the GP fit.
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xnew <- as.matrix(solns[m,3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGPsep(gpi, xnew, y[length(y)])
mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

We’re ready for the next acquisition. Below the search is combined with a second GP update,
after incorporating the newly selected data pair.

solns <- EI.search(X, y, gpi)
m <- which.max(solns$val)
maxei <- c(maxei, solns$val[m])
xnew <- as.matrix(solns[m,3:4])
X <- rbind(X, xnew)
y <- c(y, f(xnew))
updateGPsep(gpi, xnew, y[length(y)])
mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

Figure 7.9 offers a visual, accompanied by a story that’s pretty similar to Figure 7.8.

plot(X, xlab="x1", ylab="x2", xlim=c(0,1), ylim=c(0,1))
arrows(solns$s1, solns$s2, solns$x1, solns$x2, length=0.1)
points(solns$x1[m], solns$x2[m], col=2, pch=20)
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FIGURE 7.9: Second iteration of EI search after Figure 7.8.

You get the idea. Rather than continue with pedantic visuals, a for loop below repeats in
this way until fifty samples of f have been collected. Hopefully one of them will offer a good
solution to the optimization problem, an x? with a minimal objective value f(x?).
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for(i in nrow(X):end) {
solns <- EI.search(X, y, gpi)
m <- which.max(solns$val)
maxei <- c(maxei, solns$val[m])
xnew <- as.matrix(solns[m,3:4])
ynew <- f(xnew)
X <- rbind(X, xnew)
y <- c(y, ynew)
updateGPsep(gpi, xnew, y[length(y)])
mle <- mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

}
deleteGPsep(gpi)

Notice that no stopping criteria are implemented in the loop. Our previous y-value-based
criterion would not be appropriate here because progress isn’t measured by the value of the
objective, but instead by potential for (expected) improvement. A relevant such quantity
is recorded by maxei above. Still, y-progress is essential to drawing comparison to earlier
results.

prog.ei <- bov(y)

Figure 7.10 presents these two measures of progress side-by-side, with y on the left and
maxei on the right.

par(mfrow=c(1,2))
plot(prog.ei, type="l", xlab="n: blackbox evaluations",
ylab="EI best observed value")

abline(v=ninit, lty=2)
legend("topright", "seed LHS", lty=2)
plot(ninit:end, maxei, type="l", xlim=c(1,end),
xlab="n: blackbox evaluations", ylab="max EI")

abline(v=ninit, lty=2)

First, notice how BOV (on the left) is eventually in the vicinity of −3, which is as good or
better than anything we obtained in previous optimizations. Even in this random Rmarkdown
build I can be pretty confident about that outcome for reasons that’ll become more apparent
after we complete a full MC study, shortly. The right panel, showing EI progress, is usually
spiky. As the GP learns about the response surface, globally, it revises which areas it believes
are high variance, and which give low response values, culminating in dramatic shifts in
potential for improvement. Eventually maximal EI settles down, but there’s no guarantee
that it won’t “pop back up” if a GP update is surprised by an acquisition. Sometimes those
“pops” are big, sometimes small. Therefore maxei is more useful as a visual confirmation of
convergence than it is an operational one, e.g., one that can be engineered into a library
function. Hence it’s common to run out an EI search to exhaust a budget of evaluations.
The function below, designed to encapsulate code above for repeated calls in an MC setting,
demands a stop argument in lieu of more automatic convergence criteria.
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FIGURE 7.10: EI progress in terms of BOV (left) and maximal EI used for acquisition
(right).

optim.EI <- function(f, ninit, end)
{
## initialization
X <- randomLHS(ninit, 2)
y <- f(X)
gpi <- newGPsep(X, y, d=0.1, g=1e-6, dK=TRUE)
da <- darg(list(mle=TRUE, max=0.5), randomLHS(1000, 2))
mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)

## optimization loop of sequential acquisitions
maxei <- c()
for(i in (ninit+1):end) {
solns <- EI.search(X, y, gpi)
m <- which.max(solns$val)
maxei <- c(maxei, solns$val[m])
xnew <- as.matrix(solns[m,3:4])
ynew <- f(xnew)
updateGPsep(gpi, xnew, ynew)
mleGPsep(gpi, param="d", tmin=da$min, tmax=da$max, ab=da$ab)
X <- rbind(X, xnew)
y <- c(y, ynew)

}

## clean up and return
deleteGPsep(gpi)
return(list(X=X, y=y, maxei=maxei))
}

This optim.EI function hard-codes a separable laGP-based GP formulation, but is easily
modified for other settings or an isotropic analog. Using that function, let’s repeatedly solve



7.2 Expected improvement 283

the problem in this way (and track progress) with 100 random initializations, duplicating
work similar to our EY and "L-BFGS-B" optimizations from §7.1.1–7.1.2.

reps <- 100
prog.ei <- matrix(NA, nrow=reps, ncol=end)
for(r in 1:reps) {
os <- optim.EI(f, ninit, end)
prog.ei[r,] <- bov(os$y)

}

Because showing three sets of 100 paths (300 total) would be a hot spaghetti mess, Figure
7.11 shows averages of those sets of 100 for our three comparators. Variability in those paths,
which is mostly of interest for latter iterations/near the budget limit, is shown in a separate
figure momentarily.

plot(colMeans(prog.ei), col=1, lwd=2, type="l",
xlab="n: blackbox evaluations", ylab="average best objective value")

lines(colMeans(prog), col="gray", lwd=2)
lines(colMeans(prog.optim, na.rm=TRUE), col=2, lwd=2)
abline(v=ninit, lty=2)
legend("topright", c("optim", "EY", "EI", "seed LHS"),
col=c(2, "gray", 1, 1), lwd=c(2,2,2,1), lty=c(1,1,1,2),
bty="n")
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FIGURE 7.11: Average BOV progress for the three comparators entertained so far.

Although EI and EY perform similarly for the first few acquisitions after initialization, EI
systematically outperforms in subsequent iterations. Whereas the classical surrogate-assisted
EY heuristic gets stuck in inferior local optima, EI is better able to pop out and explore
other alternatives. Both are clearly better than derivative-based methods like "L-BFGS-B",
labeled as optim in Figure 7.11.

Figure 7.12 shows the diversity of solutions in the final, fiftieth iteration. Only in a small
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handful of 100 repeats does EI not find the global min after 50 iterations. Classical surrogate-
assisted EY optimization fails to find the global optima about half of the time. Numerical
"L-BFGS-B" optimization fails more than 75% of the time.

boxplot(prog.ei[,end], prog[,end], prog.optim[,end],
names=c("EI", "EY", "optim"), border=c("black", "gray", "red"),
xlab="comparator", ylab="best objective value")
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FIGURE 7.12: Boxplots summarizing the distribution of progress after the final acquisition.

All of the methods would benefit from more iterations, but only marginally unless random
restarts are implemented for EY and optim comparators. Once those become stuck in a
local minima they lack the ability to pop out on their own. EI, on the other hand, is in a
certain sense guaranteed to become unstuck. Under certain regularity conditions, like that
hyperparameters are fixed and known and the objective function isn’t completely at odds
with typical GP modeling assumptions, the EGO algorithm (i.e., repeated EI searches) will
eventually converge to a global optimum. As usual with such theorems, the devil is in the
details of the assumptions hidden in those regularity conditions. When are those satisfied,
or easily verified, in practice? The real sleight-of-hand here is in the notion of convergence,
not in the assumptions. EGO really only converges in the sense that eventually it’ll explore
everywhere. Since completely random search also has that property, the accomplishment
isn’t all that extraordinary. But the fact that its searches do not look random, but work as
well as random in the limit, offers some comfort.

Perhaps a more important, or more relevant, theoretical result is that you can show that
each EI-based acquisition is best in a certain sense: selection of xn+1 by EI is optimal if
n+ 1 = N , where N is the total budget available for evaluations of f . That is, EI is best
if the next sample is the last one you plan to take, and your intention is to predict that
minx µn+1(x) is the global minimum. For a sample of technical details relating to convergence
of EI-like methods, see Bull (2011). Another perspective views EI as a greedy7 heuristic
approximating a fuller “look-ahead” scheme. In the burgeoning BO literature there are
several alternative acquisition functions (Snoek et al., 2012), i.e., sequential design heuristics,

7https://en.wikipedia.org/wiki/Greedy_algorithm

https://en.wikipedia.org/wiki/Greedy_algorithm
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with similar behavior and theory. Bect et al. (2016) provide a compelling framework for
studying properties and variations of EGO/EI-like methods.

7.2.3 Conditional improvement

As an example of a scheme intimately related to EI, but which is in principle forward thinking
and targets even broader scope, consider integrated expected conditional improvement (IECI;
Gramacy and Lee, 2011). IECI was designed for optimization under constraints, our next
topic, and that transition motivates its discussion here amid myriad similarly motivated
extensions (see, e.g., Snoek et al., 2012; Bect et al., 2016) and methods based on the
knowledge gradient (KG, as described by Wu et al., 2017, and references therein). I make
no claims that IECI is superior to these alternatives, or superior to EI or KG. Rather it’s
a well-motivated choice I know well, adding some breadth to a discussion of acquisition
functions for optimization, paired with convenient library support.

In essence, IECI is to EI what ALC is to ALM. Instead of optimizing directly, first integrate
then optimize. Like with ALM to ALC, developing intermediate conditional criteria represents
a crucial first step. Recall that ALC (§6.2.2) entails measuring variance at a reference location
x after a new location xn+1 is added into the design. Then that gets integrated, or more
approximately summed, over a wider set of x ∈ X .

Similarly, conditional improvement measures improvement at reference location x, after
another location xn+1 is added into the design.

I(x | xn+1) = max{0, fnmin − Y (x | xn+1)}

“Deduce” moments of the distribution of Y (x | xn+1) | Dn as follows:

• E{Y (x | xn+1) | Dn} = µn(x) since yn+1 has not come yet.
• Var[Y (x | xn+1) | Dn] = σ2

n+1(x) follows the ordinary GP predictive equations (5.2)
with Xn+1 = (X>n ;x>n+1)> and hyperparameters learned at iteration n. See Eq. (6.6) in
§6.2.2. In practice, this quantity is most efficiently calculated with partitioned inverse
equations (6.8), just like with ALC.

Integrating I(x | xn+1) with respect to Y (x | xn+1) yields the expected conditional improve-
ment (ECI), i.e., the analog of EI for conditional improvement.

E{I(x | xn+1) | Dn} = (fnmin − µn(x)) Φ
(
fnmin−µn(x)
σn+1(x)

)
+ σn+1(x)φ

(
fnmin−µn(x)
σn+1(x)

)

To obtain a function of xn+1 only, i.e., a criterion for sequential design, integrate over the
reference set x ∈ X

IECI(xn+1) = −
∫
x∈X

E{I(x | xn+1) | Dn}w(x) dx. (7.4)

Such is the integrated expected conditional improvement (IECI), for some (possibly uniform)
weights w(x). As with ALC, in practice that integral is approximated with a sum.

IECI(xn+1) ≈ − 1
T

T∑
t=1

E{I(x(t) | xn+1)}w(x(t)) where x(t) ∼ p(X ), for t = 1, . . . , T,
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and p(X ) is a measure on the input space X which may be uniform. Alternatively, one may
combine weights and measures on X into a single measure. For now, take both to be uniform
in [0, 1]m.

The minus in IECI may look peculiar at first glance. Since I(x | xx+1) is, in some sense, a
two-step measure, small values are preferred over larger ones. ALC similarly prefers smaller
future variances. Instead of measuring improvement directly at xn+1, as EI does, IECI
measures improvement in a roundabout way, assessing it at a reference point x under the
hypothetical scenario that xn+1 is added into the design. If x still has high improvement
after xn+1 has been added in, then xn+1 must not have had much influence on potential
for improvement at x. If xn+1 is influential at x, then improvement at x should be small
after xn+1 is added in, not large. Observe that the above argument makes tacit use of the
assumption that E{I(x | xn+1)} ≤ E{I(x)}, for all x ∈ X , a kind of monotonicity condition.

Alternately, consider instead expected reduction in improvement (RI), analogous to reduction
in variance from ALC.

RI(xn+1) =
∫
x∈X

(E{I(x) | Dn} − E{I(x | xn+1) | Dn})w(x) dx

Clearly we wish to maximize RI, to reduce the potential for future improvement as much
as possible. And observe that E{I(x)} doesn’t depend on xn+1, so it doesn’t contribute
substantively to the criterion. What’s left is exactly IECI. In order for RI to be positive, the
very same monotonicity condition must be satisfied. For ALC we don’t need to worry about
monotonicity since, conditional on hyperparameters, future (n+ 1) variance is always lower
than past (n) variance. It turns out that the definition of fmin is crucial to determining
whether or not monotonicity holds.

A drawing in Figure 7.13 illustrates how fmin can influence ECI. Two choices of fmin are
entertained, drawn as horizontal lines. One uses only observed y-values, following exactly
our definition above for fmin. The other takes fmin from the extremum of the GP predictive
mean, drawn as a solid parabolic curve: fmin = minx µn(x). EI is related to the area of the
predictive density drawn as a solid line, plotted vertically and centered at µn(x), which lies
underneath the horizontal fmin line(s). ECI is likewise derived from the area of the predictive
density drawn as a dashed line lying below the horizontal fmin line(s). This dashed density
has the same mean/mode as the solid one, but is more sharply peaked by influence from
xn+1.

If we suppose that these densities, drawn as bell-shaped curves in the figure, are symmetric
(as they are for GPs), then it’s clear that the relationship between ECI and EI depends
upon fmin. As the dashed line is more peaked, the left-tail cumulative distributions have the
property that Fn(fmin | xn+1) ≥ Fn(fmin) for all fmin ≥ E{Y (x | xn+1)} = E{Y (x)}. Since
fmin = min{y1, . . . , yn} is one such example, we could observe E{I(x | xn+1)} ≥ E{I(x)},
violating the monotonicity condition. Only fmin = minx µn(x) guarantees that ECI represents
a reduction compared to EI. That said, in practice the choice of fmin matters little. But
while we’re on the topic of what constitutes improvement – i.e., improvement upon what? –
let’s take a short segue and talk about noisy blackbox objectives.

7.2.4 Noisy objectives

The BO literature over-accentuates discord between surrogate-assisted (EI or EY) optimiza-
tion algorithms for deterministic and noisy blackboxes. The first paper on BO of stochastic
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FIGURE 7.13: Cartoon illustrating how choice of fmin affects ECI. Adapted from Gramacy
and Lee (2011).

simulations is by Huang et al. (2006). Since then the gulf between noisy and deterministic
methods for BO has seemed to widen despite a surrogate modeling literature which has, if
anything, downplayed the state(s) of affairs: Need a GP for noisy simulations? Just estimate a
nugget. (With laGP, use jmleGP for isotropic formulations, or mleGPsep with param="both"
for separable ones.) EI relies on the same underlying surrogates, so no additional changes are
required there either, at least not to modeling aspects. Whenever noise is present, a modest
degree of replication – especially in seed designs – can be helpful as a means of separating
signal from noise. More details on that front are deferred to Chapter 10.

The notion of improvement requires a subtle change. Actually, nothing is wrong with the
form of I(x), but how its components fnmin and Y (x) | Dn are defined. If there’s noise,
then Y (xi) 6= yi. Responses Y1, . . . , Yn at Xn are random variables. So fnmin is also a
random variable. At face value, this substantially complicates matters. MC evaluations of EI,
extending sampling of Y (x) to min{Y1, . . . , Yn}, may be the only faithful means of taking
expectation over all random quantities. Fully analytic EI in such cases seems out of reach.
Unfortunately, MC thwarts library-based optimization of EI. For example, simple optim
methods wouldn’t work because the EI approximation would lack smoothness, except in the
case of prohibitively large MC sampling efforts.

A common alternative is to use fmin = minx µn(x), exactly as suggested above to ensure
the monotonicity condition, and proceed as usual. Picheny et al. (2013) call this the “plug-in”
method. Plugging in deterministic minx µn(x) for random fmin works well despite under-
accounting for a degree of uncertainty. It’s a refreshing coincidence that this choice of fmin
addresses both issues (monotonicity and noise), and that this choice makes sense intuitively.
The quantity minx µn(x) is our model’s best guess about the global function minimum,
and minx µn+1(x) is the one we intend to report when measuring progress. It stands to
reason, then, that that value is sensible as a means of assessing potential to improve upon
said predictions in subsequent acquisition iterations.

A second consideration for noisy cases involves the distribution of Y (x) | Dn, via µn(x)
and σ2

n(x) from the GP predictive equations (5.2). In the deterministic case, and when GP
modeling without a nugget, σ2

n(x)→ 0 for all x as n→∞. Here we’re assuming that Xn
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becomes dense in the input space as n→∞, as improvement-based heuristics essentially
guarantee. With enough data there’s no predictive uncertainty, so there’s eventually no value
to any location by improvement I(x), either through EI or IECI. This makes sense: if you
sample everywhere you’ll know all of the optima in the study region, both global and local.
But in the stochastic case, and when GP modeling with a non-zero nugget, σ2

n(x) 9 0 as
n→∞. No matter how much data is collected, there will always be predictive uncertainty in
Y (x) | Dn, so there will always be nonzero improvement I(x), through EI, IECI or otherwise.
Our algorithm will never converge.

A simple fix is to redefine improvement on the latent random field f(x), rather than directly
on Y (x). See §5.3.2 for details. Eventually, with enough data, there’s no uncertainty about
the function – no epistemic uncertainty8 – even though there would be some aleatoric
uncertainty about its noisy measurements. What that means, operationally speaking, is that
when calculating EI one should use a predictive standard deviation without a nugget, as
opposed to the full version (5.2). Specifically, and at slight risk of redundancy (5.16), use

σ̆2
n(x) = τ̂2(1− C(x,Xn)K−1

n C(x,Xn)>) (7.5)

rather than the usual σ2
n(x) = τ̂2(1 + ĝn−C(x,Xn)K−1

n C(x,Xn)>) in EI acquisitions. IECI
is similar via ˘̃σ2

n+1(x). Recall that ĝn is still involved in K−1
n , so the nugget is still being

“felt” by predictions. Crucially, σ̆2
n(x)→ 0 as n→∞ as long as the design eventually fills the

space. Library functions predGP and predGPsep provide σ̆2
n(x), or its multivariate analog,

when supplied with argument nonug=TRUE.

Finally, Thompson sampling, which was dismissed earlier in §7.1.2 as a stochastic optimiza-
tion, is worth reconsidering in noisy contexts. Noisy evaluation of the blackbox introduces
a degree of stochasticity which can’t be avoided. A little extra randomness in acquisition
criteria doesn’t hurt much and can sometimes be advantageous, especially when ambiguity
between signal and noise regimes is present. See exercises in §7.4 for a specific example.
Hybrids of LCB with EI have been successful in noisy optimization contexts. For example,
quantile EI (QEI; Picheny et al., 2013) works well when noise level can be linked to simulation
fidelity; more on this and similar methods when we get to optimizing heterskedastic processes
in Chapter 10.3.4.

7.2.5 Illustrating conditional improvement and noise

Let’s illustrate both IECI and optimization of a noisy blackbox at the same time. Consider
the following data, which is in 1d to ease visualization.

fsindn <- function(x)
sin(x) - 2.55*dnorm(x,1.6,0.45)
X <- matrix(c(0, 0.3, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.5,
2.8, 3.1, 3.4, 3.7, 4.4, 5.3, 5.7, 6.1, 6.5, 7), ncol=1)

y <- fsindn(X) + rnorm(length(X), sd=0.15)

This seed design deliberately omits one of the two local minima of fsindn, although it’s
otherwise uniformly spaced in the domain of interest, X = [0, 7]. The code below initializes
a GP fit, and performs inference for scale, lengthscale and nugget hyperparameters.

8https://en.wikipedia.org/wiki/Uncertainty_quantification#Aleatoric_and_epistemic_
uncertainty

https://en.wikipedia.org/wiki/Uncertainty_quantification#Aleatoric_and_epistemic_uncertainty
https://en.wikipedia.org/wiki/Uncertainty_quantification#Aleatoric_and_epistemic_uncertainty
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gpi <- newGP(X, y, d=0.1, g=0.1*var(y), dK=TRUE)
mle <- jmleGP(gpi)

Before calculating EI and IECI, let’s peek at the predictive distribution. Code below extracts
predictive quantities for both Y (x) and latent f(x), i.e., using σ2

n(x) or σ̆2
n(x) from Eq. (7.5),

respectively.

XX <- matrix(seq(0, 7, length=201), ncol=1)
pY <- predGP(gpi, XX, lite=TRUE)
pf <- predGP(gpi, XX, lite=TRUE, nonug=TRUE)

Figure 7.14 shows the mean surface, which is the same under both predictors, and two
sets of error-bars. Red-dashed lines correspond to the usual error-bars, based on the full
distribution of Y (x) | Dn, using σ2

n(x) above. Green-dotted ones use σ̆2
n(x) instead.

plot(X, y, xlab="x", ylab="y", ylim=c(-1.6,0.6), xlim=c(0,7.5))
lines(XX, pY$mean)
lines(XX, pY$mean + 1.96*sqrt(pY$s2), col=2, lty=2)
lines(XX, pY$mean - 1.96*sqrt(pY$s2), col=2, lty=2)
lines(XX, pf$mean + 1.96*sqrt(pf$s2), col=3, lty=3)
lines(XX, pf$mean - 1.96*sqrt(pf$s2), col=3, lty=3)
legend("bottomright", c("Y-bars", "f-bars"), col=2:4, lty=2:3, bty="n")
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FIGURE 7.14: Comparing predictive quantiles under Y (x) and f(x).

Observe how “f-bars” quantiles are uniformly narrower than their “Y-bars” counterpart.
With enough data Dn, as n→∞ and Xn filling the space, “f-bars” would collapse in on the
mean surface, shown as the solid black line.

Now we’re ready to calculate EI and IECI under those two predictive distributions. EI with
nonug=TRUE can be achieved by passing in a predictor pred with that option pre-set, e.g.,
by copying the function and modifying its default arguments (its formals). The ieciGP
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function provided by laGP has its own nonug argument. By default, ieciGP takes candidate
locations, XX in the code below, identical to reference locations Xref, similar to alcGP.

fmin <- min(predGP(gpi, X, lite=TRUE)$mean)
ei <- EI(gpi, XX, fmin, pred=predGP)
ieci <- ieciGP(gpi, XX, fmin)
predGPnonug <- predGP
formals(predGPnonug)$nonug <- TRUE
ei.f <- EI(gpi, XX, fmin, pred=predGPnonug)
ieci.f <- ieciGP(gpi, XX, fmin, nonug=TRUE)

To ease visualization, it helps to normalize acquisition function evaluations so that they
span the same range.

ei <- scale(ei, min(ei), max(ei) - min(ei))
ei.f <- scale(ei.f, min(ei.f), max(ei.f) - min(ei.f))
ieci <- scale(ieci, min(ieci), max(ieci) - min(ieci))
ieci.f <- scale(ieci.f, min(ieci.f), max(ieci.f) - min(ieci.f))

Figure 7.15 shows these four acquisition comparators. Solid lines are for EI, and dashed
for IECI; the color scheme matches up with predictive surfaces above, where “-f” is the
nonug=TRUE version, i.e., based on the latent random field f . So that all are maximizable
criteria, negative IECIs are plotted.

plot(XX, ei, type="l", ylim=c(0, 1), xlim=c(0,7.5), col=2, lty=1,
xlab="x", ylab="improvements")

lines(XX, ei.f, col=3, lty=1)
points(X, rep(0, nrow(X)))
lines(XX, 1-ieci, col=2, lty=2)
lines(XX, 1-ieci.f, col=3, lty=2)
legend("topright", c("EI", "EI-f", "IECI", "IECI-f"), lty=c(1,1,2,2),
col=c(2,3,2,3), bty="n")

Since training data were randomly generated for this Rmarkdown build, it’s hard to pinpoint
exactly the state of affairs illustrated in Figure 7.15. Usually EI prefers (in both variants) to
choose xn+1 from the left half of the space, whereas IECI (both variants) weighs both minima
more equally. Occasionally, however, EI prefers the right mode instead, and occasionally
both prefer the left, all depending on the random data. Both represent local minima, but the
one on the right experiences higher aggregate uncertainty due both to lower sampling and
to a wider domain of attraction. The left minima has a narrow trough. As a more aggregate
measure, IECI usually up-weights xn+1 from the right half, pooling together large ECI in
a bigger geographical region, and consequently putting greater value on their potential to
offer improvement globally in the input space.

Both EI and IECI cope with noise just fine. Variations with and without nugget are subtle,
at least as exemplified by Figure 7.15. A careful inspection of the code behind that figure
reveals that we didn’t actually minimize µn(x) to choose fnmin. Rather it was sufficient to use
mini µn(xi), which is less work computationally because no auxiliary numerical optimization
is required.
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FIGURE 7.15: EI versus IECI in Y (x) and f(x) alternatives.

Rather than exhaust the reader with more for loops, say to incorporate IECI and noise into
a bakeoff or to augment our running example (§7.1.1) on the (possibly noise-augmented)
Goldstein–Price9 function, these are left to exercises in §7.4. IECI, while enjoying a certain
conservative edge by “looking ahead”, rarely outperforms the simpler but more myopic
ordinary EI in practice. This is perhaps in part because it’s challenging to engineer a test
problem, like the one in our illustration above, exploiting just the scenario IECI was designed
to hedge against. Both EI and IECI can be recast into the stepwise uncertainty reduction
(SUR) framework (Bect et al., 2016) where one can show that they enjoy a supermartingale
property10, similar to a submodularity property11 common to many active learning techniques.
But that doesn’t address the extent to which IECI’s limited degree of lookahead may or
may not be of benefit, by comparison to EI say, along an arc of future iterations in the steps
of a sequential design. Advantages or otherwise are problem dependent. In a context where
blackbox objective functions f(x) almost never satisfy technical assumptions imposed by
theory – the Goldstein–Price function isn’t a stationary GP – intuition may be the best
guide to relative merits in practice.

Where IECI really shines is in a constrained optimization context, as this is what it was
originally designed for – making for a nice segue into our next topic.

7.3 Optimization under constraints

To start off, we’ll keep it super simple and assume constraints are known, but that they take
on non-trivial form. That is, not box/bound constraints (too easy), but something tracing
out non-convex or even unconnected regions. Then we’ll move on to unknown, or blackbox
constraints which require expensive evaluations to probe. First we’ll treat those as binary,

9http://www.sfu.ca/~ssurjano/goldpr.html
10https://en.wikipedia.org/wiki/Martingale_(probability_theory)#Submartingales,

_supermartingales,_and_relationship_to_harmonic_functions
11https://en.wikipedia.org/wiki/Submodular_set_function

http://www.sfu.ca/~ssurjano/goldpr.html
https://en.wikipedia.org/wiki/Martingale_(probability_theory)#Submartingales,_supermartingales,_and_relationship_to_harmonic_functions
https://en.wikipedia.org/wiki/Martingale_(probability_theory)#Submartingales,_supermartingales,_and_relationship_to_harmonic_functions
https://en.wikipedia.org/wiki/Submodular_set_function
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valid or invalid, and then as real-valued. That distinction, binary or real-valued, impacts
how constraints are modeled and how they fold into an effective sequential design criteria
for optimization. Throughout, the goal is to find the best valid value (BVV) of the objective
in the fewest number of blackbox evaluations. More details on the problem formulation(s)
are provided below.

7.3.1 Known constraints

For now, assume constraints are known. Specifically, presume that we have access to a
function, c(x) : X → {0, 1}, returning zero (or equivalently a negative number) if the
constraint is satisfied, or one (or a positive number) if the constraint is violated, and that we
can evaluate it for “free”, i.e., as much as we want. Evaluation expense accrues on blackbox
objective f(x) only.

The problem is given formally by the mathematical program12

x? = argminx∈X f(x) subject to c(x) ≤ 0. (7.6)

One simple surrogate-assisted solver entails extending EI to what’s called expected feasible
improvement (EFI), which was described in a companion paper to the EI one by the same
three authors, but with names of the first two authors swapped (Schonlau et al., 1998).

EFI(x) = E{I(x)}I(c(x) ≤ 0),

with I(x) using an fnmin defined over the valid region only. In deterministic settings, that means
fnmin = mini=1,...,n {yi : c(xi) ≤ 0}. When noise is present fnmin = minx∈X {µn(x) : c(x) ≤ 0}.
The former may be the empty set, in which case the latter is a good backup except in the
pathological case that none of the study region X is valid.

A verbal description of EFI might be: do EI but don’t bother evaluating, nor modeling,
outside the valid region. Seems sensible: invalid evaluations can’t be solutions. We know in
advance which inputs are in which set, valid or invalid, so don’t bother wasting precious
blackbox evaluations that can’t improve upon the best solution so far.

Yet that may be an overly simplistic view. Mathematical programmers long ago found
that approaching local solutions from outside of valid sets can sometimes be more effective
than the other way around, especially if the valid region is comprised of disjoint or highly
non-convex sets. One example is the augmented Lagrangian method13, which we shall review
in more detail in §7.3.4.

Surrogate modeling considerations also play a role here. Data acquisitions under GPs have
a global effect on the updated predictive surface. Information from observations of the
blackbox objective outside of the valid region might provide more insight into potential
for improvement (inside the region) than any point inside the region could. Think of an
invalid region sandwiched between two valid ones (see Figures 7.16–7.17) and how predictive
uncertainty might look, and in particular its curvature, at the boundaries. One evaluation
splitting the difference between the two boundaries may be nearly as effective as two right on
each boundary. EFI would rule out that potential economy. Or, in situations where one really
doesn’t want, or can’t perform an “invalid run”, but is still faced with a choice between high

12https://en.wikipedia.org/wiki/Mathematical_optimization
13https://en.wikipedia.org/wiki/Augmented_Lagrangian_method

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Augmented_Lagrangian_method
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EI on either side of the invalid-region boundary, it might make sense to weigh potential for
improvement by the amount of the valid region a potential acquisition would cover. That’s
exactly what IECI was designed to do.

Adapting IECI to respect a constraint, but to still allow selection of evaluations “wherever
they’re most effective”, is a matter of choosing indicator I(c(x) ≤ 0) as weight w(x):

IECI(xn+1) = −
∫
x∈X

E{I(x | xn+1)}I(c(x) ≤ 0) dx

This downweights reference x-values not satisfying the constraint, and thus also xn+1-values
similarly, however it doesn’t preclude xn+1-values from being chosen in the invalid region.
Rather, the value of xn+1 is judged by its ability to impact improvement within the valid
region. An alternative implementation which may be computationally more advantageous,
especially when approximating the integral with a sum over a potentially dense collection
Xref ⊆ X , is to exclude from Xref any input locations which don’t satisfy the constraint.
More precisely,

IECI(xn+1) ≈ − 1
T

T∑
t=1

E{I(x(t) | xn+1)} where x(t) ∼ pc(X ), for t = 1, . . . , T,

and pc(X ) is uniform on the valid set {x ∈ X : c(x) ≤ 0}.

To illustrate, consider the same 1d data-generating mechanism as in §7.2.5 except with an
invalid region [2, 4] sandwiched between two valid regions occupying the first and last third
of the input space, respectively.

X <- matrix(c(0, 0.3, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 4.4, 5.3, 5.7,
6.1, 6.5, 7), ncol=1)

y <- fsindn(X) + rnorm(length(X), sd=0.15)

No observations lie in the invalid region, yet. For dramatic effect in this illustration, it makes
sense to hard-code a longer lengthscale when fitting the GP.

gpi <- newGP(X, y, d=5, g=0.1*var(y), dK=TRUE)

Readers are strongly advised to tinker with this (also with jmleGP) to see how it effects the
results. Next, establish a dense grid in the input space X ≡ XX and take evaluations of GP
predictive equations thereupon.

XX <- matrix(seq(0, 7, length=201), ncol=1)
p <- predGP(gpi, XX, lite=TRUE)

Figure 7.16 shows the resulting predictive surface.

plot(X, y, xlab="x", ylab="y", ylim=c(-3.25, 0.7))
lines(XX, p$mean)
lines(XX, p$mean + 1.96*sqrt(p$s2), col=2, lty=2)
lines(XX, p$mean - 1.96*sqrt(p$s2), col=2, lty=2)
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FIGURE 7.16: Predictive surface for a 1d problem with invalid region [2, 4] sandwiched
between two valid ones.

Because there are no evaluations in the middle third of the space, predictive uncertainty is
very high there. Since the lengthscale is long, the posterior mean on functions favors a trough
in that region, which translates into a promising solution to the constrained optimization
problem – a valid global minimum. It seems quite likely that one of two local valid minima
reside on either side of the invalid region.

First consider calculating EI for each XX location on the predictive grid, then normalizing to
ease later visualization. In this illustration, only the nonug=TRUE option is shown, primarily
to simplify visuals.

fmin <- min(predGP(gpi, X, lite=TRUE)$mean)
ei <- EI(gpi, XX, fmin, pred=predGPnonug)
ei <- scale(ei, min(ei), max(ei) - min(ei))

Ordinarily here, we’d have to be careful to calculate fnmin based only on valid input locations.
However in this simple example all seed design X locations are valid. (And we know EFI
won’t choose any invalid ones.) The code below extracts EIs for the valid region, effectively
implementing EFI but in a way that’s handy for our visualization below.

lc <- 2
rc <- 4
eiref <- c(ei[XX < lc], ei[XX > rc])

To facilitate IECI calculation, the next code chunk establishes a set of reference locations
Xref dense in X ≡ XX, but similarly omitting invalid region [2, 4].

Xref <- matrix(c(XX[XX < lc,], XX[XX > rc,]), ncol=1)

Using that pre-selected Xref in lieu of weights, laGP’s IECI subroutine may be evaluated
for all of XX as follows.
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ieci <- ieciGP(gpi, XX, fmin, Xref=Xref, nonug=TRUE)
ieci <- scale(ieci, min(ieci), max(ieci) - min(ieci))

Figure 7.17 compares EI/EFI and IECI in this known constraints setting. A solid-black line
corresponds to EFI extracted from EI which is dashed within the invalid region.

plot(XX, ei, type="l", ylim=c(0, max(ei)), lty=2, xlab="x",
ylab="normalized improvements")

lines(Xref[Xref < lc], eiref[Xref < lc])
lines(Xref[Xref > rc], eiref[Xref > rc])
points(X, rep(0, nrow(X)))
lines(XX, 1-ieci, col=2, lty=2)
legend("topright", c("EI", "IECI"), lty=1:2, col=1:2, bty="n")
abline(v=c(lc,rc), col="gray", lty=2)
text(lc,0,"]")
text(rc,0,"[")
text(seq(lc+.1, rc-.1, length=20), rep(0, 20), rep("/", 20))
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FIGURE 7.17: EFI and IECI surfaces for a simple 1d constrained optimization with
invalid region sandwiched between two valid regions.

Notice how EI is maximized within the invalid region, but we won’t choose xn+1 there
because its EFI is zero. Instead, EFI is maximized at the boundary of the invalid region,
with nearly identical height on either side. IECI, by contrast, is maximized outside the valid
region – at least in this random Rmarkdown instance – offering clear adjudication between
the two local EFI modes. IECI prefers the right-hand mode, and not on the boundary with
the invalid region but instead splitting the difference between boundary and design locations
Xn already in hand. For my money, IECI’s is a better choice for xn+1.

In sequential application, over repeated acquisitions, admittedly EFI and IECI perform simi-
larly. Which is better is highly problem specific, depending in particular on how complicated
the valid region is, and how pathological interaction is between constraint boundary and
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blackbox objective. For many problems, IECI is likely overkill since it’s more computationally
demanding, like ALC.

On the other hand, known constraint settings are specialized – you might even say highly
peculiar. How often do you encounter a known constraint region that’s complicated in
practice?

7.3.2 Blackbox binary constraints

Having a blackbox that simultaneously evaluates both objective and constraint at great
computational expense is far more common. The mathematical program (7.6) is unchanged,
but now constraints c(x) cannot be evaluated at will. Often blackbox constraint functions
are vector-valued. In that case, the simple program (7.6) still applies, but c(x) ≤ 0 must be
interpreted component-wise and valid re-defined to mean that all components satisfy the
inequality simultaneously. Like for objective f(x), we’ll need a surrogate model for constraint
c(x), and an appropriate model will depend upon the nature of the function(s). When binary,
either c(x) ∈ {0, 1} or c(x) ∈ {0, 1}m for multiple constraints, a classification model may be
appropriate. When real-valued c(x) ∈ R or c(x) ∈ Rm, a regression model is needed.

We can get as fancy or simple as we want with constraint models and fitting schemes. GPs are
an obvious choice for real-valued cases, as we illustrate in §7.3.4. For now stick with binary
constraints. GPs are an option for binary outputs too, e.g., through a logistic link (see, e.g.,
Chapter 3 of Rasmussen and Williams, 2006), but there are simpler off-the-shelf classifiers
that often work as well or better in practice. Details are forthcoming in our empirical work
below. For now, the presentation is agnostic to choice of classifier. Let p(j)

n (x) stand in for
the predicted probability, from fitted surrogate model classifier(s), that input x satisfies the
jth constraint, for j = 1, . . . ,m.

Extending EFI to blackbox constraints is trivial. Simply replace the indicator (from the
known constraint) with the surrogate’s predicted probability of satisfaction:

EFI(x) = E{I(x)}
m∏
j=1

p(j)
n (x).

IECI is no different, except the product moves inside the integral.

IECI(xn+1) = −
∫
x∈X

E{I(x | xn+1)}
m∏
j=1

p(j)
n (x) dx

In both cases EI is being weighted by the joint probability of constraint satisfaction,
assuming mutually independent constraint surrogates. Explicitly for IECI as in Eq. (7.4),
take w(x) =

∏m
j=1 p

(j)
n (x).

To illustrate, revisit our earlier 1d known constraint problem fsindn from §7.2.5. This time
imagine the constraint, which was invalid in [2, 4], as residing inside the blackbox. Expensive
evaluations provide noisy Y (x) = f(x) + ε and deterministic c(x) ∈ {0, 1}, simultaneously.
Model f with a GP, as before. In order to learn the constraint function from data, choose
a simple yet flexible model from off the shelf: a random forest (RF; Breiman, 2001) via
randomForest (Breiman et al., 2018) on CRAN.

Consider EFI first; returning to IECI shortly. A setup like this (GP/RF/EFI) was first
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entertained by Lee et al. (2011). The code below generates a small quasi-space-filling design
to start out with, and evaluates the blackbox at those locations.

ninit <- 6
X <- matrix(c(1, 3, 4, 5, 6, 7))
y <- fsindn(X) + rnorm(length(X), sd=0.15)
const <- as.numeric(X > lc & X < rc)

Now fit surrogates. The block of code below targets GP fitting of the objective. With such
a small amount of noisy data, it’s sensible to constrain inference a little to help the GP
separate signal from noise. Recall our discussion in §6.2.1 on care in initialization with
sequential design. Below the lengthscale is fixed, and the nugget estimated conditionally
under a sensible prior. As more data are gathered, such precautions become less necessary.

gpi <- newGP(X, y, d=1, g=0.1*var(y), dK=TRUE)
ga <- garg(list(mle=TRUE, max=var(y)), y)
mle <- mleGP(gpi, param="g", tmin=eps, tmax=var(y), ab=ga$ab)

Next load randomForest and fit constraint evaluations, being careful to coerce them into
factor form so that the library knows to fit a classification model rather than the default
regression option for real-valued responses.

library(randomForest)
cfit <- randomForest(X, as.factor(const))

Below, fmin is calculated by a smoothing over outputs predicted at valid input locations in
Xn. The number and location of samples in the seed design was chosen (based on oracle
knowledge of the constraint) so that the set of valid locations is nonempty in order to
simplify, somewhat, the exposition here. (In fact, a single invalid input is guaranteed.)

Xv <- X[const <= 0,,drop=FALSE]
fmin <- min(predGP(gpi, Xv, lite=TRUE)$mean)

We now have all ingredients needed to evaluate EI and the probability of constraint satisfac-
tion, globally in the input space over predictive grid XX.

pc <- predict(cfit, XX, type="prob")[,1]
ei <- EI(gpi, XX, fmin, pred=predGPnonug)
ei <- scale(ei, min(ei), max(ei) - min(ei))

The EI surface, probability of satisfaction, and their product yielding EFI are shown together
in Figure 7.18. Constraint evaluations are indicated as open circles. So that the parity
of constraint evaluations matches probability of satisfaction, easing visualization, 1 − ci,
i = 1, . . . , n are plotted instead instead of raw ci.

plot(XX, ei, type="l", xlim=c(0,8), ylim=c(0,1), xlab="x", ylab="ei & pc")
lines(XX, pc, col=2, lty=2)
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points(X, 1 - const, col=2)
lines(XX, ei*pc, lty=2)
legend("right", c("EI", "p(c<0)", "EFI"), col=c(1,2,1),
lty=c(1,2,2), bty="n")
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FIGURE 7.18: EI(x) and p(c(x) < 0) combining to form EFI(x). Open circles indicate
1− ci to match parity with RF’s p(ci < 0). EI and EFI are normalized.

Several interesting observations in the figure are worth remarking upon. Notice that pn(x) ≡
p(c<0) is zero nearby the single input having violated the constraint (plotted as ci = 0, but
actually measured as ci = 1). This will cause EFI to evaluate to zero regardless of what
EI is, but actually it’s essentially zero there anyways. Likewise, throughout the rest of the
input space, EFI is a version of EI modulated slightly downwards, more so approaching the
middle of the input space where the RF classifier is less sure about the transition from valid
to invalid region. EFI inherits discontinuities from RF’s stepwise regime changes. The extent
to which such discontinuities are detectable visually depends upon the Rmarkdown build.

After numerically maximizing EFI on the grid, code below acquires new xn+1, updating
n← n+ 1 with a new random objective and deterministic constraint evaluation.

m <- which.max(ei*pc)
X <- rbind(X, XX[m,])
y <- c(y, fsindn(XX[m,]) + rnorm(1, sd=0.15))
const <- c(const, as.numeric(XX[m,] > lc && XX[m,] < rc))

Next, update GP and RF fits to ready those surrogates for the next acquisition.

updateGP(gpi, X[nrow(X),,drop=FALSE], y[length(y)])
mle <- mleGP(gpi, param="g", tmin=eps, tmax=var(y), ab=ga$ab)
cfit <- randomForest(X, as.factor(const))

In that subsequent iteration, fnmin is recalculated based on the corpus of valid inputs obtained
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so far. Predictions under both models are evaluated at candidates X ≡ XX, and EI’s are
calculated, collecting all ingredients for EFI.

Xv <- X[const <= 0,,drop=FALSE]
fmin <- min(predGP(gpi, Xv, lite=TRUE)$mean)
pc <- predict(cfit, XX, type="prob")[,1]
ei <- EI(gpi, XX, fmin, pred=predGPnonug)
ei <- scale(ei, min(ei), max(ei) - min(ei))

Updated EFI surface, and its requisite components are shown visually in Figure 7.19.

plot(XX, ei, type="l", xlim=c(0,8), ylim=c(0,1), xlab="x", ylab="ei & pc")
lines(XX, pc, col=2, lty=2)
points(X, 1 - const, col=2)
lines(XX, ei*pc, lty=2)
legend("right", c("EI", "p(c<0)", "EFI"), col=c(1,2,1),
lty=c(1,2,2), bty="n")
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FIGURE 7.19: Second iteration of EFI following Figure 7.18.

In the version I’m viewing as I write this, updated surfaces strongly resemble those from the
previous iteration (Figure 7.18) except perhaps with EI/EFI relatively higher on the valid
side, i.e., that side not chosen for acquisition in the previous iteration. To fast-forward a
little, R code below wraps our data augmenting, model updating and EFI-calculating from
above into a for loop, selecting ten more evaluations in this fashion. Notice that jmleGP is
used in this loop to tune lengthscales as well as nugget.

for(i in 1:10) {
m <- which.max(ei*pc)
X <- rbind(X, XX[m,])
y <- c(y, fsindn(XX[m,]) + rnorm(1, sd=0.15))
const <- c(const, as.numeric(XX[m,] > lc && XX[m,] < rc))
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updateGP(gpi, X[nrow(X),,drop=FALSE], y[length(y)])
mle <- jmleGP(gpi, drange=c(eps, 2), grange=c(eps, var(y)), gab=ga$ab)
cfit <- randomForest(X, as.factor(const))
Xv <- X[const <= 0,,drop=FALSE]
fmin <- min(predGP(gpi, Xv, lite=TRUE)$mean)
pc <- predict(cfit, XX, type="prob")[,1]
ei <- EI(gpi, XX, fmin, pred=predGPnonug)
ei <- scale(ei, min(ei), max(ei) - min(ei))

}

After choosing a total of twelve points beyond the seed space-filling design, Figure 7.20
shows the nature of pn(x), EI and EFI from model fits based on a total of n = 17 runs.

plot(XX, ei, type="l", xlim=c(0,8), ylim=c(0,1), xlab="x", ylab="ei & pc")
lines(XX, pc, col=2, lty=2)
points(X, 1 - const, col=2)
lines(XX, ei*pc, lty=2)
legend("right", c("EI", "p(c<0)", "EFI"), col=c(1,2,1),
lty=c(1,2,2), bty="n")
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FIGURE 7.20: EFI view, ten more iterations after Figure 7.19.

That view reveals little to no exploration in the left half of the space, a behavior quite
consistent across Rmarkdown builds. Although EI and EFI on the other side of the invalid
region may increase in relative terms, it would take many right-side acquisitions before the
criterion is maximized on the left. That’s a shame because, as Figure 7.21 reveals, the other
side is definitely worth exploring.

p <- predGP(gpi, XX, lite=TRUE)
plot(XX, fsindn(XX), col="gray", type="l", lty=2)
points(X, y)
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lines(XX, p$mean)
legend("top", c("truth", "mean"), col=c("gray", 1), lty=c(2,1), bty="n")
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FIGURE 7.21: Final predictive mean (solid) fit to data (open circles), versus true surface
(gray-dashed).

In the figure, black-open circles indicate sampled evaluations in the design, whereas the
dashed-gray line is the truth. EFI’s exploration of the valid region was quite myopic in this
instance.

Does IECI fare any better? Suppose we reinitialize the fit back at the same starting position
(for a fair comparison) and go through the first couple of steps carefully with IECI, just as
for EFI above. But first, don’t forget to free up the old GP fit.

deleteGP(gpi)
X <- X[1:ninit,,drop=FALSE]
y <- y[1:ninit]
const <- const[1:ninit]
gpi <- newGP(X, y, d=1, g=0.1*var(y), dK=TRUE)
mle <- mleGP(gpi, param="g", tmin=eps, tmax=var(y), ab=ga$ab)
cfit <- randomForest(X, as.factor(const))
pc <- predict(cfit, XX, type="prob")[,1]

Predictions from RF, obtained on the last line above, can be passed directly into ieciGP
through its weight argument, w. The original IECI paper (Gramacy and Lee, 2011) used a
classification GP for pn(x), coupled with an ordinary regression GP for IECI calculations in
the plgp package. Sequential updating of both GPs is described in detail by Gramacy and
Polson (2011). The ieciGP and ieciGPsep features in laGP are rather more generic, with a
w argument allowing predicted probabilities to come from any classifier. Besides simplifying
the narrative, we shall retain an RF classification surrogate here for a fairer benchmark
against EFI. Readers curious about the original version are encouraged to inspect demos
provided with plgp, in particular demo("plconstgp_1d_ieci").
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Xv <- X[const <= 0,,drop=FALSE]
fmin <- min(predGP(gpi, Xv, lite=TRUE)$mean)
ieci <- ieciGP(gpi, XX, fmin, w=pc, nonug=TRUE)
ieci <- scale(ieci, min(ieci), max(ieci) - min(ieci))

Figure 7.22 shows the resulting surfaces. Since the seed design and responses are the same
here as for EFI, the RF pn=6(x) surface is identical to Figure 7.18. For consistency with
EI-based figures above, one minus IECI and ci are shown.

plot(XX, 1 - ieci, type="l", xlim=c(0,8), ylim=c(0,1),
xlab="x", ylab="ieci & pc")

lines(XX, pc, col=2, lty=2)
points(X, 1 - const, col=2)
legend("right", c("IECI", "p(c<0)"), col=c(1,2,2), lty=c(1,2,1), bty="n")
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FIGURE 7.22: IECI analog of Figure 7.18.

By contrast with Figure 7.18, IECI is high on both sides of the invalid region. Moreover,
IECI is smooth everywhere even though pn(x) is piecewise constant. It’s never zero, although
nearly so at the location of the solitary invalid input. IECI owes all three of those features,
which are aesthetically more pleasing than the EFI analog, to its aggregate nature. A
continuum of pn(x)-values, as well as a continuum of conditional improvements, weigh in
to determine which potential xn+1 offers the greatest promise for improvement in the valid
region.

Code below selects the next point to minimize IECI, collects objective and constraint
responses at that location, and augments the dataset.

m <- which.min(ieci)
X <- rbind(X, XX[m,])
y <- c(y, fsindn(XX[m,]) + rnorm(1, sd=0.15))
const <- c(const, as.numeric(XX[m,] > lc && XX[m,] < rc))
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Next, the GP is updated and RF refit.

updateGP(gpi, X[ncol(X),,drop=FALSE], y[length(y)])
mle <- mleGP(gpi, param="g", tmin=eps, tmax=var(y), ab=ga$ab)
cfit <- randomForest(X, as.factor(const))

New IECI calculations are then derived from updated fnmin and pn(x) evaluations.

Xv <- X[const <= 0,,drop=FALSE]
fmin <- min(predGP(gpi, Xv, lite=TRUE)$mean)
pc <- predict(cfit, XX, type="prob")[,1]
ieci <- ieciGP(gpi, XX, fmin, w=pc, nonug=TRUE)
ieci <- scale(ieci, min(ieci), max(ieci) - min(ieci))

Figure 7.23 shows the updated surfaces. Since both sides of the invalid region had high IECI
in the previous iteration, it’s perhaps not surprising to see that IECI is now much higher on
the side opposite to where the most recent acquisition was made.

plot(XX, 1 - ieci, type="l", xlim=c(0,8), ylim=c(0,1),
xlab="x", ylab="ieci & pc")

lines(XX, pc, col=2, lty=2)
points(X, 1 - const, col=2)
legend("right", c("IECI", "p(c<0)"), col=c(1,2,2), lty=c(1,2,1), bty="n")
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FIGURE 7.23: IECI updates after first IECI acquisition from Figure 7.22.

All right, lets see what happens when we do ten more steps like this, just as we did for EFI.

for(i in 1:10) {
m <- which.min(ieci)
X <- rbind(X, XX[m,])
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y <- c(y, fsindn(XX[m,]) + rnorm(1, sd=0.15))
const <- c(const, as.numeric(XX[m,] > lc && XX[m,] < rc))
updateGP(gpi, X[nrow(X),,drop=FALSE], y[length(y)])
mle <- jmleGP(gpi, drange=c(eps, 2), grange=c(eps, var(y)), gab=ga$ab)
cfit <- randomForest(X, as.factor(const))
Xv <- X[const <= 0,,drop=FALSE]
fmin <- min(predGP(gpi, Xv, lite=TRUE)$mean)
pc <- predict(cfit, XX, type="prob")[,1]
ieci <- ieciGP(gpi, XX, fmin, w=pc, nonug=TRUE)
ieci <- scale(ieci, min(ieci), max(ieci) - min(ieci))

}

As shown in Figure 7.24, multiple evaluations have been taken on both sides of the invalid
region. Sometimes, depending on the Rmarkdown build, runs are even taken within the
invalid region. Compared to EFI, IECI has done a better job of exploring potential for
improvement. Even after seventeen iterations, IECI is still high in appropriate places, on
both sides of the invalid region. Surely it won’t be too many more iterations until the
problem is nearly solved.

plot(XX, 1 - ieci, type="l", xlim=c(0,8), ylim=c(0,1),
xlab="x", ylab="ieci & pc")

lines(XX, pc, col=2, lty=2)
points(X, 1 - const, col=2)
legend("right", c("IECI", "p(c<0)"), col=c(1,2,2), lty=c(1,2,1), bty="n")
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FIGURE 7.24: Predictive surface after ten more IECI iterations; compare with Figure
7.20 for EFI.

The curious reader is encouraged to perform a few more iterations under both EFI and IECI
acquisition functions. About 30 runs in total is sufficient for IECI to learn with confidence
that the global (valid) minimum is on the left side of the input space. EFI takes rather more
iterations, although differences between the two are by no means stark. Getting a good feel
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for how these two methods compare on this problem requires repeated experiments, in an
MC fashion, to average over the random nature of the objective evaluations.

deleteGP(gpi)

7.3.3 Real-valued constraints

Most often constraint functions are real-valued. Usually there are multiple such constraints.
Paradoxically, this situation simplifies matters somewhat, because there are generally more
modeling choices for real-valued simulations (e.g., GPs). Tractable nonlinear classifiers
are somewhat harder to come by. Evaluations of c(j)n (x) ∈ R provide extra information
(compared to {0, 1}), namely distance to feasibility. This can help accelerate convergence
if used appropriately. But multiple constraints obviously make the overall problem more
challenging: more things to model, making navigation toward valid optima a more complex
enterprise.

EFI and IECI remain unchanged as general strategies as long as probability of constraint
satisfaction p

(j)
n (x) = P(c(j)n (x) ≤ 0) can be backed out of fitted surfaces c(j)n (x) for each

constraint j = 1, . . . ,m.14 Under GPs, or any fitted response surface emitting Gaussian
predictive equations, probabilities are readily available from the standard Gaussian CDF Φ,
i.e., pnorm given µ(j)

n (x) and σ2(j)
n (x)

p(j)
n (x) = Φ

(
−µ

(j)
n (x)
σ

(j)
n (x)

)
.

Consequently EFI and IECI may utilize the magnitude of observed constraint values at
best indirectly through Φ, and through the product

∏m
j=1 p

(j)
n (x) in the case of multiple

constraints.

Sometimes constraints are where all the action is. So far in this chapter, focus has concentrated
on the objective, with constraints being a nuisance. In many optimization problems constraints
steal the show. Recall our motivating Lockwood groundwater remediation application from
§2.4. The Lockwood objective is simple/known (e.g., linear), but simulation-based constraints
require heavy computation, tracing out highly non-linear and non-convex valid regions. These
create many deceptive local minima in the input domain. That can make for a hard search
indeed.

Here’s a toy problem to fix ideas: a linear objective in two variables

min
x

{
x1 + x2 : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 1]2

}
, (7.7)

where two non-linear constraints are given by

14Here I’m re-purposing m, previously notating dimension of the input space where x lives, for the number
of constraints. None of the discussion in this chapter demands clarity on input dimension, relieving potential
for ambiguity.
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c1(x) = 3
2 − x1 − 2x2 −

1
2 sin

(
2π(x2

1 − 2x2)
)

(7.8)

and c2(x) = x2
1 + x2

2 −
3
2 .

The function aimprob below, named for the American Institute of Mathematics (AIM)15

where it was cooked up (Gramacy et al., 2016), implements this toy problem as a blackbox.
It was designed to synthesize many of the elements in play in problems such as Lockwood,
yet in lower dimension and with a transparent and easy to evaluate form.

aimprob <- function(X, known.only=FALSE)
{
if(is.null(nrow(X))) X <- matrix(X, nrow=1)
f <- rowSums(X)
if(known.only) return(list(obj=f))
c1 <- 1.5 - X[,1] - 2*X[,2] - 0.5*sin(2*pi*(X[,1]^2 - 2*X[,2]))
c2 <- X[,1]^2 + X[,2]^2 - 1.5
return(list(obj=f, c=drop(cbind(c1, c2))))
}

A known.only argument allows “free” objective evaluations to be returned, if desired. This
is required by one of our library implementations below. For now it may be ignored. While
on the subject, however, even with known f(x) = x1 + x2 this is a hard problem when c(x)
is treated as an expensive blackbox. Figure 7.25 shows why. (The code chunk below first
builds a plotting macro to quickly draw surfaces of this kind for use in later examples.)
Colored contours show the objective. Being linear, the unconstrained global optimum is at
the origin, however that location is deeply invalid. Red-dashed contours represent invalid
regions; green-solid ones satisfy the constraint.

## establishing the macro
plotprob <- function(blackbox, nl=c(10,20), gn=200)
{
x <- seq(0,1, length=gn)
X <- expand.grid(x, x)
out <- blackbox(as.matrix(X))
fv <- out$obj
fv[out$c[,1] > 0 | out$c[,2] > 0] <- NA
fi <- out$obj
fi[!(out$c[,1] > 0 | out$c[,2] > 0)] <- NA
plot(0, 0, type="n", xlim=c(0,1), ylim=c(0,1), xlab="x1", ylab="x2")
C1 <- matrix(out$c[,1], ncol=gn)
contour(x, x, C1, nlevels=1, levels=0, drawlabels=FALSE, add=TRUE, lwd=2)
C2 <- matrix(out$c[,2], ncol=gn)
contour(x, x, C2, nlevels=1, levels=0, drawlabels=FALSE, add=TRUE, lwd=2)
contour(x, x, matrix(fv, ncol=gn), nlevels=nl[1],
add=TRUE, col="forestgreen")

contour(x, x, matrix(fi, ncol=gn), nlevels=nl[2], add=TRUE, col=2, lty=2)
}

15https://aimath.org/

https://aimath.org/
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## visualizing the aimprob surface(s)
plotprob(aimprob)
text(rbind(c(0.1954, 0.4044), c(0.7191, 0.1411), c(0, 0.75)),

c("A", "B", "C"), pos=1)
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FIGURE 7.25: Linear objective (7.7) via contours colored by two nonlinear constraints
(7.8). Locations of valid local minima are indicated by A, B and C.

Observe that there are three local minima, notated by points A, B, and C, respectively.
Coordinates of these locations are provided below.

xA ≈ [0.1954, 0.4044] xB ≈ [0.7191, 0.1411] xC = [0, 0.75],
f(xA) ≈ 0.5998 f(xB) ≈ 0.8609 f(xC) = 0.75

Local optimum A is the global solution. A highly nonlinear c1(x) makes for a challenging
surface to optimize in search of minima. The second constraint, c2(x) may seem uninteresting,
but it reminds us that solutions may not exist on every boundary. In math programming
jargon, c2 is a non-binding constraint. Search algorithms which place undue emphasis on
boundary exploration could be fooled in the face of a plethora of non-binding constraints.

For problems like aimprob, techniques from the mathematical programming literature could
prove quite valuable. Math programming has efficient algorithms for non-linear blackbox
optimization under constraints with provable local convergence properties (see, e.g., Nocedal
and Wright, 2006), paired with lots of polished open source software16. Whereas statistical
approaches enjoy global convergence properties, excel when simulation is expensive, noisy, and
non-convex, they offer limited support for constraints. Very few well-engineered libraries exist.
There are almost none that handle blackbox constraints. Some kind of hybrid, leveraging
math programming for constraints and statistical surrogates for global scope, could offer
powerful synergy.

As somewhat of an aside, it’s perhaps telling of the current state of affairs in statistical
(Bayesian) optimization that a special issue of the Journal of Statistical Software on Numerical

16http://plato.asu.edu/guide.html

http://plato.asu.edu/guide.html
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Optimization in R: Beyond optim 17 overlooks BO methods such as EI. Despite its many
attractive properties, the word is not yet out in mainstream computational statistics circles.
A partial explanation may be that statisticians can be cagey about releasing code, and
implementation is essential to effective use of optimization methodology. Machine learners
have released open Python libraries featuring EI with contributions from dozens of academic
and industrial authors. For example, spearmint18 and MOE19 both offer limited support
for constraints. A very nice exception in R is DiceOptim (Picheny et al., 2016b). Not
coincidentally, DiceOptim implements some of the hybrids we’re about to discuss momentarily.
As does laGP. Perhaps a JSS article featuring these packages is just around the corner.

7.3.4 Augmented Lagrangian

A framework ripe for hybridization with statistical surrogate-assisted optimization involves
an apparatus called the augmented Lagrangian (AL; Bertsekas, 2014). Also see Chapter
17 of Nocedal and Wright (2006). The AL is a composite of objective f(x) and vectorized
constraint c(x):

LA(x;λ, ρ) = f(x) + λ>c(x) + 1
2ρ

m∑
j=1

max (0, cj(x))2 (7.9)

where ρ > 0 is a penalty parameter, and λ ∈ Rm+ serves as Lagrange multiplier20. The
formulation above is purely mathematical. Later when we introduce statistical surrogates
we’ll bring back n subscripts, etc.

An AL optimization utilizes the AL composite (7.9) to transform a constrained optimization
problem into a sequence of simply constrained ones. Solutions x? = argminxLA(x;λ, ρ) to
the so-called “AL subproblem”, can guide an optimizer toward solutions to the original
problem (7.6) through a dynamically determined sequence of λ and ρ-values. Basically, a
schedule of delicate increases to λ and ρ when x? is invalid, as detailed in Algorithm 7.1,
coaxes subproblems toward valid optima. Omitting the Lagrange multiplier term λ>c(x)
leads to (an example of) a so-called additive penalty method (APM) composite.

APM(x; ρ) = f(x) + 1
2ρ

m∑
j=1

max (0, cj(x))2

Without considerable care in choosing the form and scale of penalization (ρ), APMs can
introduce ill-conditioning in the resulting subproblems. By introducing Lagrange multiplier
λ, working together with penalty ρ to define the subproblem, with automatic updates as the
method iterates, local convergence can be guaranteed under relatively mild conditions.

Many of the details are provided by Algorithm 7.1. There are basically two steps: 1) optimize
the subproblem; and 2) update parameters (λ, ρ). While most of the work is in Step 1,
off-loading the subproblem to an ordinary optimizer ("L-BFGS-B"), the action is all in Step
2. Updates of λ and ρ serve to nudge subproblems toward good and valid local evaluations
of the objective function. When xk satisfies all constraints, i.e., c(xk) ≤ 0 meaning that
all components of that vectorized logical statement are true, the penalty parameter ρ is

17https://www.jstatsoft.org/issue/view/v060
18https://github.com/JasperSnoek/spearmint
19https://github.com/Yelp/MOE
20https://en.wikipedia.org/wiki/Lagrange_multiplier

https://www.jstatsoft.org/issue/view/v060
https://github.com/JasperSnoek/spearmint
https://github.com/Yelp/MOE
https://en.wikipedia.org/wiki/Lagrange_multiplier
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Algorithm 7.1 Augmented Lagrangian Constrained Optimization

Assume the search region is X , perhaps a unit hypercube.

Require a blackbox evaluating f(x) and vectorized c(x) jointly; initial values x0, λ0

and ρ0, and maximum number of “outer loop” iterations kmax.

For k = 1, . . . , kmax comprising the “outer loop”:
1. “Inner loop”: approximately solve the subproblem:

xk = argmin
x∈X

{
LA(x;λk−1, ρk−1) : x ∈ X

}
.

2. Update:

• λkj = max
(

0, λk−1
j + 1

ρk−1 cj(xk)
)
, for j = 1, . . . ,m;

• if c(xk) ≤ 0, set ρk = ρk−1; otherwise, set ρk = 1
2ρ
k−1.

End For

Return xkmax , the solution to the most recently solved subproblem.

unchanged and λ moves closer to zero, if not identically so. This situation is akin to the
overall scheme being “on the right track”. On the other hand, if any of the constraints are
not satisfied, i.e., some cj(xk) > 0, then the corresponding components of the Lagrange
multiplier λj are increased, and the penalty 1/ρ doubles. This is like a course correction
from Chapter 3.

Although updates of (λ, ρ) from one iteration to the next are key, the range specified for the
“outer (for) loop” in the algorithm isn’t much more than window dressing. A presumption that
there’s a budget kmax is somewhat unrealistic, as the real expense lies in the evaluations which
happen in the “inner loop” of Step 1, solving the subproblem. Determining convergence within
the inner loop [Step 2], is highly dependent on the choice of inner loop solver. Thankfully,
theory for global convergence of the overall AL scheme is forgiving about criteria used to
end each inner loop search. As long as some progress is made on the subproblem, perhaps to
economize on the number of blackbox evaluations, convergence is eventually guaranteed –
although not necessarily before exhausting a run budget. The AL framework for constrained
optimization is robust to inner loop dynamics in this sense.

That state of affairs is rather akin to expectation maximization (EM)21, to choose an example
more familiar to a statistical audience. EM will converge even if the M-step is inefficient.
As long as progress can be made, increasing the (E)xpected log likelihood rather than fully
(M)aximizing it, outer iterations between E- and M-steps will converge to a local optima of
the observed data log likelihood.

When reducing evaluations of expensive blackbox functions is less of a concern, outer loop
convergence may be called when all constraints are satisfied and the (approximated) gradient
of the Lagrangian is sufficiently small; for example, given thresholds η1, η2 ≥ 0, one could
stop when

∥∥max
{
c(xk), 0

}∥∥ ≤ η1 and

∥∥∥∥∥∥∇f(xk) +
m∑
j=1

λki∇cj(xk)

∥∥∥∥∥∥ ≤ η2.

21https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
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Presuming that blackbox run budgets preclude iterating exhaustively until convergence,
a more pragmatic return value (compared to what’s prescribed in Algorithm 7.1) may be
warranted. The final subproblem solution, xkmax , could well be invalid if a budget short-
circuits search. Instead it’s safer to report x? yielding the BVV y? = f(x?) of the objective
recorded so far. Within the inner loop, where blackbox evaluations of f and c are made in
pursuit of a subproblem solution, simply update (x?, y?)← (x, y) whenever y = f(x) ≤ y?
and c(x) ≤ 0 are encountered.

To illustrate, consider the following application on our toy aimprob (7.7)–(7.8). Setting
up the subproblem solved in Step 2 of Algorithm 7.1, the code below wraps an arbitrary
blackbox (e.g., aimprob) in AL clothes. A variable in the global environment, evals, is
updated to keep track of the number of blackbox evaluations within the inner loop.

ALwrap <- function(x, blackbox, B, lambda, rho)
{
if(any(x < B[,1]) | any(x > B[,2])) return(Inf)
fc <- blackbox(x)
al <- fc$obj + lambda %*% fc$c +

rep(1/(2*rho), length(fc$c)) %*% pmax(0, fc$c)^2
evals <<- evals + 1
return(al)
}

The beauty of constrained optimization by AL is how easy it is to code the outer loop,
as long as that a good unconstrained optimization library is on hand to handle the inner
loop. For our illustration, we’ll keep it simple and use the default method="Nelder-Mead"
from optim, acting directly on blackbox (i.e., aimprob) through ALwrap. Since that method
doesn’t support bound constraints, bounding box checking against argument B (the analog
of our search region/input domain X from earlier in the chapter) is essential as a first step
in the wrapper above. Combining those elements and the updates to (λ, ρ), the function
below implements the entirety of Algorithm 7.1.

ALoptim <- function(blackbox, B, start=runif(ncol(B)),
lambda=rep(0, ncol(B)), rho=1/2, kmax=10, maxit=15)
{
## initialize AL wrapper
evals <- 0
formals(ALwrap)$blackbox <- blackbox

## initialize outer loop progress
prog <- matrix(NA, nrow=kmax + 1, ncol=nrow(B) + 1)
prog[1,] <- c(start, NA)

## "outer loop" iterations
for(k in 1:kmax) {

## solve subproblem ("inner loop")
out <- optim(start, ALwrap, control=list(maxit=maxit),

B=B, lambda=lambda, rho=rho)
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## extract the x^* that was found, and keep track of progress
start <- out$par
fc <- blackbox(start)
prog[k+1,1:ncol(B)] <- start
if(all(fc$c <= 0)) prog[k+1,ncol(B)+1] <- fc$obj

## update augmented Lagrangian parameters
lambda <- pmax(0, lambda + (1/rho)*fc$c)
if(any(fc$c > 0)) rho = rho/2

}

## collect for returning
colnames(prog) <- c(paste0("x", 1:ncol(B)), "obj")
return(prog)

}

The only required arguments are blackbox, written in a form amenable to wrapping in
ALwrap as exemplified by aimprob, and study region X ≡ B. Sensible defaults are provided
for the other tunable parameters, at least as a jumping-off point. Notice that maxit=15
limits the inner loop to fifteen iterations, however the number of blackbox evaluations
may be much greater than that depending on how the inner loop attacks the subproblem.
Also notice that an extra blackbox call is made outside of optim to extract the constraint
evaluation at the solution to the subproblem. A more clever implementation, working with a
custom inner loop optimizer that saves function evaluations, might be able to avoid this
redundant, potentially expensive, evaluation. Likewise, the implementation tracks the best
valid subproblem solution, rather than the best of all valid evaluations (BVV).

Let’s see how ALoptim works on aimprob with a somewhat pathological initialization: about
as far as you can get from any of the valid local minima.

evals <- 0
B <- matrix(c(rep(0,2), rep(1,2)), ncol=2)
prog <- ALoptim(aimprob, B, start=c(0.9, 0.9))

Figure 7.26 illustrates progress by plotting outer loop iteration number (plus one for the
starting location), with “cross-hairs” at the final value to ease visualization.

plotprob(aimprob)
text(prog[,1], prog[,2], 1:nrow(prog))
m <- which.min(prog[,3])
abline(v=prog[m,1], lty=3, col="gray")
abline(h=prog[m,2], lty=3, col="gray")

It would appear that after just ten outer loop iterations the global solution has been found,
at least to within a decent tolerance. However, this summary hides a huge computational
expense in terms of the number of blackbox evaluations.

evals
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FIGURE 7.26: One application of optimization by augmented Lagrangian. The numbers
indicate k at location xk solving the AL subproblem. Cross-hairs highlight the final solution.

## [1] 168

This situation could potentially have been much worse with a higher value of maxit. To
what extent might one improve upon this state of affairs? Before heading down that road,
consider first what happens when we randomly reinitialize at a few more places.

reps <- 30
all.evals <- rep(NA, reps)
start <- end <- matrix(NA, nrow=reps, ncol=2)
for(i in 1:reps) {
evals <- 0
prog <- ALoptim(aimprob, B, kmax=20)
start[i,] <- prog[1,-3]
m <- which.min(prog[,3])
end[i,] <- prog[m,-3]
all.evals[i] <- evals

}

To ensure that a good answer is obtained in each repetition, a higher number of outer loop
iterations, kmax=20, is used. Figure 7.27 shows the (random) starting and best valid ending
value of the objective from each repetition as arrows.

plotprob(aimprob)
arrows(start[,1], start[,2], end[,1], end[,2], length=0.1, col="gray")

It’s quite clear from this view that the AL is adequately finding local solutions, but sometimes
it’s surprising what local solution it finds. In at least one occasion out of thirty, the ending
value lands in a trough that’s both farther away from its starting location and traverses
shallower gradients in order to do so. So while local AL convergence is fairly robust to
subproblem progress in inner loop iterations, it can be hard to predict which of several
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FIGURE 7.27: Outcome of repeated applications of AL-optimization. The origin of each
arrow indicates a randomly chosen initialization; terminus indicates the outcome of search.

local (valid) optima it’ll converge to. And all that while spending frivolously on blackbox
evaluations, at least compared to what I’m about to propose momentarily.

summary(all.evals)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 244 332 337 322 339 340

For a more interactive variation on the above illustration, see aimprob.R22. This demo allows
the user to step through outer loop iterations, under random initialization, to get a better
feel for how an AL guides search. An attentive reader will notice from the demo that the
AL method often approaches valid solutions from the invalid side of constraint boundaries,
with at least as many evaluations in invalid as valid regions – a behavior well-studied in the
literature. As a result, many software libraries implementing AL composites (7.9) consider
as solutions x? those inputs corresponding to the BOV whose constraints are within an ε
tolerance of valid (e.g., c(x?) ≤ 1e−4). Others feel that it’s safer to simply report the BVV
of the objective.

The calculation below shows that solutions to the subproblem, the xks, are about equally
likely to be valid as invalid on this problem, which can be interpreted as a symptom of that
behavior.

mean(is.na(prog[,3]))

## [1] 0.4286

Without a cache of the entirety of blackbox evaluations, and without a much larger maxit
and kmax, it’s difficult to illustrate this phenomenon in greater detail. Of course, we don’t
want to dwell too much here on review of math programming methods. The takeaway

22http://bobby.gramacy.com/surrogates/aimprob.R

http://bobby.gramacy.com/surrogates/aimprob.R
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message is that the AL method is a potentially expensive, local affair, that otherwise has
many nice empirical and theoretical properties. And it’s quite easy to implement.

7.3.5 Augmented Lagrangian Bayesian optimization (ALBO)

Since the inner loop solver can be anything, as long as it makes progress on the subproblem,
why not try a surrogate-assisted/BO solver? That might be the best of both worlds. Surrogate
methods enjoy global scope, heuristics like EI are good at navigating exploration–exploitation
trade-offs, and setups adapted to the constrained setting are few. AL methods converge to
valid solutions, but are profligate with blackbox evaluations despite their distinctly local
scope. This idea, of combining the AL with Bayesian optimization (BO) was originally
proposed by Gramacy et al. (2016), and later dubbed ALBO by Picheny et al. (2016c) who
extended the methodology to equality and mixed (inequality and equality) constraints.

The crux of the approach involves training a surrogate, which will ultimately guide the inner
loop, on the entire corpus of blackbox evaluations obtained so far, i.e., over all inner and
outer iterations of the loops in Algorithm 7.1. Whereas in a more conventional AL approach,
each subproblem would be solved without any memory of solvers run in earlier outer loop
iterations. Not only that, but typically inner loop optimizers (like those from optim) are
themselves also memoryless, or at best have limited memory like "L-BFGS-B". Therefore
the proposed application of surrogates here represents a regime shift in the modus operandi
compared to canonical AL methodology. Surrogate-based inner loops will have not only
global scope on the specific subproblems they’re solving, but also knowledge of the surface(s)
gathered from previous subproblems.

Suppose that n such evaluations of the blackbox have been made so far, across all inner and
outer loops of Algorithm 7.1. Denote by

Dn = (x1, f(x1), c(x1)), . . . , (xn, f(xn), c(xn))

the data available for training surrogates. We’ve been largely able to avoid double-indexing
so far in this chapter, over constraint coordinates j = 1, . . . ,m and observation indices
i = 1, . . . , n. (In some places I was downright sloppy, but context – usually a 1d constraint –
helped.) Going forward, I shall invest in more precise notation. Let c(i)j be the jth coordinate
of c(xi), the vector of constraint evaluations from the ith run of the blackbox. To have
notation match for objective evaluations, even though they’re not vectorized, I shall write
f (i) as a shorthand for f(xi). So our training data can now be more compactly notated as
Dn = {(f (i), c(i)}ni=1 for m-vectors c(i). As usual, focus is on GP surrogates for Dn, although
much of the discussion is agnostic about that choice with the caveat that a few of the
closed-form results leverage Gaussian predictive equations.

There are several options for how exactly to proceed, as regards modeling data Dn in a
means effective for solving subproblems in Step 1 at each iteration k. One is easy to rule
out. Perhaps it’s strange to begin by focusing attention on a flawed notion. But there’s good
reason for doing so. It represents a rather straightforward approach; the first thing one might
think to try. Ultimately it serves to illustrate pitfalls in use of GP surrogates in practice,
whether for optimization or otherwise. You might call it the gestalt approach: model the
whole rather than the sum of its parts. Let yi = LA(xi;λk−1, ρk−1) via f (i) and c(i). That is,

yi = f (i) + (λk−1)>c(i) + 1
2ρk−1

m∑
j=1

max
(

0, c(i)j
)2
.
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Then fit a surrogate to (x1, y1), . . . , (xn, yn) in the usual way, and guide the inner loop search
using your preferred acquisition function: predictive mean (EY), EI, IECI, etc.

Benefits to this scheme are immediately self-evident. Foremost, it’s highly modular. Plug
in any (objective-only) surrogate-assisted optimizer trained on yi’s, whether of your own
design, borrowing one of the functions provided earlier, or from an existing library. Such a
scheme ought to have many desirable features. It’ll enjoy global scope, being trained on all
data encountered so far. Yet it’ll also act locally: the AL method focuses search on promising
parts of the input space from the perspective of satisfying constraints. This hybrid scheme
would seem to embody an attractive means of balancing exploration, exploitation, constraint
satisfaction, and (perhaps above all) simple implementation.

So what’s the problem? The biggest issue is that the response surface created by mapping
Dn → {(xi, yi)}ni=1 possesses two pathologies known to thwart effective spatial modeling,
all wrapped into a tidy package. The squared term creates inherent nonstationarity by
amplifying dynamics away from valid regions. The max creates kinks in the surface, breaking
smoothness. Although it’s definitely possible to engineer a covariance kernel, for GP modeling
say, that anticipates response surface features such as these, I know of none readily available
for such purposes.

A somewhat smaller issue is one of efficiency. The AL composite (7.9) takes on a quadratic
form of sorts, yet that information isn’t leveraged in the surrogate model specification. Again,
at least not if a canonical, library-based GP modeling is deployed. In situations where f is
known, for example linear in our toy aimprob and Lockwood problems, the apparatus would
needlessly model a known quantity. Many challenging problems have known objectives, so
that special case ought to be explicitly acknowledged by the methodological development.
In fairness, classical AL doesn’t leverage a known quadratic form or a potentially known
objective either. Yet more specialized setups have been proposed in the literature, paying
dividends in practice (Kannan and Wild, 2012). Since we’re drawing up schematics for
something new, why not lay out the full wish-list at the very start?

All of these shortcomings are addressed simultaneously by separately/independently sur-
rogate modeling each component of the AL. That is, fit a surrogate to the objective data
{(xi, f (i))}ni=1, if needed, and fit m separate surrogates to {xi, c(i)j }ni=1 for each of m con-
straints. As shorthand, write fn for fitted objective surrogate, and cn = (cn1 , . . . , cnm) for
mutually independent fitted constraint surrogates. Let Yf (x) ≡ Yfn(x) ∼ fn denote a
random variable characterizing predictive uncertainty at novel input x under the objective
surrogate, which may simply be yf (x) = f(x) if the objective is treated as known. Similarly,
let cn = (cn1 , . . . , cnm) emit predictive random variables Yc(x) ≡ Y nc (x) = (Y nc1

(x), . . . , Y ncm(x))
following the distribution of novel predictions under the m constraint surrogates. Then, the
distribution of the composite random variable

Y (x) = Yf (x) + λ>Yc(x) + 1
2ρ

m∑
j=1

max(0, Ycj (x))2 (7.10)

can serve as a surrogate for LA(x;λ, ρ).

What can you do with this composite random variable? If surrogate predictive equations
are Gaussian, as they are from fitted GPs, then the AL composite posterior mean (EY) is
available in closed form.

E{Y (x)} = µnf (x) + λ>µnc (x) + 1
2ρ

m∑
j=1

E{max(0, Ycj (x))2}
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A result from generalized EI (Schonlau et al., 1998) furnishes a closed form for the ex-
pectation inside that sum above. Specifically, an expression for E{max(0, Ycj (x))2} follows
by recognizing its argument as a powered improvement for −Ycj (x) over zero, that is,
I

(0)
−Ycj

(x) = max{0, 0 + Ycj (x)}. Since the power is 2, an expectation-variance relationship
can be exploited to obtain

E{max(0, Ycj (x))2} = E{I(0)
−Ycj

(x)}2 + Var[I(0)
−Ycj

(x)]

= σ2n
cj (x)

1 +
(
µncj (x)
σncj (x)

)2
Φ

(
µncj (x)
σncj (x)

)
+
µncj (x)
σncj (x)φ

(
µncj (x)
σncj (x)

) .
It’s hard to imagine many other quantities relevant for optimization taking on analytic closed
forms. The max in the AL composite random variable (7.10) is hard to work around. We
got lucky with the mean above. Variances may similarly be available, enabling LCB-based
acquisition (7.1), however theoretical guidance for choosing appropriate weights βn in this
AL context isn’t readily available. The simplest way to evaluate EI under the composite AL
is through MC. Sample T deviates y(t)

f (x) and y(t)
c (x), form y(t)(x) through Eq. (7.9), and

average:

EI(x) ≈ 1
T

T∑
t=1

max{0, ynmin − y(t)(x)}. (7.11)

Surprisingly, this works quite well in practice and even applies when surrogates emit non-
Gaussian predictors. T as small as 100 is often sufficient to achieve stable relative EI
comparisons in X -space. Such crude numerical approximation can actually be better, in
terms of cost-benefit trade-off, than other fancier alternatives. This is borne out in our
empirical work. But hold that thought for a moment.

A big downside to MC-based acquisition is lack of determinism. Stochastic optimization
dulls the deliberate weighing of trade-offs that an expensive blackbox deserves. Perhaps
more practically, an MC EI is hard to meta-optimize, say through an optim subsubroutine.
After all, optim-like inability to cope with noisy evaluations was one of the big motivators
for BO alternatives.

What alternatives? Well if the story ended there, this whole ALBO thing would be somewhat
underwhelming. Although the max thwarts analytics, there’s a well-known technique from
math programming for softening such hard thresholds. One can equivalently reformulate
AL subproblems without the max by introducing so-called slack variables. The setup is as
follows. Introduce sj , for j = 1, . . . ,m, i.e., one for each cj(x); convert inequality into equality
constraints: cj(x) − sj = 0; and augment the program with additional bound constraints
sj ≥ 0, for j = 1, . . . ,m. In practice these latter, simply defined constraints are subsumed
into the box B = X × S where S = [0,∞]m. In this way, the problem is mapped from
p-dimensional X space to (p + m)-dimensional X × S space. Although our focus here is
on inequality constrained problems, it’s worth commenting that equality (and thus mixed
constraints) are implemented by fixing sj = 0 for relevant coordinates, j, of the constraint
vector.

Slack-equality-based AL is sometimes presented as the canonical form in textbooks (Nocedal
and Wright, 2006, Chapter 17) because that framework can accommodate both equality and
inequality constraints, even simultaneously. Introducing slacks into ALBO, as described above,
facilitates the only known EI-based method for handling mixed (equality and inequality)
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constraints (Picheny et al., 2016c) in surrogate-assisted/BO literatures. But I’ll try not to
unduly complicate the narrative here by over-emphasizing the mixed constraints setting.
Instead, let’s focus on using slacks to reformulate the ALBO composite random variable
(7.10), with an eye toward a more analytical EI calculation.

Picheny et al. (2016c) showed that, for the slack-inequality constrained problem, the AL
composite becomes

LA(x, s;λ, ρ) = f(x) + λ>(c(x) + s) + 1
2ρ

m∑
j=1

(cj(x) + sj)2, so that

Y (x, s) = Yf (x) +
m∑
j=1

λjsj + 1
2ρ

m∑
j=1

s2
j + 1

2ρ

m∑
j=1

[(
αj + Ycj (x)

)2 − α2
j

]
, (7.12)

where αj = λjρ+ sj . Observe that if sj = 0, encoding an equality constraint, the quadratic
penalty eventually forces cj(x) = 0 with small enough ρ.

It’s helpful to re-arrange the expression for Y (x, s) in Eq. (7.12) in order to focus on interplay
between slacks s and ordinary inputs x. Let g(s) =

∑m
j=1 λjsj + 1

2ρ
∑m
j=1 s

2
j −α2

j capture the
part of Y (x, s) which is a function of slacks s only, and let W (x, s) =

∑m
j=1[(αj + Ycj (x))2]

capture that which depends on both types of inputs. With those definitions, we may more
compactly write

Y (x, s) = Yf (x) + g(s) + 1
2ρW (x, s).

Using Ycj ∼ N
(
µcj (x), σ2

cj (x)
)
, W can be written as

W (x, s) =
m∑
j=1

Z2
j , with Zj ∼ N

(
µcj (x) + αj , σ

2
cj (x)

)
=

m∑
j=1

σ2
cj (x)Z̄2

j , with Z̄j ∼ N
(
µcj (x) + αj

σcj (x) , 1
)

=
m∑
j=1

σ2
cj (x)Xj , with Xj ∼ χ2

ν=1

((
µcj (x) + αj

σcj (x)

)2)
,

where that final random variable is a weighted sum of non-central chi-square (WSNC) variates
(Duchesne and de Micheaux, 2010). WSNC density, distribution and quantile functions are
provided by R packages CompQuadForm (de Micheaux, 2017) and sadists (Pav, 2017).

Those library functions – for CDF evaluation in particular – enable EI approximation to a
high degree of accuracy with straightforward numerics. Under the AL-composite, that involves
working with EI(x, s) = E

[
(ynmin − Y (x, s)) I{Y (x,s)≤ynmin}

]
, given the current minimum ynmin

of the AL over all n runs. Consider the somewhat simpler case where f(x) is treated as known.
Let wnmin = 2ρ (ynmin − f(x)− g(s)), and DW denote the WSNC (cumulative) distribution
of W (x, s). It can be shown that

EI(x, s) = 1
2ρE

[
(wnmin −W (x, s)) IW (x,s)≤wnmin

]
= 1

2ρ

∫ wnmin

−∞
DW (t) dt = 1

2ρ

∫ wnmin

0
DW (t) dt.
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In other words, EI calculation involves a one-dimensional definite integral whose integrand
may be evaluated with a library subroutine. For example, if wts is a vector holding the m
components of σ2

cj (x), and ncp holds arguments of χ2
ν=1(·) above, i.e.,

ncpj =
(
µcj (x) + αj

σcj (x)

)2

,

then the following commands yield EI under the AL composite.

R ex> library(sadists)
R ex> obj.EI <- function(t)
+ psumchisqpow(q=t, wts, rep(1, m), ncp, rep(1, m))
R ex> EI <- integrate(obj.EI, 0, wmin)$value / (2*rho)

Note these lines are just an example; that R code is not included in the Rmarkdown build in
order to produce any output shown here or below. For more details, see Appendix C of the
arXiv version23 of Picheny et al. (2016c), which illustrates both sadists and CompQuadForm
application. A worked example involving those calculations under the hood will be provided
momentarily. Adjustments are trivial when f is treated as unknown; see Picheny et al. (2016c)
for details. An example for that case is coming soon too. It’s worth acknowledging that the
scheme outlined above is still numeric. However, unlike the MC version (7.11), which collected
random deviates in m+1 dimensions, the numerics here are in 1d. Simple quadrature suffices,
like that implemented by integrate in base R, which provides approximations to tolerances
low enough to meta-optimize, with optim say.

7.3.6 ALBO implementation details

Before jumping headlong into illustrations, several details are worthy of lip service. The
attentive reader may have noticed some logical gaps in the passages above, and may have
justifiably been worried they were being swept under a rug. Two are engineering details: a
choice of initializing (λ0, ρ0); and how to determine inner loop convergence of the surrogate-
assisted sub-solver. I shall summarize default solutions to these which work well, but could
potentially be sub-optimal in particular settings. Two others involve the slack re-formulation
and are more technical, in the sense that there’s a right way from a certain point of view.
The first involves re-describing Algorithm 7.1 for slacks. Changes here are largely semantic,
however the crucial step of updating (λk, ρk) requires explicit adjustment. Finally, although
slack variables expand the search space by up to m dimensions, one additional per constraint
beyond the dimension of x, an optimal setting of skj can be expressed as a function of x,
mapping the search space back down again to the dimension of x only.

A sensible initialization strategy for (λ0, ρ0) balances the scales of objective and constraint
in the AL on the basis of outputs obtained from a seed space-filling design of size n0.
The description here, and in the following passages, favors generality with respect to a
mixed (inequality and equality) constraint setting. Let v(x) be a logical vector of length
m = m≤ + m= recording the validity of x in a zero-slack setting. Let vj(x) = 1 if the
jth inequality constraint is satisfied, cj(x) ≤ 0 for j = 1, . . . ,m≤; and let v`(x) = 1 if the
(j −m≤)th equality constraint is satisfied, |cj(x)| ≤ ε for j = m≤ + 1, . . . ,m; otherwise let
vj(x) = 0. Then take

23https://arxiv.org/abs/1605.09466

https://arxiv.org/abs/1605.09466
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ρ0 =
mini=1,...,n0{

∑m
j=1 c

2
j (xi) : ∃j, vj(xi) = 0 }

2 mini=1,...,n0{f(xi) : ∀j, vj(xi) = 1} , (7.13)

and λ0 = 0. The denominator above isn’t defined if the initial design has no valid values
(i.e., if there’s no xi with vj(xi) = 1 for all j). When that happens, use the median of f(xi)
in the denominator instead. On the other hand, if the initial design has no invalid values
and hence the numerator isn’t defined, take ρ0 = 1.

Initial implementations of ALBO (Gramacy et al., 2016) ran the solver, optimizing either
E{Y (x)} or EI(x), until progress had been made on the composite objective; i.e., until an xk
was found such that LA(xk, λk−1, ρk−1) < LA(xk−1, λk−1, ρk−1). The idea was to economize
on the number of blackbox evaluations from the outer loop while satisfying assumptions
underpinning theory providing for convergence of the overall AL scheme. In a discussion
of that paper, Picheny et al. (2016a) suggested that one might get away with even fewer
evaluations – potentially as few as one – when EI is used. Their reasoning was that such
“single-acquisition (inner loop) termination”, taking xk from EI even if it produces a worse
AL than the current value, matches the spirit of EI-based search as optimal, in a certain
sense, if it’s the final one (see Bull (2011) and the end of §7.2.2). Original/prototype ALBO,
which continued the inner loop by taking steps of EI until AL improved, represented overkill
in terms of empirical outer-loop progress.

Single-acquisition termination also meshes well with an updating scheme analogous to Step
2 in Algorithm 7.1: updating only when no actual improvement (in terms of constraint
violation) is realized by that choice. Technically, that updating scheme must be re-written
in order to cope with a slack variable formulation, incorporating a slight twist for situations
where some constraints specify equality (i.e., sj = 0). For completeness at the expense of
slight redundancy, reworked lines of Algorithm 7.1 are provided in Algorithm 7.2. Rather
than single-indexing m≤ inequality constraints first, followed m= equality ones, Algorithm
7.2 uses an equality set E as a shorthand.

Algorithm 7.2 Slack Variable and Mixed Constraint Adjustments

Require the same as Algorithm 7.1, with (potentially empty) set E ⊆ {1, . . . ,m}
indicating equality constraints, and a tolerance ε > 0 deeming such constraints satisfied.

Assume a search region augmented to B = X × S.

Let (xk, sk) approximately solve minx,s
{
LA(x, s;λk−1, ρk−1) : (x, s) ∈ B

}
in iteration

k of the outer loop, taking skj = 0 for all j ∈ E .

2. Update:
• λkj = λk−1

j + 1
ρk−1 (cj(xk) + skj ), for j = 1, . . . ,m;

• if cj /∈E(xk) ≤ 0 and |cj∈E(xk)| ≤ ε, set ρk = ρk−1;
• else ρk = 1

2ρ
k−1

Otherwise proceed as usual.

Above, the first part of Step 2 is the same as in the non-slack AL in Algorithm 7.1 without the
“max”, and with slacks augmenting constraint values. The following “if” checks for validity
at xk, deploying a threshold ε ≥ 0 on equality constraints. Such softening is essential since a
real-valued blackbox would never (or exceedingly rarely) evaluate to exactly zero (or any
other particular number). If validity holds at (xk, sk), the current AL iteration is deemed to
have made progress and the penalty remains unchanged; otherwise it’s doubled. An alternate
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formulation may entertain |c(xk)+sk| ≤ ε for all coordinates j = 1, . . . ,m without separating
out inequality and equality constraints. While the latter is cleaner diagrammatically, the
version presented in the algorithm limits exposure to choices of threshold ε. When there are
no equality constraints, no softening is required.

In Algorithm 7.2, as well as in the preceding discussion, an optimization over a larger
dimensional X ×S space is implied by minx,s

{
LA(x, s;λk−1, ρk−1) : (x, s) ∈ B

}
. With some

of the slacks sj = 0 for j ∈ E , indexing the set of equality constraints, that search dimension
is somewhat reduced. Still, that’s more space to search than in the original AL version
outlined in Algorithm 7.1. It turns out that the remaining elements of S, i.e., j /∈ E , can
also be dispensed with, although perhaps not as trivially.

For observed cj(x), associated slack variables minimizing the composite LA(x, s;λk−1, ρk−1)
can be obtained analytically, and thereby be concentrated out. Using the form of Y (x, s) from
Eq. (7.12), note that mins∈Rm y(x, s) is equivalent to mins∈Rm

∑m
j=1(2λjρsj +s2

j +2sjcj(x)).
For fixed x, this is strictly convex in s. Therefore, its unconstrained minimum can only be
it’s stationary point, which satisfies 0 = 2λjρ+ 2s?j (x) + 2cj(x), for j = 1, . . . ,m. Accounting
for the nonnegativity constraint, we obtain the following optimal slacks:

s?j (x) = max {0,−λjρ− cj(x)} , j /∈ E . (7.14)

Above s? is expressed as a function of x to convey that x remains a free quantity in
y(x, s?(x)).

In the blackbox c(x) setting, y(x, s?(x)) is only directly accessible at data locations xi.
At other x-values, however, surrogates provide a useful approximation. When Yc(x) is
(approximately) Gaussian it’s straightforward to show that the optimal setting of the slack
variables, solving mins∈Rm E[Y (x, s)], are s?j (x) = max{0,−λjρ − µcj (x)}, i.e., like in Eq.
(7.14) with a prediction µcj (x) for Ycj (x) replacing the unknown cj(x) value.

Other criteria may be used to choose slacks. Instead of minimizing the mean of the composite,
one could maximize EI. Appendix A of Picheny et al. (2016c) explains how this is of dubious
practical value. Compared to the EY settings described above, setting optimal slacks by
searching over EI is both more computationally intensive and provides near identical results in
practice. Even when acquisitions are ultimately made by EI on the AL composite, analytically
concentrating out slacks via EY is sufficient.

As a final remark here, before getting on to illustrations, it’s worth noting that there’s
a downside to EI calculations on the AL compared to simpler alternatives like E{Y (x)},
whether in original or slack formulations. EI(x) can be exactly zero for some x-values – and
not just a few, but on an uncountably infinite subset of the study region X . This is true
even when Gaussian predictive equations are in play. The AL composite random variable,
Y (x) or Y (x, s), is a quadratic function of surrogate random variables Yf (x) and Yc(x).
The image of a quadratic need not span the entire real line. The same is not true for EI in
unconstrained settings (i.e., not with the AL), where the Gaussian form of Y (x) guarantees
that improvement I(x) has positive probability of being non-zero. As a result, it can be hard
to find regions of positive EI, especially in latter outer loop iterations where the penalty
1/ρk−1 is high. For a more detailed discussion of when such situations may arise, see Section
3.3 of Gramacy et al. (2016). If an inner loop solver can’t find any non-zero EI regions, a
failsafe switch to EY-based search can kick-in. A method successful in deploying EI in early
iterations, navigating exploration and exploitation trade-offs, is quite likely to finish with
purely exploitative EY-search – not necessarily a bad thing.
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7.3.7 ALBO in action

We’ve gone longer than usual without concrete examples. The simplicity of ALBO masks
myriad alternatives and implementation details: choosing formulations (original or slack),
integrating with libraries for surrogate modeling (i.e., GPs), initialization and inner loop
convergence, choices for acquisition (EY or EI), etc. That’s too much code to wield all at
once in a real-time Rmarkdown setting. So we’ll borrow the optim.auglag implementation
in laGP.

Known objective

Our aimprob function, implementing Eqs. (7.7)–(7.8), is provided in exactly the format
required for optim.auglag, complete with a known.only argument allowing objective to
be probed without cost, if desired. The only other essential argument is search region X ,
which we already set to be the unit cube B in our earlier ALoptim example(s). By default,
optim.auglag utilizes MC approximated EI acquisition on a sequence of increasingly dense
random space-filling candidate search grids. Unless otherwise specified, a budget of end=100
blackbox runs will be performed, seeding with an initial design of size start=10. Far fewer
runs are required to find good valid solutions for aimprob, so we’ll take that down to end=50
for this example, and switch off progress printing.

ei.mc <- optim.auglag(aimprob, B, end=50, verb=0)

Before inspecting the output, what shall we compare it to? Using E{Y (x)} for acquisitions
is an option, and may be invoked as follows.

ey <- optim.auglag(aimprob, B, end=50, ey.tol=1, verb=0)

Analog EFI acquisition, but otherwise using the same GP surrogates and sharing all other
implementation details, is provided by optim.efi.

efi <- optim.efi(aimprob, B, end=50, verb=0)

A slack-variable-based formulation can be invoked in two different ways. The first, with
slack=TRUE, offers a setup identical to the MC version except that exact EI evaluations are
calculated by numerically integrating WSNC distribution functions at random candidates.
The second, with slack=2, is similar but finishes off with a meta-optim-based maximization
initialized from the highest EI candidate, leveraging the deterministic nature and high accu-
racy of slack EI calculations. A similar multi-start EI is provided by DiceOptim, specifically
for AL-based acquisitions as well as many others implemented therein.

ei.sl <- optim.auglag(aimprob, B, end=50, slack=TRUE, verb=0)
ei.slopt <- optim.auglag(aimprob, B, end=50, slack=2, verb=0)

Although no timings are reported here, slack-based methods are more computationally
intensive. Non-slack/MC versions can perform all fifty iterations in under a second. Using
slack=TRUE takes about five seconds; slack=2 can take upwards of thirty seconds on modern
workstations. Figure 7.28 shows BVVs for each method over fifty blackbox evaluations.
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plot(efi$prog, type="l", ylim=c(0.6, 1.6), ylab="best valid value",
xlab="n: blackbox evaluations")

lines(ey$prog, col=2, lty=2)
lines(ei.mc$prog, col=3, lty=3)
lines(ei.sl$prog, col=4, lty=4)
lines(ei.slopt$prog, col=5, lty=5)
legend("topright", c("EFI", "EY", "EI.mc", "EI.sl", "EI.slopt"),
col=1:5, lty=1:5)
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FIGURE 7.28: Comparing EFI and AL-based comparators on the toy problem (7.7)–(7.8).

Although they start at different places, because they are seeded with different (random) space-
filling designs, they all end up at about the same place after just 25 blackbox evaluations – at
what we know from Figure 7.25 to be the global (valid) optimum. That’s pretty impressive
considering that ALoptim (§7.3.4) required 332 evaluations, but offered only local convergence.
Despite starting from different spots, the curve labeled “EI.slopt” (corresponding to slack=2)
is consistently first to get down to a BVV of about 0.6, the global minimum.

The curious reader may wish to wrap those calls in for loops to explore average case behavior.
Panels of Figure 7.29, which are based on a similar exercise from Picheny et al. (2016c),
used 100 random restarts and included several other methods for comparison.

The left panel shows BVV. All four methods entertained are pretty speedy compared to ordi-
nary, non surrogate-assisted AL, consistently finding the global minimum after 25 blackbox
evaluations. The blue comparator, PESC for predictive entropy search (Hernández-Lobato
et al., 2015) leverages an implementation in spearmint24, a Python library. Comparisons are
drawn to methods from Gramacy et al. (2016) in gray: ALBO but without slack variables,
automatic initialization (7.13) or single-acquisition (inner loop) termination. Taken together,
those engineering details offer a dramatic improvement over the initial prototype.

The right panel shows log utility gap, log(BVVn − y?) over acquisitions n = n0, . . . , N ,
tracking log differences between the theoretical BVV of the objective, y?, and those found by

24https://github.com/HIPS/Spearmint/tree/PESC

https://github.com/HIPS/Spearmint/tree/PESC
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FIGURE 7.29: Cribbed summary of comparison from Picheny et al. (2016c) of raw BVV
(left) progress, and log utility gap (right) in order to zoom in on the best methods in later
iterations.

search (empirical BVV). Under this progress metric, separation between the best comparators
is accentuated. Perhaps more notably, all methods continue to make progress well beyond the
twenty-fifth evaluation, albeit only incrementally. PESC and slack AL with meta-optimization
of EI are best; pairwise t-tests reveal that these differences are indeed statistically significant.
See Picheny et al. (2016c) for more details.

Unknown objective

How about if the objective function is more complicated and, along with constraints, expensive
to evaluate jointly in the blackbox? Sure. To illustrate, how about augmenting our toy
aimprob with the objective below?

herbtooth <- function(X)
{
if(!is.matrix(X)) X <- matrix(X, ncol=2)
g <- function(z)

return(exp(-(z - 1)^2) + exp(-0.8*(z + 1)^2) - 0.05*sin(8*(z + 0.1)))
return(-g(X[,1])*g(X[,2]))
}

Some have been calling this function “Herbie’s tooth” because it was cooked up by Herbie
Lee25, my PhD advisor, as a challenging surface to model and optimize (Lee et al., 2011;
Gramacy and Lee, 2011). Herbie’s tooth has featured in several recent papers, including
the local approximate Gaussian process (LAGP) paper (Gramacy and Apley, 2015). When
visualized as a perspective plot, as we shall do in Chapter 9’s Figure 9.25 when we get to
LAGP, it looks like a molar. A mathematical depiction is provided by Eq. (9.3). Without
dense sampling in the input space it’s hard to accurately emulate this test function. More
relevant in our current context is that molars have lots of nooks and crannies, i.e., local
minima, which makes for a challenging optimization problem.

25https://users.soe.ucsc.edu/~herbie/

https://users.soe.ucsc.edu/~herbie/
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For visuals, and ultimately to optimize under aimprob constraints, an updated aimprob2
function is defined below, using herbtooth in place of the known linear objective. Herbie’s
tooth is usually evaluated in [−2, 2]2, whereas observe that aimprob2 assumes coded inputs.

aimprob2 <- function(X, known.only=FALSE)
{
if(is.null(nrow(X))) X <- matrix(X, nrow=1)
if(known.only) stop("no outputs are treated as known")
f <- herbtooth(4*(X - 0.5))
c1 <- 1.5 - X[,1] - 2*X[,2] - 0.5*sin(2*pi*(X[,1]^2 - 2*X[,2]))
c2 <- rowSums(X^2) - 1.5
return(list(obj=f, c=drop(cbind(c1, c2))))

}

Leveraging our plotting macro from earlier, Figure 7.30 shows the surfaces in play in this
updated toy problem. Plainly, there’s a multitude of local minima, in both valid and invalid
parts of the input space.

plotprob(aimprob2, nl=c(10,13))
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FIGURE 7.30: Herbie’s tooth objective paired with constraints from the original toy
problem (7.8).

By inspection, it would appear that there are three local minima which are more-or-less
equally good as global optima in three of the four quadrants of the space. A fourth one,
located in the remaining quadrant, would be similarly attractive if not invalid. These are,
roughly speaking, at combinations of coordinates 0.25 and 0.75 up from zero and down from
one. To see how well surrogate AL and MC EI work on this problem, code below performs
searches in thirty replicates, averaging over randomized seed designs. Specifying fhat=TRUE
causes a GP surrogate to be fit to objective function evaluations returned by blackbox.

prog <- matrix(NA, nrow=30, ncol=100)
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xbest <- matrix(NA, nrow=30, ncol=2)
for(r in 1:30) {
out2 <- optim.auglag(aimprob2, B, fhat=TRUE, start=20, end=100, verb=0)
prog[r,] <- out2$prog
v <- apply(out2$C, 1, function(x) { all(x <= 0) })
X <- out2$X[v,]
obj <- out2$obj[v]
xbest[r,] <- X[which.min(obj),]

}

Full BVV progress is recorded over acquisition iterations, as are x-coordinates corresponding
to the best solution found in each replicate. Figure 7.31 shows our thirty progress trajectories
over 100 blackbox evaluations.

matplot(t(prog), type="l", ylab="best valid value",
xlab="blackbox evaluations", col="gray", lty=1)
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FIGURE 7.31: Best valid value for ALBO search of Herbie’s tooth with toy constraints
(7.8) in thirty random restarts.

All searches have converged on an agreed-upon objective evaluation of about -1.0929 for
the BVV at the final iteration. Figure 7.32 shows the geographical locations of the valid
argminx found in each restart.

plotprob(aimprob2, nl=c(10,13))
points(xbest[,1], xbest[,2], pch=18, col="blue")

Apparently, only two of the three local valid minima are reasonable as global solutions. There’s
some jitter in solutions found owing to MC approximation of EI on space-filling candidate
grids. A more precise solution can be calculated, at substantially greater computational
expense, with slack=2. A thriftier option might be to initialize a classical, local AL-based
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FIGURE 7.32: Locations of solutions x? from each of thirty repetitions.

search staring off where the surrogate/EI one ended. For a more compelling illustration,
let’s back off the number of blackbox iterations to half of what was used above.

out2 <- optim.auglag(aimprob2, B, fhat=TRUE, start=20, end=40, verb=0)
v <- apply(out2$C, 1, function(x) { all(x <= 0) })
X <- out2$X[v,]
obj <- out2$obj[v]
xbest <- X[which.min(obj),]

Then feed the input corresponding to the BVV, calculated above, into ALoptim. Finishing a
surrogate-assisted optimization with a classical one, to drill down a local trough in order to
increase precision of the final solution, is a common tactic (e.g., Taddy et al., 2009).

end <- length(out2$rho)
evals <- 0
drill <- ALoptim(aimprob2, B, start=xbest, lambda=out2$lambda[end,],
rho=out2$rho[end], kmax=1, maxit=100)

evals

## [1] 49

Figure 7.33 shows how xbest, based on just 40 evaluations, compares to our earlier re-
sults obtained after 100 runs. Although sub-optimal, just 49 further ALoptim evaluations –
depending on the Rmarkdown build – yields an answer (drill) that’s at least as good.

hist(prog[,100], main="", xlab="best valid value",
xlim=range(c(prog[,100], min(obj))))

abline(v=min(obj), col=2, lty=2)
abline(v=drill[2,3], col=2)
legend("top", c("xbest", "drill"), col=2, lty=2:1)
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FIGURE 7.33: Histogram of BVVs in thirty repetitions augmented with f(x?) from a
limited AL-based search (vertical red-dashed line) followed by ordinary AL-search f(xdrill)
initialized at x? (red-solid).

Surrogate-based AL search, via MC EI, finds the local domain of attraction of the global
solution in relatively few evaluations. Embarking on a local search from there usually yields
an answer that’s indistinguishable from one obtained from a more laborious search enjoying
greater global scope, and a more judicious balance between exploration and exploitation.

7.3.8 Equality constraints and more

Several other examples, with comparison to EFI and classic AL, are illustrated by demos
provided with the laGP package. For example, demo("ALfhat") duplicates the example
immediately above, offering comparison to a classical AL (ALoptim-like) implementation. Two
other demos in the package entertain a mixed constraints setting. EFI isn’t directly applicable
in the presence of equality constraints; ALBO methods represent the only surrogate-assisted
option expressly targeting equality (and mixed) constraints – at least that I’m aware of at
the time of writing.

It’s tempting to try transforming an equality constraint into two inequalities (one ≤ and
one ≥, or whose negation is ≤). To the extent that the effect of such a reformulation is
understood, the outlook is bleak. It puts double-weight on equalities and violates certain
regularity conditions. Numerical issues have been reported in empirical evaluations (Sasena,
2002). This EFI-enabling hack is included in empirical comparisons automated by the two
demos.

See demo("GSB") for a 2d problem involving a Goldstein–Price objective (§7.1.1), the
toy sinusoidal inequality constraint c1 from aimprob, and two equality constraints that
together trace out four ribbons of valid region. EFI under the dual-inequality transformation
is competitive on this problem, but AL methods, especially with slack=2, work better.
See demo("LAH") for a 4d problem with known linear objective, an inequality constraint
derived from the Ackley function26, and an equality constraint derived from the Hartmann

26https://www.sfu.ca/~ssurjano/ackley.html
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4 function27. EFI is pretty bad on this one because the dual inequality transformation
over-emphasizes the equality constraint relative to the inequality one.

It would be remiss not to mention that optim.auglag isn’t equipped to handle noisy black-
boxes at this time, whether in the objective, constraint or both. An adaptation estimating
nuggets would be relatively straightforward. Still, such a setup is untested at this time,
and thus potential pitfalls are unknown. A recent paper by Letham et al. (2019) targets
noisy constrained optimization under an updated EFI. Calculations therein utilize quasi MC
numerics to fully quantify, and thus balance, relevant uncertainties in acquisition of new
runs.

Whenever there’s noise, and especially when it’s substantial, balance between exploration
and exploitation is nuanced. Understanding what’s signal and what’s noise is essential to
knowing whether there’s potential for improvement. Authors in recent literature have been
quick to criticize EI-like methods for acquiring replicates, or nearly so, prompting a search
for alternative heuristics. Replicating may seem wasteful when the blackbox is expensive,
but repeated sampling represents the only fool-proof mechanism for separating signal from
noise. It’s similarly wasteful to sample heavily in a region under the belief that the signal
shows potential for improvement when a small handful of replicates could summarily dismiss
that potential as noise.

I think this setting represents one of the big open problems in BO, especially when noise
levels may change over the input region. New sequential design heuristics, surrogate models,
and methods for coping with constraints (like the AL) will be needed in this setting. See, for
example, Jalali et al. (2017). Chapter 10 introduces heteroskedastic GPs, illustrating how
replication in design is key to effective learning, prediction, and quantification of uncertainty.
Learning for optimization is different than learning for prediction, but similar themes are
often in play, albeit to varying degrees.

Math programming has owned optimization for a century, or perhaps longer. And they
may yet, at least in some generality, for yet a century more. That said, statistical methods
have a near monopoly when observations are noisy. Therefore, the landscape of research
into methods for BO – as opposed to the more classical math programming option – will
undoubtedly be a space to watch for developments targeting optimization under uncertainty.
In many such contexts, such as in e-commerce, those methods (particularly the most exciting
developments from the ML/BO literature) already make up the vanguard.

As researchers in applied science become more comfortable with simulation as a means
of exploring complex relationships in biology, epidemiology, economics, sociology, physics,
chemistry, engineering, and more, they will eventually turn to statisticians for help optimizing
and calibrating those systems as a means of affecting policy, implementation, design of new
systems and modernization of old. Descriptive power, scope for synthesis, and potential
for automation inherent in modern nonparametric and hierarchical models (and their
experimental design) is unprecedented in modern times. BO is but one fine example of
the confluence of these mathematical and technological advances. Sensitivity analysis and
calibration are another.

27https://www.sfu.ca/~ssurjano/hart4.html
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7.4 Homework exercises

These problems explore Bayesian optimization in objective-only and constrained settings.

#1: Thompson sampling and probability of improvement

Augment the running Goldstein–Price example (§7.1.1) to include optim with
method="Nelder-Mead", Thompson sampling (TS; §7.1.2) and PI (7.2) comparators. For
TS, base acquisitions on a predictive draw obtained on candidates formed randomly in two
variations:

i. A novel size-100 LHS in the full [0, 1]2 input space for each iteration of search.
ii. A novel size-90 LHS in [0, 1]2 augmented with ten candidates selected at random from

the smallest rectangle containing the best five inputs found so far.

Considering the similarity between these four new methods and ones presented in the chapter
("L-BFGS-B", EY, EI), you may wish to develop a more modular implementation where
code and initializing points can be shared. That investment will pay dividends in #2 and
#3 below.

Report average progress and provide boxplots of the best objective value (BOV) for all seven
comparators over one hundred repetitions.

#2: Six-dimensional problem

Consider the Hartmann 6 function28 as implemented by hartman6 in the DiceOptim package
(Picheny et al., 2016b) on CRAN. Re-tool the running Goldstein–Price example (§7.1.1)
and EY-v-optim-v-EI comparison for this setting. As in #1, perform up to fifty blackbox
evaluations where surrogate-assisted variations are seeded with a random design of size
n0 = 12. Report average progress over optimization acquisitions and provide a boxplot of the
BOV for each at the end. If you worked on #1, perhaps include those comparators as well.

#3: Adding noise

Revisit #1 and #2, above, with blackbox evaluations observed with additive noise: Y (x) =
f(x) + ε. Take ε ∼ N (0, σ2 = 0.12) for both problems. Noise makes the problem harder, and
it can help to seed with replicates in order to separate signal from noise. So take N = 75
with n0 = 20 composed of two replicates on an LHS of size ten. Since "L-BFGS-B" isn’t a
reasonable comparator in this context, replace with an optim-based IECI measured on novel
size-100 LHS reference sets in each iteration. Report average progress in terms of the true,
no-noise output over optimization acquisitions and provide a boxplot of the true BOV for
each at the end. If you worked on #1, perhaps include those comparators as well.

#4: EFI versus IECI for optimization under constraints

Treat the function htc below, which returns objective and constraint, as a blackbox.

28https://www.sfu.ca/~ssurjano/hart6.html
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library(splancs)
htc <- function(X, epoly)
{
if(!is.matrix(X)) X <- matrix(X, ncol=2)
z <- herbtooth(X)
cl <- rep(1, length(z))
if(!is.null(epoly)) {
xy <- as.points(X[,1], X[,2])
io <- inout(xy, epoly)
cl[!io] <- 0

}
return(list(obj=z, c=as.numeric(!cl)))
}

Valid region is defined by the polygon epoly, which we shall take to approximate an ellipse.

library(ellipse)
epoly <- ellipse(rbind(c(1,-0.5), c(-0.5,1)), scale=c(0.75, 0.75))
formals(htc)$epoly <- epoly

Work with a pre-defined 200×200 grid in [−2, 2]2. Starting with n0 = 25 random grid-points,
find the best valid value (BVV) of the objective (on that grid) in a budget of 50 further
evaluations, for N = 75 total, in the following variations. Hint: you may wish to plot objective
and constraint surfaces on a grid first to see what you’re dealing with.

i. Use a GP surrogate for the objective, and a random forest (RF) surrogate (via
randomForest) for the constraint. Base acquisitions on EFI over remaining candidates
from the grid.

ii. Similarly with GP for the objective and RF for the constraint, base acquisitions on
IECI over remaining candidates from the grid, taking as reference locations 100 novel
random candidates. (A reference set of 1000 would be even better, if you can afford the
computation.)

While you’re gathering those acquisitions, keep track of the truly best valid value. That
is, among the grid elements which are actually valid, ignoring the RF classifier, save the
objective value of the grid location which your model predicts is lowest. Also save the entire
cache of x, and (y, c)-evaluations collected over the fifty acquisitions. Repeat the experiment
fifty times and report visually, and comment verbally, on patterns in these summaries of
performance.

Finally, explore demo("plconstgp_2d_ieci.R") in plgp on CRAN which couples a regres-
sion GP for the objective with a classification GP for the constraints in a fully Bayesian setup
(Gramacy and Lee, 2011). Compare and contrast performance against your implementation.
(Note there’s no grid in the demo.)

#5: An old friend

Revisit exercise #3 from §1.4, which combined the Goldstein–Price29 function as an objective,
with the sinusoidal constraint from aimprob (7.8), via EFI (optim.efi) and augmented

29http://www.sfu.ca/~ssurjano/goldpr.html
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Lagrangian (optim.auglag) support provided by laGP. For the AL, try both EY (ey.tol=1),
and EI, the default, with and without slack variables. Use arguments start=10 and end=60
for a total of fifty acquisitions after initializing with a small LHS of size ten. How do your new
results compare to the mathematical programming approach you took earlier? Considering
the random nature of initialization(s), you may wish to average over thirty or so runs in
order to explore variability. Track BVV of the objective over the iterations, reporting its
average over the repetitions and full distribution after the last acquisition. Hint: this exercise
is a simplified version of what you would find as demo("GSBP") in laGP.

#6: Remediation by optimization

Revisit the Lockwood solvent groundwater plume site case study from §2.4. The program
described therein is reproduced below. With xj denoting the pumping rate for well j, solve

min
x

f(x) =
6∑
j=1

xj : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 2 · 104]6
 .

If you’ve not done so already, see exercise #4a from §2.6 in order to compile and test the
runlock back-end.

Your task is to perform up to 500 iterations of optimization under each of EFI, IECI and
the augmented Lagrangian (AL) with EY and EI alternatives.

• For AL variations use optim.auglag from laGP with the following recommended settings.
– Work with coded inputs by providing Bscale=10000 and use bounding box

B=matrix(c(rep(0,6), rep(2,6)), ncol=2).
– Use a separable covariance specification with sep=TRUE.
– You may also find it helpful, but slower, to use ncandf=function(t) { 1000 }

rather than the default search candidate setting.
– For EY rather than EI, specify ey.tol=1.

• For EFI use optim.efi in laGP.
– Same suggestions as above for optim.auglag apply here.

• For for IECI you’ll have to do it yourself, but you may use the GP fitting capability
built into laGP.
– Note that ieciGPsep models the objective f , whereas our objective, above, is a

known linear function.
– Describe how it could be modified to accommodate the known objective. A descrip-

tion is sufficient; you don’t need to actually do it (because the setup will still work,
but perhaps not as efficiently).

• On all of the above, you might find it helpful to try an easier, less expensive blackbox
where you know the answer, like in #4 or #5, first.

Compare your BVV progress to results from the Matott et al. (2011) study, which you can
find in runlock/pato_results.csv.

• In each case, initialize your search with 30 space-filling candidates (e.g., start=30 in
optim.*).

• Optionally, use Xstart to seed those comparators with identical initial designs, which
could help facilitate a lower variance comparison.

• Put a for loop around your optimizations and report average BVV progress over as
many random restarts as you have time for (or you think are sufficient to stamp out MC
error).





8
Calibration and Sensitivity

Many scientific phenomena are studied with mathematical (i.e., computer) models and field
experiments simultaneously. Real experiments are expensive, and for this and other reasons
(ethics, lack of materials/infrastructure, etc.) limited configurations can be entertained. Com-
puter simulations are lots cheaper, but usually not so cheap as to allow infinite exploration
of configuration space(s). Plus simulations usually idealize reality, contributing bias, and
engage more “knobs”, or tuning parameters, than can be controlled or even known in the
field.

So the goal in the first part of this chapter is to build an apparatus that can harmonize
two data types, computer simulated and field observation, for the purpose of learning
about/predicting the real underlying process, or possibly optimizing some aspect of it. We
want to learn about any discrepancies, or bias, between computer model and field data;
learn best settings of the computer model’s knobs; meta-model/emulate computer model
runs as a surrogate for new predictions, while compensating for its bias relative to reality as
measured in the field. Ideally those predictions will offer a full accounting of uncertainty, for
all things being estimated at all levels.

What’s meant by full, and what’s reasonable pragmatically, is always a matter of perspective.
Uncertainty quantification (UQ)1 is a loaded term from the applied math/numerical analysis
community. A lot of UQ focuses on understanding distributions of outputs, or observables
from a process, as a function of uncertain or random inputs. Most applications amount
to uncertainty propagation. A key component of that is understanding how inputs affect
outputs when layers of fitted models are used, like GPs for surrogates and additionally as
models of discrepancy in the calibration context. So the second half of the chapter takes
a diversion to detail estimating main effects and sensitivity indices for GPs and related
nonparametric predictors.

These two topics, calibration and sensitivity, could easily stand alone in their own chapter(s).
See Chapters 7–8 of Santner et al. (2018). Sensitivity analysis has filled entire textbooks,
although the context of those presentations is different. My aim in combining them here
is to frame them as two important applications of GP surrogates where UQ, i.e., faithful
propagation of uncertainty, is key.

8.1 Calibration

Computer model calibration juggles three processes. Real process R represents an ideal,
depicting unknown dynamics of phenomena under study. The goal is to learn as much as

1https://en.wikipedia.org/wiki/Uncertainty_quantification
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possible about R through mathematical modeling, computer and physical experimentation,
which leads us to the other two processes. Field F is where a physical experiment observing
R takes place. Computer model M implements/solves a mathematical model that idealizes
R.

Let Y F (x) denote a field observation under mx-dimensional conditions x, and yR(x) denote
the real output under condition x. Assume R and F are related as follows.

Y F (x) = yR(x) + ε, where ε
iid∼ N (0, σ2

ε)

This isn’t much different from typical modeling apparatuses where observations are corrupted
by independent and identically distributed idiosyncratic Gaussian noise. Considering the
expense of setting up a physical experiment in the field, we presume that only a small
number nF of field observations YnF are available at x locations XnF . Sometimes it’s easier
to obtain repeated observations under a single setting x, rather than changing x which may
involve manually re-configuring a complex system, so nF may embed a nontrivial degree
of replication. Replicates can be helpful for separating signal from noise, especially when
σ2
ε is large. That is, the number of unique settings in XnF may be many fewer than nF .

Chapter 10 considers modeling and design under replication in more detail. For now let
me simply remark that replication is common in field experiments, and computer model
calibration settings are no different. However this detail is largely ignored for the remainder
of the chapter.

Let yM (x, u) denote output from a computer model run under conditions x and tuning or
calibration parameters u. We shall presume that yM (·, ·) is deterministic to simplify the
following discussion. There’s no reason why stochastic simulation must be precluded by
the framework, however such setups are far less well investigated in the literature. Inputs
x to computer model yM (x, u) coincide with x’s from the field experiment(s). Inputs u,
in dimension mu, represent any aspect of M which can’t be controlled in F and/or are
unknown in R. It’s quite typical for a mathematical model, or its computer implementation,
to have more knobs than can be controlled in the field. Example u coordinates may arise
from an artificial aspect of computer implementation, like mesh size. Or they might have
real physical meaning, like acceleration due to gravity, which is not known (precisely enough)
to be recorded in the field. Some practitioners make a distinction between the two, calling
the former a tuning parameter (omitting from probabilistic modeling enterprises), and
treating only the latter as a calibration parameter u. I’ll be lazy by using those two terms
interchangeably and modeling in a unified fashion.

The goal is to study the relationship between the computer model yM (x, u), its fine-tuning
through u, and the field Y F (x) as a means of learning about real phenomena yR(x). In this
way, calibration is an example or generalization of a statistical inverse problem2. Which it is –
example or generalization – depends on your perspective. Inverse problems emphasize learning
u, attempting to attribute causal links between unknown factors in a simulation and empirical,
physical observation. Calibration is more ambitious in its attempt to synthesize multiple
information sources and to assimilate functional relationships through an acknowledgment
of bias between computer simulation and field observation. Often such assimilation is at
odds with the establishment of causal links, however, and can suffer from confounding and
identification issues.

Although there are many ways you could imagine undertaking such an analysis, one has
percolated to the top as canonical: the Kennedy and O’Hagan framework. Another approach,

2https://en.wikipedia.org/wiki/Inverse_problem
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called history matching3, is a popular alternative (Craig et al., 1996; Vernon et al., 2010;
Williamson et al., 2013). History matching is a more hands-on process, as is perhaps
exemplified by the flow diagram found at that link. Although there’s much to recommend a
more careful approach to marrying disparate sources of information, the presentation below
emphasizes a more easily automated Kennedy and O’Hagan alternative.

8.1.1 Kennedy and O’Hagan framework

Kennedy and O’Hagan (2001) proposed a Bayesian framework for coupling M and F . KOH,
hereafter, represent a real process R as the computer model output at the best setting
of calibration parameters, u?, plus a discrepancy term acknowledging that there can be
systematic disagreement between model and truth.

yR(x) = yM (x, u?) + b(x)
so that Y F (x) = yM (x, u?) + b(x) + ε

The quantity b(·) is a functional discrepancy, or bias correction. Although I may shorten
and casually refer to b(·) as “bias”, the actual bias (which is a property of M not R) would
actually work out to

−b(x) = yM (x, u?)− yR(x).

The point here is that a computer model has systematic imperfections, even under its best
tuning u?, but KOH specify an a priori belief that reasonable correction can be learned
through b(·). Errors ε are independent zero-mean Gaussian with variance σ2

ε .

Altogether, unknowns are u?, σ2
ε , and discrepancy b(·). KOH emphasized Bayesian inference,

particularly averaging over trade-offs between calibration values u and discrepancies b(·)
under a GP prior. Known information or restrictions on u-values can be specified through
prior p(u). Otherwise a uniform prior (over a finite domain) can be used. Often, and especially
when little prior information is available on u, a regularizing prior with mass somewhat more
concentrated on a default or midway value can prevent over-concentration of posterior density
on boundary settings. Reference priors for σ2

ε are typical (Berger et al., 2001). KOH utilized
a GP specification with linear mean for b(·), but the presentation here considers a zero-mean
for simplicity and for consistency with GP treatments elsewhere in this monograph. Results
analogous to those from a homework exercise in §5.5 offer ready extension.

If evaluating the computer model is fast, then inference (Bayesian or otherwise) is made
rather straightforward via residuals between computer model outputs and field observations
at nF field locations XnF

Y b|unF ≡ y
b(XnF , u) ≡ YnF − YM |unF ≡ YnF − yM (XnF , u) (8.1)

which can be computed at will for any u (Higdon et al., 2004). An “r” superscript may have
been more appropriate for residuals. Besides avoiding clash with “R” for “real”, superscript
“b” was chosen instead to emphasize the role of residuals in training b(·). Eq. (8.1) is
characterizing a new nF -dimensional response vector Y b|unF at inputs XnF . Each u-setting
gives a different such vector measuring noise and bias between field data and computer

3https://www.streamsim.com/technology/history-matching
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model. With a GP prior for b(·), Y b|unF is nF -variate MVN with covariance derived through
inverse exponentiated squared Euclidean distances between rows of XnF . This implies a
likelihood on parameters (u, θb), where θb may collect scale, mx lengthscales and nugget
hyperparameters. Let Σb

nF denote the nF × nF covariance matrix built from XnF and θb.
Note that by including both scale and nugget in θb, Σb

nF captures field data variance σ2
ε

implicitly through their product. The likelihood is thus proportional to

|ΣbnF |
−1/2 exp

{
−1

2(Y b|unF )>(ΣbnF )−1Y b|unF

}
. (8.2)

That likelihood can be maximized over all unknown coordinates, or fully Bayesian inference
may be used to sample from the joint posterior.

If evaluating the computer model is expensive or otherwise indirectly available, a surrogate
ŷM (·, ·) can be fit to nM simulations of M run over a design [XnM ;UNN ] in (x, u)-space.
KOH recommend a GP prior for yM , i.e., a coupled pair of GPs including b(·). Rather than
performing inference for yM separately, using just nM runs as typical of computer experiments
in isolation, KOH recommend joint posterior inference for all unknowns Θ = (yM , b(·), u?, σ2

ε)
using the full corpus of data from computer model and field experiment [YnM , YnF ]. From
a Bayesian perspective, this is the coherent thing to do: infer all unknowns jointly given
all data with p(Θ | YnF , YnM ) ∝ p([YnF , YnM ] | Θ)× p(Θ). When the computer model M is
very slow, limiting nM , joint inference facilitates efficient use of observational quantities as
both field data and computer model runs can inform about ŷM in addition to b̂. As in the
“Higdon free-M” setting (8.2), the likelihood involves evaluating a mean-zero MVN density,
but this time it’s nM + nF variate for stacked computer model and field data.[

YnM
YnF

]
∼ NnM+nF

([
0
0

]
,

[
ΣnM ΣnM (XnF , u)

ΣnM (XnF , u)> ΣnF (u) + ΣbnF

])
Above, ΣnM ≡ Σ([XnM , UnM ]) is the usual nM × nM covariance matrix defining a GP
surrogate for simulations YnM , tacitly conditioned on mx +mu hyperparameters θ scaling
pairwise distances between inputs in (x, u)-space. The nugget may be omitted in this
deterministic setting. Note that all Σ’s lacking a superscript reference the surrogate yM̂ (·),
not the covariance structure from the bias-correcting GP. ΣbnF belongs to the bias GP (8.2),
an nF × nF matrix based on distances in x-space and hyperparameters θb. ΣnM (XnF , u) is
an nM × nF matrix based on θ-scaled pairwise distances between computer model design
[XnM , UnM ] and field data design XnF augmented by columns u>, concatenated to all rows
identically. Finally, ΣnF (u) is similar to ΣnM (XnF , u) except to itself rather than to computer
simulation data. Specifically, ΣnF (u) is an nF × nF matrix containing θ-hyperparameterized
pairwise inverse distances between rows of XnF augmented by columns u>.

Choices of u and sets of hyperparameters θ and θb may be entertained through MVN
density evaluations, either to maximize or sample from the posterior (after completing with
appropriate priors, of course). It’s quite common to maximize the likelihood first to find
(û, θ̂, θ̂b), then fix the hyperparameters at (θ̂, θ̂b) and subsequently sample from the posterior
for u only, say with Metropolis–Hastings (MH)4 style Markov chain Monte Carlo (MCMC)5.
The degree to which sampling in an mu-dimensional space is more manageable than an
(mx+mu)-dimensional one depends, of course, on the size of the coordinate systems involved.
For specifics on Bayesian inference by MCMC, see, e.g., Hoff’s excellent (2009) text. For

4https://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
5https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
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particular implementation in the KOH calibration setting, see Kennedy and O’Hagan (2001).
Although pseudocode is provided in Algorithm 8.1, with a worked example later in §8.1.5,
the nuances of Bayesian inference/MCMC implementation are largely beyond the scope of
this text.

Algorithm 8.1 KOH Metropolis–Hastings (MH) Sampler

Assume known hyperparameterization(s) (θ̂, θ̂b) for coupled GPs as priors for the
surrogate for computer model yM (·, ·) and bias b(·). Let `(u) represent the joint MVN
log (marginal) likelihood for [YnM , YnF ]:

`(u) = c− 1
2 log |V(u)| − 1

2

[
YnM
YnF

]>
V(u)−1

[
YnM
YnF

]
, (8.3)

where V(u) =
[

ΣnM ΣnM (XnF , u)
ΣnM (XnF , u)> ΣnF (u) + ΣbnF

]
.

Require prior density p(u) and conveniently sampled (possibly random walk) proposal
density q(u, u′), computer model observations YnM at inputs (XnM , UnM ) used to define
ΣnM above, field data observations YnF at locations XnF , and an initial value u(0).

For t = 1, . . . , T desired samples from the Markov chain with stationary distribution
p(u | [YnM , YnF ], θ̂, θ̂b), do . . .
1. Propose a new u′ ∼ q(u(t−1), ·).
2. Calculate the ratio of (marginal) likelihoods in log space as

∆`(u′, u(t−1)) = `(u′)− `(u(t−1)).

3. Complete the MH acceptance ratio in log space as

logα = ∆`(u′, u(t−1))+log p(u′)−log p(u(t−1))+log q(u′, u(t−1))−log q(u(t−1), u′).

4. Draw v ∼ Unif[0, 1].
• If v < α, accept u′ and take u(t) ← u′;
• else reject u′ and take u(t) ← u(t−1).

End For

Return the collection {u(t)}Tt=B of samples from the posterior of calibration parameter
u, possibly after discarding some number of samples B ∈ {0, 1, 2, . . . , } as burn-in.

It’s worth remarking that Algorithm 8.1 emphasizes posterior inference for calibration
parameter u, but actually implicitly samples from the joint posterior for u, b(·), and σ2

ε

since latent quantities from those processes (i.e., bias corrections and their residuals to field
observations YnF ) are analytically marginalized out (§5.3.2) through log likelihood evaluations
`(·). Only samples from the marginal posterior for u are returned, however. Samples b(t)(X ) |
u(t), and thereby Y F (X )(t) from the marginal posterior predictive distribution, could be
gathered at a later time provided predictive locations of interest X . A homework exercise
in §8.3 guides the reader through a derivation of those equations by augmenting the
MVN in [YnM , YnF ] to [YnM , YnF , Y F (X )], and deducing the conditional Gaussian Y F (X ) |
[YnM , YnF ], u(t) using identities similar to those used for prediction with ordinary GPs (5.3).
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8.1.2 Modularization

Before jumping headlong into an example, allow me a substantial digression. There are
many things going on in the KOH apparatus, and appreciating them can be obscured by
the complexities of Bayesian inference and MCMC. It’s natural, if mostly for historical
trends in pedagogy, to think first about optimizing before integrating and that’s what I’d
like to do here. This is not common in the computer model calibration literature, but I hope
that simplifying first, in several directions, will set a stronger foundation and offer some
perspective.

KOH has tremendous flexibility – perhaps even too much! Coupled b(·) and yM (·, ·), with u
acting as weak adhesive binding them together, might lead to parameter/process identifica-
tion, confounding and MCMC mixing issues. Imagine poor ŷM being compensated for by b̂(·)
and a “far-away” u-setting, obscuring our view of the best approximating computer model
and its calibration u?. Moreover, the approach is fraught with computational challenges. If
nM and nF are of any moderate size, testing the limits of cubic covariance decomposition for
their respective MVNs, that problem is severely exacerbated when (nM + nF )× (nM + nF )
matrices are involved. Plus, why should ŷM worry about anything other than yM? One could
argue that the surrogate’s purview should comprise computer model runs only. Coupling with
field data may be advantageous from an information theoretic perspective, leading to the
most efficient posterior learning, but at the expense of both computation and interpretation.
As an unabashed pragmatist, I think those two latter facets must be squared before statistical
efficiency concerns are raised.

Liu et al. (2009) proposed going “back to basics” by fitting the surrogate ŷM (·, ·) independent
of field data, using only the nM simulations. They gave this approach a fancy name:
modularization. Perhaps this is what anyone would have done instinctively, were it not for
KOH’s suggestion otherwise. Compartmentalization, a synonym of modularization, is good
engineering practice. Components should perform robustly in isolation, irrespective of their
anticipated role in a larger system. Liu et al. were careful to clarify that modularized KOH
is no less Bayesian, and no less joint a posteriori. Unknowns u and b(·) are still inferred
conditional on both computer model surrogate ŷM and field data YnF . However the setup
does imply an independence structure in the prior – one which was, in ordinary KOH,
deliberately not imposed.

Reasons for enforcing independence stem from statistical analogs of engineering principles.
In short, the ordinary/original KOH is perhaps unnecessarily complicated, both technically
and intuitively. It also sometimes leads to bizarre inferences. Using a simple example first
presented by Joseph (2006), originally from Santner et al. (2003), Liu et al. showed that fully
Bayesian KOH calibration yields surrogate model fits that can be unfaithful to computer
model simulations, being biased by field data. Separately, the authors went through several
other examples where Bayesians had gone off the deep end. A more modular approach, which
they describe, helps protect against pathologies.

Running example: acceleration due to gravity

You might wonder: why be Bayesian at all? For one thing, regularization through priors has
its merits as an inferential tool. Prior distributions promote stability in estimates in a means
that’s intuitive, at least on statistical grounds. Big MCMC, as fully Bayesian settings often
demand, comes with a big sticker price, especially when each likelihood evaluation incurs
cubic costs in nM , nF or their sum. Can the regularizing effects of a well-designed prior be
appropriated without the expense of Monte Carlo (MC) inference?
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Liu et al. (2009) modular KOH is suggestive of a much simpler alternative through a
maximum a posteriori (MAP) estimator, calculated as follows: 1) fit a surrogate ŷM ; 2) for
each setting of u, build residuals YnF − ŷM (XnF ) and use those to train a GP bias correction;
3) optimize u via the marginal likelihood of that bias, modulo a choice of prior p(u); 4)
optionally, use bootstrap6 or jackknife7 resampling to quantify uncertainty. Details are left
to Algorithm 8.2 shortly. For now, it’s easier to illustrate by example. Plus, we’ve gone too
far into the chapter without concrete illustration.

An excellent class of examples involves free-falling objects. Simulating the time it takes
for an object to fall from a certain height is either an elementary or potentially intricate,
if well-understood, enterprise. It all depends on how complicated you want to get with
modeling. Acceleration due to gravity might be known, but possibly not precisely. Coefficients
of drag may be completely unknown. A model incorporating both factors, but not others
such as ambient air disturbance or rotational velocity, could be biased or inconsistent in
unpredictable ways.

Consider the amount of time it takes for a wiffle ball to hit the ground when dropped from
certain heights. Thankfully, performing the field experiment is rather trivial, if cumbersome.
Just drop wiffle balls from different heights and measure how long it takes them to hit the
ground. Saving us the tedium of performing the experiment ourselves, Derek Bingham8 and
Jason Loeppky9 have graciously provided their own measurements, collecting nF = 63 field
observations at 21 heights, with three replicates at each height, measured in meters. See
ball.csv10.

A visualization of these data is provided by Figure 8.1. Time, on the y-axis, is measured in
seconds.

ball <- read.csv("ball.csv")
plot(ball, xlab="height", ylab="time")

Apparently, the ladder or stairs they were using prevented them from recording measurements
at heights between two and 2.5 meters. Suppose we’re interested in accurately predicting
the time it takes for a ball to drop from certain heights, particularly in this under-sampled
region. One option is, of course, to fit a GP directly to the field data. (Never mind the extra
effort of choosing a mathematical model, implementing it in code, performing simulations,
calibrating, and correcting for bias, etc.) Code below provides one such potential fit ŷF (·).

library(laGP)
field.fit <- newGP(as.matrix(ball$height), ball$time, d=0.1,
g=var(ball$time)/10, dK=TRUE)

eps <- sqrt(.Machine$double.eps)
mle <- jmleGP(field.fit, drange=c(eps, 10), grange=c(eps, var(ball$time)),
dab=c(3/2, 8))

Next consider predictions ŷF (X ) on a testing grid X . Code below utilizes a grid hs of heights
in terms of coded inputs, mapping them back to the scale on which these data were recorded.
This will help streamline some of our later analyses. More details soon.

6https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
7https://en.wikipedia.org/wiki/Jackknife_resampling
8http://people.stat.sfu.ca/~dbingham/
9https://stat.ok.ubc.ca/faculty/loeppky.html

10http://bobby.gramacy.com/surrogates/ball.csv

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Jackknife_resampling
http://people.stat.sfu.ca/~dbingham/
https://stat.ok.ubc.ca/faculty/loeppky.html
http://bobby.gramacy.com/surrogates/ball.csv
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FIGURE 8.1: Bingham and Loeppky’s ball drop data.

hr <- range(ball$height)
hs <- seq(0, 1, length=100)
heights <- hs*diff(hr) + hr[1]
p <- predGP(field.fit, as.matrix(heights), lite=TRUE)
deleteGP(field.fit)

Figure 8.2 provides a summary of that predictive distribution in terms of means and central
90% quantiles. Along the x-axis, as a red-dashed line, a summary of the predictive standard
deviation is provided to aid visualization.

plot(ball, xlab="height", ylab="time")
lines(heights, p$mean, col=4)
lines(heights, qnorm(0.05, p$mean, sqrt(p$s2)), lty=2, col=4)
lines(heights, qnorm(0.95, p$mean, sqrt(p$s2)), lty=2, col=4)
lines(heights, 10*sqrt(p$s2)-0.6, col=2, lty=3, lwd=2)
legend("topleft", c("Fhat summary", "Fhat sd"), lty=c(1,3),
col=c(4,2), lwd=1:2)

For my taste, this predictive surface is too wiggly. Surely these data ought to follow a
monotonic, if noisy relationship. Uncertainty is too high in the gap, compared against what
I would expect intuitively. Maybe some extra modeling could be useful after all. Perhaps
coupling with known physics can mitigate those unsightly effects.

What does “Physics 101” say? Time t to drop a distance h for gravity g follows

t =
√

2h/g.

Somewhat realistically, we don’t know the value of g for the location where the balls were
dropped. So gravity is our calibration parameter; our u. Of course there are other unknowns,
like air resistance – which will interact deferentially with height/terminal velocity. In other
words that mathematical model is biased, and thus there’s scope to improve upon it through
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FIGURE 8.2: GP fit to field data; predictive standard deviation is along the bottom in
dashed-red.

hybridization, by coupling with field data. So field data hold the potential to help the
computer model as much as the other way around.

At the same time, g could not just be determined by acceleration due to gravity. At least
not with the field data in hand. With more things slowing the ball down than speeding it
up, g will almost certainly be forced into a role of compromise. To account for air resistance,
say, estimated g will probably be shifted downward from its true value. This setup lacks a
degree of identifiability no matter how we perform statistical inference. But that doesn’t
mean the enterprise isn’t worthwhile.

Consider the following computer implementation of our mathematical model, simultaneously
mapping natural inputs (h, g) to coded ones (x, u) in [0, 1]2.

timedrop <- function(x, u, hr, gr)
{
g <- diff(gr)*u + gr[1]
h <- diff(hr)*x + hr[1]
return(sqrt(2*h/g))
}

Two-vector hr is derived from the field data range, and was defined above for the purpose of
generating a predictive grid of heights. The range for gravity specified below restricts our
study to [6, 14], equivalently defining a (uniform) prior p(u) in what follows.

gr <- c(6, 14)

Suppose we’re prepared to run timedrop at nM = 21 input locations, commensurate in size
to the number of unique inputs in the field data experiment, but in two dimensions. R code
below constructs a maximin LHS (§4.3) in 2d and performs computer model simulations at
those locations.
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library(lhs)
XU <- maximinLHS(21, 2)
yM <- timedrop(XU[,1], XU[,2], hr, gr)

Now let’s train a GP on those realizations, fixing the nugget to a small jitter value to
acknowledge the deterministic nature of timedrop simulations.

yMhat <- newGPsep(XU, yM, d=0.1, g=1e-7, dK=TRUE)
mle <- mleGPsep(yMhat, tmin=eps, tmax=10)

Recall that mleGPsep modifies yMhat with updated mle values as a side effect. Next, extract
surrogate predictive mean evaluations over a grid of heights, for a span of six equally-spaced
potential u-values.

us <- seq(0, 1, length=6)
XX <- expand.grid(hs, us)
pm <- predGPsep(yMhat, XX, lite=TRUE)

Figure 8.3 offers a visual of those surfaces, with separate curves for each u-value.

plot(ball)
matlines(heights, matrix(pm$m, ncol=length(us)))
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FIGURE 8.3: Computer model surrogates for several settings of calibration parameter u.

Aesthetically, the curves and data in that plot are largely in agreement. Some u-values
generate curves that are better fits than others, yet none are perfect. All exhibit bias. To
my eye, the best one is the green-dotted curve in the middle, but it’s clearly biased low for
balls dropped from greater heights. When calibrating, it makes sense to account for that
bias. When predicting with the computer model, it makes sense to correct for it.

A modularized apparatus calibrates u via fits for bias. Settings of u which make residuals
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between surrogate predictions and field data observations “easier” to model are preferred.
There are many options for assessing goodness of fit, and throughout this text we’ve preferred
maximizing the likelihood, so that’s where we shall start here. The function bhat.fit coded
below takes field data (X, yF) and computer model surrogate predictions (e.g., predictive
means from a GP) Ym. It also takes prior/initializing specifications for lengthscales (da) and
nugget (ga), about which further discussion is provided below.

bhat.fit <- function(X, yF, Ym, da, ga, clean=TRUE)
{
bhat <- newGPsep(X, yF - Ym, d=da$start, g=ga$start, dK=TRUE)
if(ga$mle) cmle <- mleGPsep(bhat, param="both", tmin=c(da$min, ga$min),
tmax=c(da$max, ga$max), ab=c(da$ab, ga$ab))

else cmle <- mleGPsep(bhat, tmin=da$min, tmax=da$max, ab=da$ab)
cmle$nll <- - llikGPsep(bhat, dab=da$ab, gab=ga$ab)
if(clean) deleteGPsep(bhat)
else { cmle$gp <- bhat; cmle$gptype <- "sep" }
return(cmle)
}

As you can see, the function initializes and fits a GP to the discrepancy between field data
and surrogate (yF - Ym at X) and returns the value of the minimizing negative log likelihood
so obtained. As a mathematical abstraction, b̂ is measuring goodness-of-fit for bias no matter
how Ym are obtained. Below we shall take Ym ≡ ŷM (XnF , u), and treat b̂ as a merit function
for choices of u. Optionally, bhat.fit returns a reference to the fitted GP, although by
default this step is skipped (clean=TRUE), causing the object to be freed instead. When
searching for û through b̂, we don’t need to save every GP fit en-route, but we will need
the last one at the end in order to tap fitted models for prediction. Finally, observe that
bhat.fit combines b̂ and σ̂2

ε fits via inference for a nugget.

Next create an objective to optimize, over coded gravity u-values, to find the best setting û
estimating unknown u?. The calib function below takes argument u in the first position,
which is helpful when optimizing with optim, and yMhat in the fourth position. The idea is
to provide fit=bhat.fit from above, so that GPs are fit to residuals, where arguments da
and ga have been assigned as defaults in advance, as illustrated momentarily. Setting things
up in this way, rather than passing da and ga and then calling bhat.fit allows bhat.fit
to be swapped out later for another model/fit, if desired, without altering calib. Later in
§8.1.4 I shall utilize this feature when presenting a “nobias” alternative.

calib <- function(u, XF, yF, yMhat, fit, clean=TRUE)
{
XFu <- cbind(XF, matrix(rep(u, nrow(XF)), ncol=length(u), byrow=TRUE))
Ym <- predGPsep(yMhat, XFu, lite=TRUE)$mean
cmle <- fit(XF, yF, Ym, clean=clean)
return(cmle)
}

Argument yMhat should be a fitted GP surrogate for computer model runs (XnM , YnM ).
Field data locations X are combined with an extra column of u values and fed into predGPsep
to get surrogate means Ym, which are then fed in to fit=bhat.fit.

Rather than shoving calib right into optim, which is exactly what we shall do momentarily,
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consider first evaluating on a u-grid to aid visualization. After all, optimizing a deterministic
function in 1d is easy with the eyeball norm. The R chunk below sets up such a grid and
codes height inputs into [0, 1],

u <- seq(0, 1, length=100)
XF <- as.matrix((ball$height - hr[1])/diff(hr))

Before setting this running, arguments da and ga must be specified. Default priors for
lengthscales and nuggets may be calculated through darg and garg functions provided with
laGP. Observe how these are set up to occupy default values of bhat.fit arguments (i.e.,
formals).

formals(bhat.fit)$da <- darg(d=list(mle=TRUE), X=XF)
formals(bhat.fit)$ga <- garg(g=list(mle=TRUE), y=ball$time)

Although darg and garg have been used previously to set search ranges and starting
values, we’ve not yet discussed their full prior-generating capacity. This is as good a time
as any. Respectively, darg and garg offer light regularization through the distribution of
pairwise distances in X, and marginal variances in y. In detail, darg calculates default
lengthscale search ranges and initializing values from the empirical range of (non-zero)
squared Euclidean distances between rows of X, and their 10% quantile, respectively. Gamma
prior hyperparameters are chosen to have shape a = 3/2 and rate b derived by the incomplete
Gamma inverse function (DiDonato and Morris Jr, 1986) to put 95% of the cumulative
Gamma distribution below the maximum such distance observed. The garg routine is
similar except that it works with (y - mean(y))ˆ2 instead of pairwise X distances. Another
difference is that the starting value is chosen as the 2.5% quantile. Keen readers will note
that garg is more squarely targeting priors on σ2

ε ≡ τ2g. If knowledge of τ2 is available a
priori of fitting τ̂2 | g, then some minor adjustments could help fine-tune priors for g.

Ok, now evaluating on the grid . . .

unll <- rep(NA, length(u))
for(i in 1:length(u))
unll[i] <- calib(u[i], XF, ball$time, yMhat, bhat.fit)$nll

Before plotting that surface, the code below implements the more hands-off optim solution,
which we can add to the visualization.

obj <- function(x, XF, yF, yMhat, fit) calib(x, XF, yF, yMhat, fit)$nll
soln <- optimize(obj, lower=0, upper=1, XF=XF, yF=ball$time,
yMhat=yMhat, fit=bhat.fit)

uhat <- soln$minimum

Figure 8.4 shows that surface and its numerical optima, our calibrated setting û ≡ uhat.

plot(u, unll, type="l", xlab="u", ylab="negative log likelihood")
abline(v=uhat, col=2, lty=2)
legend("top", "uhat", lty=2, col=2)
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FIGURE 8.4: Negative log likelihood surface for u and its calibrated value û.

Converting back to natural units for the calibration parameter, we can see that our estimate
is too low given what we know about acceleration due to gravity on Earth.

ghat <- uhat*diff(gr) + gr[1]
ghat

## [1] 6.75

In fact it’s about 1/3 lower than it should be. Recall that we’re asking gravity to do
double-duty. Wiffle balls are exceptionally buoyant compared to other balls, being riddled
with holes that trap air. Our mathematical model acknowledges no air resistance. Ideally,
such unknowns would be swept entirely into an estimate of bias b̂, however no aspect of
the calibration apparatus (whether KOH or modularized) precludes compensation by û
instead. Consequently our ĝ above, via û, loses some of its physical interpretation. Typically
b̂ and û work together to compensate for an imperfect mathematical model and surrogate,
challenging identifiability. Further discussion shall have to wait until we get a chance to
inspect b̂ in our example below. First, it makes sense to pause that example momentarily to
codify the procedure mathematically and algorithmically.

8.1.3 Calibration as optimization

We optimized something (that’s what optim was doing); it ought to be possible, and possibly
helpful, to back out a formal criterion and discuss its properties. It all flows from the
surrogate ŷM and a twist on some notation introduced in §8.1.1, specifically Eqs. (8.1)–
(8.2). Let ŶM |unF = ŷM (XnF , u) denote a vector of nF emulated output y-values at inputs
XnF obtained under a setting u of the calibration parameter(s). Then, let the computer
model surrogate residual Y b|unF = YnF − Ŷ

M |u
nF denote the nF -vector of fitted discrepancies.

Given these quantities, the quality of a particular u may be measured by the implied joint
probability of observing YnF at inputs XnF , under our model b(·) for discrepancies Y b|unF .

A GP prior on b(·) implies that Ŷ b|unF ∼ N (0,Σn), where Σn is specified through scaled inverse
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exponentiated squared Euclidean distances between inputs XnF , and thus fully specifies that
joint probability. The best-fitting GP regression b̂(·) trained on data Db

nF (u) = (XnF , Ŷ
b|u
nF ),

viewed as a function of u, defines a likelihood for u. Values of u which lead to higher such
MVN likelihood, i.e., higher probability of observing YnF through those discrepancies, are
preferred. So in symbols we have the following mathematical program:

û = arg max
u

{
p(u)

[
max
θb

pb(θb | Db
nF (u))

]}
. (8.4)

Recall that p(u) is a (possibly uniform) prior for u, and pb(θb | · · · ) denotes a marginal likeli-
hood implied by a GP prior for b(·), having hyperparameters θb including scale, lengthscales
and nugget. Algorithm 8.2 provides some of the details in pseudocode, with calculations
commencing in log space as usual.

Algorithm 8.2 Modularized KOH Calibration by Optimization

Assume computer model simulations yM (·, ·) are deterministic, and field data are
noisy as Y F (·) = yM (·, u?) + b(·) + ε, where ε ∼ N (0, σ2

ε). GP priors are not assumed,
however examples are given for that canonical choice.

Require prior density p(u), computer model observations YnM at inputs (XnM , UnM ),
field data observations YnF at configurations XnF , and an initial value u(0).

Then
1. Fit ŷM (·, ·) to data (XnM , YnM ),

• e.g., by GP and estimated hyperparameters θ̂ including scale and lengthscales,
with mleGPsep(..., param="d").

2. Build an objective to put into an optimizer for calibration parameter u, obj(u),
defined as follows:
a. Obtain surrogate predictive mean values ŶM |unF = µ(XnF , u) from ŷM (·, u),

e.g., using predGPsep(...)$mean.
b. Calculate residuals between surrogate predictions and field data locations:

Y
b|u
nF = YnF − Ŷ

M |u
nF .

c. Fit b̂(·) to residual data (XnF , Y
b|u
nF ),

• e.g., by GP and estimated hyperparameters θ̂b including scale, length-
scale(s) and nugget with mleGPsep(..., param="both").

d. Provide as scalar output obj(u) the sum of log prior log p(u) plus the maxi-
mizing log likelihood value under hyperparameters θ̂b,

• e.g., with llikGPsep(...).

3. Solve û = argminu− obj(u), represented mathematically by Eq. (8.4), with library-
based numerical methods,

• e.g., using optim with method="NelderMead", or method="L-BFGS-B" if p(u)
has support in a hyperrectangle.

4. Rebuild b̂ like in Step 2c above, using û.

Return û, ŷM (·, ·), and b̂(·) so that predictive calculations may be made at new field
data locations X as ŷM (X , û) + b̂(X ).

In contrast to “full KOH” in Algorithm 8.1, notice that estimating hyperparameters θ̂ and
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θ̂b plays a fundamental role in the inferential process for û and b̂. The algorithm does not
presume these to be known at the outset. Accordingly, the outcome of this modularized
maximization could be used to set KOH hyperparameters, if desired. Observe in Step 2c
that scale (τ̂2) and nugget (ĝ) coordinates of θ̂b are being used implicitly to estimate the
field data noise variance as σ̂2

ε = τ̂2ĝ. In the case where returned predictors ŷM (X , û) and
b̂(X ) are both (approximately) MVN, as they would be under a GP prior, the distribution of
their sum would also be MVN because they’re modeled as conditionally independent given
û. Finally, Step 3 calls for library-based numerical optimization.

One caveat here is that nested optim calls with identical method specifications, as might
happen when choosing method="L-BFGS-B" for optimizing over u and laGP-based methods
for calculating MLE hyperparameters for b̂(·), cause R to crash. A robust but antique BFGS
implementation using C static variables confuses the two optimizations and leads to invalid
memory access, bringing the whole session down. A simple fix is to use the optim default
of method="NelderMead" for u-optimization instead, perhaps after suitably modifying the
objective to check any bound constraints required by p(u).

It’s worth emphasizing that calibration parameter û is not chosen to minimize bias, but
rather is chosen jointly with b̂ to obtain the best correction for that bias, e.g., under a GP
prior. The optimization/algorithm above makes this transparent, whereas in Algorithm 8.1
such nuances – which also apply – are somewhat obscured by Metropolis–Hastings details. In
fact, it may be that estimates (b̂, û) impart large amplitudes on the bias correction, preferring
û that push ŷM (·, û) away from the real process yR(·), rather than toward it. For details
and further discussion, see Brynjarsdóttir and O’Hagan (2014) and Tuo and Wu (2016).

That’s all to say that we have to be satisfied with u, or gravity g in our example, being
a tuning parameter rather than a primary quantity of interest. If minimal bias is really
what we want, then adjustments are needed.11 Plumlee (2017) proposes forcing b(·) to be
orthogonal to ŷM as a means of obtaining a bias correction that accounts for effects that are
missing from computer model simulations, as opposed to those just being “off”. Tuo and Wu
(2015) suggest least squares for b rather than a full GP.12 You might ask why we didn’t do
this from the very start? Some people do. Both suggestions sacrifice prediction for enhanced
interpretation, but unfortunately don’t guarantee identifiability of û except under regularity
conditions that are hard to verify/justify in practice. Although there are very good reasons
to diverge from the ordinary KOH, in particular to entertain more restrictive models for
bias correction, the original GP formulation will be hard to dethrone from it’s canonical
position because it provides accurate predictions for Y F (·) out of sample.

The KOH calibration apparatus, and its modularized variation, couples two highly flexible yet
well-regularized nonparametric GP models, linked by calibration parameter u. That flexibility
is most potent when coping with a data-generating mechanism that may not be faithful
to modeling assumptions. (It’s easy to forget that all real data are met with misspecified
models in practice.) Authors looking for higher fidelity GP modeling have deliberately
deployed similar tactics outside of the calibration setting. Ba and Joseph (2012) coupled
two GPs to deal with heteroskedasticity, a form of variance nonstationarity. Bornn et al.
(2012) introduced a latent input dimension, just like u, to gain mean-field nonstationarity;
Johnson et al. (2018) used a similar trick to select between a small number of mean–variance
regimes in a real-time disease forecasting framework. Surprisingly, KOH nests both “tricks”,
yet precedes them by more than a decade. None cite KOH as inspiration.

11Some go so far as to suggest that one should not fit a KOH-type model without having informative
prior information on u, b(·), or both.

12Tuo and Wu (2016) prefer a so-called native norm instead.



348 8 Calibration and Sensitivity

Back to the example: bias-corrected prediction

It’s time to return to our ball drop example. Fitted û in hand, we must revisit some of the
calculations involved in optimization to back out b̂. Repeated calls to calib created gpi
references which, if not immediately destroyed, could have represented a massive memory leak.
Providing clean=FALSE to bhat prevents that memory from being recycled, and augments
the output object to contain a reference thereto.

bhat <- calib(uhat, XF, ball$time, yMhat, bhat.fit, clean=FALSE)

To visualize that discrepancy, code below gathers predictions over our height grid. Since the
fitted GP captures both bias correction b̂ and field data noise σ̂2

ε , nonug=TRUE is provided
to get uncertainty in b̂ only.

pb <- predGPsep(bhat$gp, as.matrix(hs), nonug=TRUE)
sb <- sqrt(diag(pb$Sigma))
q1b <- qnorm(0.95, pb$mean, sb)
q2b <- qnorm(0.05, pb$mean, sb)

Figure 8.5 shows that b̂(·) surface with means and quantiles extracted above.

plot(heights, pb$mean, type="l", xlab="height", ylab="time bias",
ylim=range(c(q1b, q2b)), col=3)

lines(heights, q1b, col=3, lty=2)
lines(heights, q2b, col=3, lty=2)
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FIGURE 8.5: Estimated bias correction for the ball drop example.

Observe how bias correction is predominantly negative, or downward, being most extreme
for middle heights. Lowest and highest heights require almost no correction, statistically
speaking. To combine bias with computer model surrogate, code below obtains predictive
equations for ŷM (·) on the same height grid, paired with û. Quantiles are saved to display
the usual three-line summary.
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pm <- predGPsep(yMhat, cbind(hs, uhat))
q1m <- qnorm(0.95, pm$mean, sqrt(diag(pm$Sigma)))
q2m <- qnorm(0.05, pm$mean, sqrt(diag(pm$Sigma)))

Means and covariances from ŷM and b̂ may be combined additively, leveraging conditional
independence.

m <- pm$mean + pb$mean
Sigma.Rhat <- pm$Sigma + pb$Sigma - diag(eps, length(m))

Both GP predictors, representing ŷM and b̂ respectively, have covariances augmented with
eps jitter along the diagonal in lieu of a fitted nugget to ensure numerical positive definiteness.
Adding two of them together results in 2*eps along the diagonal, which is large enough to
impart visual jitter on draws from that distribution, calculated momentarily in R below. To
compensate, one of those eps augmentations is taken back off. Sample paths so obtained
represent approximations to the real process R; they’re realizations from a ŷR(·).

library(mvtnorm)
yR <- rmvnorm(30, m, Sigma.Rhat)

In order to accommodate two views into the uncertainty in the reconstructed real process,
a second set of predictive equations is calculated for b̂ + σ2

ε as well, yielding Ŷ F . This
is essentially the same predict command on bhat$gp as above, but without nonug=TRUE.
Quantiles are saved for the three-line predictive summary.

pbs2 <- predGPsep(bhat$gp, as.matrix(hs))
s <- sqrt(diag(pm$Sigma + pbs2$Sigma))
q1 <- qnorm(0.95, m, s)
q2 <- qnorm(0.05, m, s)
deleteGPsep(bhat$gp)

Figure 8.6 provides these two views, with computer model fit ŷM and samples from ŷR on
the left, and a summary of Ŷ F on the right.

par(mfrow=c(1,2))
plot(ball)
lines(heights, pm$mean)
lines(heights, q1m, lty=2)
lines(heights, q2m, lty=2)
matlines(heights, t(yR), col="gray", lty=1)
legend("bottomright", c("Mhat summary", "Mhat + bhat draws"),
lty=c(1,1), col=c("black", "gray"))

plot(ball)
lines(heights, pm$mean + pb$mean, col=4)
lines(heights, q1, col=4, lty=2)
lines(heights, q2, col=4, lty=2)
legend("topleft", "yMhat + bhat + s2", bty="n")
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FIGURE 8.6: Modularized KOH predictive distribution via draws (left) and summaries
(right).

In the left panel, notice how the surrogate with our estimated calibration parameter, ŷM (·, û),
way over-predicts. Recall that KOH considers likelihood of the residual process under a
GP; it doesn’t target minimal bias. Also observe how uncertainty on ŷM (·, û) is very low
across the heights entertained. Black-dashed quantile lines nearly cover the solid mean line.
Samples from the joint predictive distribution of ŷR in gray are tight. That distribution
could similarly have been represented as a three-line summary, with means and quantiles.
However, I chose to show sample paths instead in order to remind readers of the value of full
covariance structures. Some lines are more “bendy” than others. But all are much smoother
than the mean line from Figure 8.2, back at the very start of this example, where field data
were fit directly, without the aid of a computer model. The resulting predictive surface for
field measurements, shown in the right panel, is much smoother than the surface from that
first fit. Error-bars remain narrow even across the gap in training data. KOH predictors
borrow strength from computer model surrogates in regions absent of field data.

That the computer model surrogate is monotonically increasing inside the range of heights
under study, but predictive distributions for real and field processes are not, is interesting
to note. We may be observing an inflection point in the process where dominant dynamics
change. If I were to guess, I’d say that wiffle balls don’t reach their terminal velocity until
they’re dropped from heights above 2.5 meters or so, at which point turbulent air and other
factors dominate dynamics. Perhaps it takes a few meters for air to freely circulate within
the ball, through its Swiss cheese-like holes, ultimately causing the ball to slow down a bit.
This aspect may be interesting to investigate further through a more elaborate mathematical
model and computer code.

8.1.4 Removing bias

An alternative explanation is that we’re doing a bad job of estimating û and b̂. Perhaps we’d
be better off with a simpler apparatus: one without bias correction, say. To entertain that
notion, riffing on themes first described by Cox et al. (2001), the code below implements an
alternative to bhat.fit.
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se2.fit <- function(X, yF, Ym, clean=TRUE)
{
gp <- newGP(X, yF - Ym, d=0, g=0)
cmle <- list(nll=-llikGP(gp))
if(clean) deleteGP(gp)
else { cmle$gp <- gp; cmle$gptype <- "iso" }
return(cmle)
}

Providing d=0 and g=0 tells newGP not to fit a covariance structure, but instead calculate
quantities depicting a zero-mean, iid noise, process ignoring inputs X. No mleGP commands
are required since scale τ̂2 is estimated automatically, in closed form, within newGP. I thought
ahead and built calib to accept any discrepancy-fitting function as an argument, even
bias-free se2.fit. R code below evaluates calib with fit=se2.fit on our u-grid from
earlier, to help visualize, and then creates an objective for optimization in order to more
precisely estimate û.

unll.se2 <- rep(NA, length(u))
for(i in 1:length(u))
unll.se2[i] <- calib(u[i], XF, ball$time, yMhat, fit=se2.fit)$nll

obj.nobias <- function(x, XF, yF, yMhat, fit)
calib(x, XF, yF, yMhat, fit)$nll

soln <- optimize(obj.nobias, lower=0, upper=1, XF=XF, yF=ball$time,
yMhat=yMhat, fit=se2.fit)

uhat.nobias <- soln$minimum

Figure 8.7 shows the resulting surface and estimate of û, with old û (under GP bias correction)
added on for reference.

plot(u, unll.se2, type="l", xlab="u", ylab="negative log likelihood")
abline(v=uhat, col=2, lty=2)
abline(v=uhat.nobias, col=3, lty=3)
legend("bottomright", c("uhat", "uhat nobias"), lty=2:3, col=2:3)

Our new estimate of û is higher than before, but after converting back to natural units (of
gravity) we see that it’s still probably too low; perhaps estimates are still compensating for
air resistance.

ghat.nobias <- uhat.nobias*diff(gr) + gr[1]
ghat.nobias

## [1] 8.166

Visualizing the resulting predictive surface for Ŷ F requires running back through calib
with clean=FALSE, and then combining computer model predictions ŷM (·, û) with noise.

cmle.nobias <- calib(uhat.nobias, XF, ball$time, yMhat,
se2.fit, clean=FALSE)
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FIGURE 8.7: Likelihood surface for u and û under the nobias alternative.

se2.p <- predGP(cmle.nobias$gp, as.matrix(hs), lite=TRUE)
pm.nobias <- predGPsep(yMhat, cbind(hs, uhat.nobias), lite=TRUE)
q1nob <- qnorm(0.05, pm.nobias$mean, sqrt(pm.nobias$s2 + se2.p$s2))
q2nob <- qnorm(0.95, pm.nobias$mean, sqrt(pm.nobias$s2 + se2.p$s2))
deleteGP(cmle.nobias$gp)

Figure 8.8 provides the usual three-line summary.

plot(ball)
lines(heights, pm.nobias$mean, col=4)
lines(heights, q1nob, col=4, lty=2)
lines(heights, q2nob, col=4, lty=2)
legend("topleft", c("yMhat + se2"), col=4, lty=1, lwd=2)

Compared to our initial bias corrected version, the curves in the figure are more monotonic
but they also perhaps systematically under-predict for all but the lowest drops. So we
have two competing fits. How, besides aesthetically, can one choose between them? Answer:
out-of-sample validation, e.g., cross validation (CV). The code chunk below collects fitting
and prediction code from above into a stand-alone function that can be called repeatedly, in
a leave-one-out fashion. The first argument takes a set of predictive locations, XX, whereas
the rest accept field data, computer model fit (i.e., pre-fit gpi reference), and discrepancy
fitting method. Like calib, implementation here is designed to be somewhat modular to
this final choice, say using fit=bhat.fit or fit=se2.fit.

calib.pred <- function(XX, XF, yF, yMhat, fit)
{
soln <- optimize(obj, lower=0, upper=1, XF=XF, yF=yF,
yMhat=yMhat, fit=fit)

bhat <- calib(soln$minimum, XF, yF, yMhat, fit, clean=FALSE)
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FIGURE 8.8: Nobias predictive surface; compare with Figure 8.6.

if(bhat$gptype == "sep") pb <- predGPsep(bhat$gp, XX, lite=TRUE)
else pb <- predGP(bhat$gp, XX, lite=TRUE)
pm <- predGPsep(yMhat, cbind(XX, soln$minimum), lite=TRUE)
m <- pm$mean + pb$mean
s2 <- pm$s2 + pb$s2
q1 <- qnorm(0.95, m, sqrt(s2))
q2 <- qnorm(0.05, m, sqrt(s2))
if(bhat$gptype == "sep") deleteGPsep(bhat$gp)
else deleteGP(bhat$gp)
return(list(mean=m, s2=s2, q1=q1, q2=q2, uhat=soln$minimum))
}

Next comes a leave-one-out CV (LOO-CV) loop over nF = 63 field data points, alternately
holding out each as a testing set, training on the others, and then predicting. Note that
throughout we are conditioning on the same computer model surrogate yMhat, fit to the full
computer experiment. CV is over field data only. Each iteration first considers the usual
bias correcting modularized KOH setup, and then a simpler nobias alternative.

uhats <- q1 <- q2 <- m <- s2 <- rep(NA, nrow(XF))
uhatsnb <- q1nb <- q2nb <- mnb <- s2nb <- uhats
for(i in 1:nrow(XF)) {
train <- XF[i,,drop=FALSE]
test <- XF[-i,,drop=FALSE]
cp <- calib.pred(train, test, ball$time[-i], yMhat, bhat.fit)
m[i] <- cp$mean
s2[i] <- cp$s2
q1[i] <- cp$q1
q2[i] <- cp$q2
uhats[i] <- cp$uhat
cpnb <- calib.pred(train, test, ball$time[-i], yMhat, se2.fit)
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TABLE 8.1: Jackknife distribution for û.

Min. 1st Qu. Median Mean 3rd Qu. Max.
u 0.0559 0.0907 0.0938 0.0946 0.0972 0.1551
g 6.4476 6.7252 6.7502 6.7568 6.7776 7.2411

TABLE 8.2: Jackknife distribution for nobias û.

Min. 1st Qu. Median Mean 3rd Qu. Max.
u 0.2633 0.2683 0.2705 0.2708 0.2716 0.2876
g 8.1068 8.1462 8.1637 8.1664 8.1726 8.3012

mnb[i] <- cpnb$mean
s2nb[i] <- cpnb$s2
q1nb[i] <- cpnb$q1
q2nb[i] <- cpnb$q2
uhatsnb[i] <- cpnb$uhat

}

Summary statistics, such as field data predictive quantities at xi along with ûi, for i =
1, . . . , nF , have been saved for subsequent inspection. For example, Table 8.2 shows what
û-values we get in the bias correcting case, including values mapped back to natural units of
gravity.

kable(rbind(u=summary(uhats), g=summary(uhats)*diff(gr) + gr[1]),
caption="Jackknife distribution for $\\hat{u}$.")

Quite a big range actually. Some are very small indeed. Others are substantially larger,
but none nearly as large as the nominal value of 9.8m/s2 on Earth. That summary is of
a so-called jackknife13 sampling distribution, a precursor to the bootstrap14 which would
perhaps represent a more standard alternative to studying the sampling distribution of û
in modern times. (That is, beyond the Bayesian option we started the chapter with, and
to which we shall return in §8.1.5.) Resampling methods like the bootstrap are simple and
sufficient when field data are plentiful.

Table 8.2 summarizes the jackknife distribution for û from the nobias alternative.

kable(rbind(u=summary(uhatsnb), g=summary(uhatsnb)*diff(gr) + gr[1]),
caption="Jackknife distribution for nobias $\\hat{u}$.")

Although substantially higher than their bias-correcting analog, this distribution is still
shifted substantially lower than nominal. In both cases the computer model surrogate is
being asked to compensate for dynamics not accounted for by the underlying mathematical
model. Since both come up short on that metric – although we never expected either to

13https://en.wikipedia.org/wiki/Jackknife_resampling
14https://en.wikipedia.org/wiki/Bootstrapping_(statistics)

https://en.wikipedia.org/wiki/Jackknife_resampling
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
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do particularly well – a comparison on out-of-sample predictive accuracy grounds seems
more practical. Figure 8.9 offers visual inspection on those terms. Each prediction is shown
as a filled circle, bias-correcting in red (left panel) and nobias in green (right panel), with
similarly colored vertical line segments indicating 90% prediction interval(s).

par(mfrow=c(1,2))
plot(ball, main="bias correcting")
points(ball$height, m, col=2, pch=20)
segments(ball$height, q1, ball$height, q2, col=2)
plot(ball, main="nobias")
points(ball$height, mnb, col=3, pch=20)
segments(ball$height, q1nb, ball$height, q2nb, col=3)
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FIGURE 8.9: Leave-one-out CV results in ordinary (left) and nobias (right) alternatives.
Filled dots show predictive means; vertical lines indicate 90% intervals.

For my money, the panel on the left looks better: only two dots are left uncovered. On the
right I count six dots without a green line going through them at least part way. It’s easy to
make such a comparison quantitative with proper scores (Gneiting and Raftery, 2007). Eq.
(27) from that paper covers pointwise cases: means and variances, without full covariance;
i.e., Eq. (5.6) from §5.2.1 forcing diagonal Σ(X ).

b <- mean(- (ball$time - m)^2/s2 - log(s2))
nb <- mean(- (ball$time - mnb)^2/s2nb - log(s2nb))
scores <- c(bias=b, nobias=nb)
scores

## bias nobias
## 4.205 3.948

Higher scores are better, so correcting for bias wins.

Modularized KOH calibration isn’t perfect, but it’s relatively simple to solve with library
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methods for GP fitting and for optimization to find û. Resulting predictions are accurate owing
to flexibility as much as to information quality, provided down the chain of mathematical
model, simulation data and field experiment. Although there are many variations, and we
briefly discussed a few, the presentation above mainly covers highlights targeting robust
implementation. Opportunities for stress-testing are provided by homework exercises both
here in §8.3 and (with minor modification to handle big simulation data) on our motivating
radiative shock hydrodynamics example (§2.2) in §9.4.

8.1.5 Back to Bayes

As a capstone, and because I said we would, let’s return back to full KOH and think about
posterior sampling conditional on GP hyperparameters estimated with the modularized
variation above. We shall follow Algorithm 8.1, whose most important calculation is covariance
V(u). The top-left block of V(u) is ΣnM , capturing computer model surrogate covariance on
design [XnM , UnM ]. Observe that ΣnM doesn’t depend upon u. Using θ̂ stored in mle (and
scale τ̂2 derived thereupon, in closed form), ΣnM may be calculated as follows.

library(plgp)
KM <- covar.sep(XU, d=mle$d, g=1e-7)
tau2M <- drop(t(yM) %*% solve(KM) %*% yM / length(yM))
SigmaM <- tau2M*KM

A portion of bottom-right block of V(u), namely Σb
nF , also doesn’t depend on u. This

matrix measures bias covariance between field data locations, conditioned on parameters θ̂b,
including noise level σ2

ε via an estimated nugget. Calculations below borrow θ̂b from bhat.
Completing the hyperparameter specification with τ̂2

b requires predictions from the computer
model, which may be obtained by applying predGPsep on yMhat with û calculated above.

KB <- covar.sep(XF, d=bhat$theta[1], g=bhat$theta[2])
XFuhat <- cbind(XF,

matrix(rep(uhat, nrow(XF)), ncol=length(uhat), byrow=TRUE))
Ym <- predGPsep(yMhat, XFuhat, lite=TRUE)$mean
YmYm <- ball$time - Ym
tau2B <- drop(t(YmYm) %*% solve(KB) %*% YmYm / length(YmYm))
SigmaB <- tau2B * KB
deleteGPsep(yMhat)

Remaining components of V(u) depend upon u and must be rebuilt on demand for each
newly proposed value of u as MCMC iterations progress. ΣnM (XnF , u) measures covariance
between [XnM , UnM ] and [XnF , u

>] under the surrogate. Notation [XnF , u
>] is shorthand

for a design derived by concatenating u to each row of field data inputs XnF . Similarly
ΣnF (u) captures surrogate covariance between [XnF , u

>] and itself. Both are calculated by
the function coded below, which subsequently completes V(u) by combining with ΣnM and
ΣbnF , e.g., as saved from earlier calculations like those immediately above.

ViVldet <- function(u, XU, XF, SigmaM, tau2M, mle, SigmaB)
{
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## build blocks
XFu <- cbind(XF, u)
SMXFu <- tau2M * covar.sep(XU, XFu, d=mle$d, g=0)
SMu <- tau2M * covar.sep(XFu, XFu, d=mle$d, g=1e-7)

## build V from blocks
V <- cbind(SigmaM, SMXFu)
V <- rbind(V, cbind(t(SMXFu), SMu + SigmaB))

## return inverse and determinant
## (improvements possible with partitioned inverse equations)
return(list(inv=solve(V),
ldet=as.numeric(determinant(V, log=TRUE)$modulus)))

}

Observe that ViVldet doesn’t return V(u) but rather its inverse and determinant as required
by the log likelihood (8.3). Code below implements a function calculating that quantity up
to an additive constant.

llik <- function(u, XU, yM, XF, yF, SigmaM, tau2M, mle, SigmaB)
{
V <- ViVldet(u, XU, XF, SigmaM, tau2M, mle, SigmaB)
ll <- - 0.5*V$ldet
Y <- c(yM, yF)
ll <- ll - 0.5*drop(t(Y) %*% V$inv %*% Y)
return(ll)
}

Although llik takes a multitude of arguments, repeated calls in an MCMC loop would only
vary its first argument, u. In order to simplify calls to llik in the Metropolis–Hastings (MH)
scheme coming shortly, the code below sets the latter eight arguments as defaults using
quantities from/derived for our ball drop experiment. That leaves u as the only unspecified
argument in llik, establishing a convenient shorthand.

formals(llik)[2:9] <- list(XU, yM, XF, ball$time, SigmaM, tau2M,
mle, SigmaB)

The final ingredient is the prior. One option is uniform over the study area g ∈ [6, 14],
mapping to u ∈ [0, 1] in coded units. Beta priors, generalizing the uniform, are also popular,
often with shape parameters (> 1) that mildly discourage concentration of posterior on
boundaries of the study region. For our example below, I chose a beta prior of this kind
but over a somewhat wider space, u ∈ [−0.75, 2] which maps to g ∈ [0, 22]. The result is a
relatively flat prior over the study region [6, 14], emphasizing values nearby 9.8m/s2 and
discouraging pathological/extreme values such as g = 0 on the low end, and g bigger than
two-times nominal on the high end.

lprior <- function(u, shape1=1.1, shape2=1.1, lwr=-0.75, upr=2)
{
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u <- (u - lwr)/(upr - lwr)
dbeta(u, shape1, shape2, log=TRUE)
}

Ok, we’re ready for MCMC. Below, space is allocated for 104 samples from the posterior.
Initial values are specified for the chain using û calculated above.

T <- 10000
lpost <- u <- rep(NA, T)
u[1] <- uhat
lpost[1] <- llik(u[1]) + lprior(u[1])

A for loop implements a random walk Metropolis sampler (see, e.g., Sherlock et al., 2010)
using Gaussian proposals with variance 0.32 (sd=0.3), tuned to ensure good mixing of
the Markov chain. Symmetry in that proposal choice simplifies expressions involved in
MH accept–reject calculations since the ratio of proposal densities (q), or equivalently the
difference of their logs, cancel. Since such a scheme can generate innovations outside the
study area, a check on the prior is required in order to short circuit handling of proposals
which violate support constraints.

for(t in 2:T) {

## random walk Gaussian proposal
u[t] <- rnorm(1, mean=u[t - 1], sd=0.3)
lpu <- lprior(u[t])
if(is.infinite(lpu)) { ## prior reject
u[t] <- u[t - 1]
lpost[t] <- lpost[t - 1]
next

}

## calculate log posterior
lpost[t] <- llik(u[t]) + lpu

## Metropolis accept-reject calculation
if(runif(1) > exp(lpost[t] - lpost[t - 1])) { ## MH reject
u[t] <- u[t - 1]
lpost[t] <- lpost[t - 1]

}
}

Figure 8.10 shows a trace plot of samples obtained from the Markov chain targeting the
posterior distribution for u under KOH. Mixing is visually very good, and by initializing
with the MLE the chain reaches stationarity instantaneously.

plot(u, type="l", xlab="MCMC iteration 1:T", ylab="u")

One way to assess MCMC quality, and thereby efficiency of the sampler, is through effective
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FIGURE 8.10: MCMC trace plot for KOH calibration.

sample size (ESS; Kass et al., 1998). Out of a total of T = 104 sequentially correlated
MCMC samples, ESS measures about how many independent samples that’s worth through
a measurement of autocorrelation in the chain.

library(coda)
ess <- effectiveSize(u)
ess

## var1
## 413.7

In this case, about one in each of 24 samples can be regarded as independent, having
“forgotten” the past from which it came. One way to improve upon that may be to adjust
proposal variance. For our purposes 414 samples is good enough to summarize the empirical
distribution, say with a kernel density.

d <- density(u*diff(gr) + gr[1], from=0, to=22)

Before plotting that density in Figure 8.11, R code below evaluates the prior over a grid in
u-space for comparison. To ease interpretation, the x-axis in the plot is provided in natural
units of gravity.

ugrid <- seq(-0.75, 2, length=1000)
ggrid <- ugrid*diff(gr) + gr[1]
lp <- lprior(ugrid)
plot(d, xlab="g", lwd=2, main="")
lines(ggrid, exp(lp)/30, col="gray")
abline(v=ghat, col=2, lty=2)
legend("topright", c("uhat", "prior", "posterior"), lty=c(2,1,1),
col=c("red", "gray", "black"), lwd=c(1,1,1,2), bty="n")

A takeaway from the figure is that there is, at best, modest information in the likelihood
relative to the prior. We have a posterior density whose mass is shifted slightly to the right,
away from the likelihood (or posterior under a uniform prior) and toward the prior. As a
result, the most probable setting for the unknown gravitational acceleration parameter is
substantially lower than the nominal value.
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FIGURE 8.11: Comparing posterior, prior and û for KOH calibration.

w <- which.max(lpost)
u[w]*diff(gr) + gr[1]

## [1] 6.923

Another way to view this state of affairs is through the lens of bias correction. It would
appear that our GP fit to discrepancies between computer model and field data is able to
cope with almost any reasonable value of u. Some cause less trouble than others, but on
the whole u-coupled GPs enjoy more than enough flexibility to explain dynamics exhibited
by field and simulation data in a variety of ways. Some of those ways entail seemingly
contradictory hypotheses through extremely low and high degrees of gravitational force.

Samples from the posterior distribution for u in hand, and implicitly also for b(·), the
next step is to convert those into samples from the posterior predictive distribution for
Y F (x), potentially for many x ∈ X . Each sample from the posterior, u(t), can be used
to define a conditional predictive distribution for Y F (X ) | YnF , YnM , u(t). A homework
exercise in §8.3, which we’ve alluded to once before but it bears repeating, asks the curious
reader to derive that distribution by first expanding MVN covariance structure V(u(t)) to
include new rows/columns representing the distribution of all three sets of Y -values jointly,
and subsequently applying MVN conditioning identities (5.1). Then, averaging over all
t = 1, . . . , T yields an empirical predictive density that marginalizes over uncertainty in the
calibration parameter, approximating

p(Y F (x) | YnF , YnM ) =
∫
U
p(Y F (x) | u, YnF , YnM ) · p(u | YnF , YnM ) du.

Predictive distributions which integrate out all unknowns are a hallmark of Bayesian analysis.
Recall that we’ve conditioned upon hyperparameters from the earlier modularized analysis.
A fully Bayesian calibration, extending MCMC to hyperparameters for both GPs, can
dramatically expand the complexity of the overall scheme. This usually represents overkill,
however there are settings where a full accounting of all uncertainties is essential.
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Theoretically minded but practically aware

There are many schools of thought on the right way to calibrate and simultaneously quantify
uncertainty, but few recipes which are readily deployable out of the box. MATLAB® software
called GPMSA is perhaps the first suite of its kind, providing surrogate modeling and
computer model calibration capabilities (Gattiker et al., 2016). Two packages on CRAN
called CaliCo (Carmassi, 2018) and BACCO (Hankin, 2013) offer a Bayesian approach similar
to the one implemented above, with some of the extensions left here to exercises in §8.3.

One of the great advantages of the Bayesian paradigm is that it exposes model inadequacies
by giving ready access to estimation uncertainties. In the KOH case “inadequacy” manifests
as extreme flexibility, which is a paradox. Modularization helps because it limits flexibility
somewhat through a more constrained prior, allowing only computer model runs to influence
surrogate fits. Nevertheless confounding and identifiability are ever-present concerns (Gu
and Wang, 2018; Gu, 2019).

There are many reasons to calibrate, with KOH or otherwise. One is simply predictive;
another is to get a sense of how the apparatus could be tuned, or to quantify how much
information is in the data (and prior) about promising u settings. Both are very doable, and
worth doing, even in the face of confounding. When causal interpretation is essential, further
constraints such as limiting forms of bias correction (Plumlee, 2017; Tuo and Wu, 2015) can
help with posterior identifiability of u, but often at the expense of predictive accuracy.

Fully Bayesian prediction at the field level, Y F (X ) via ordinary KOH as above and in the
homework, is hard to beat. Other, more complicated but also more satisfying examples
are offered up as further homework exercises. More ambitious “big simulation” analogs in
§9.3.6, as motivated by the radiative shock hydrodynamics example of §2.2, benefit from the
thriftier, more modular approach.

8.2 Sensitivity analysis

In any nonparametric regression setting, but especially when two nonparametric regressions
are coupled together as in §8.1, it’s important to understand the role inputs play in predicted
outputs. When inputs change, how do outputs change? In simple linear regression, estimated
slope coefficients β̂j and their standard errors speak volumes, resulting in t-tests or F -tests to
ascertain relevance. Or, we may inspect leverage or Cook’s distance15 to focus on particular
input–output pairs. By contrast, the effect of fitted GP hyperparameters and input settings
on predictive surfaces is subtle and sometimes counter-intuitive. In a way, that’s what
nonparametric means: parameters don’t unilaterally dictate what’s going on. Model fits and
predictive equations gain flexibility from data, sometimes with the help of – but equally
often in spite of – any estimated tuning or hyperparameters.

Because of the complicated nature by which data affect fit and predictor in nonparametric
regression, approaches to decomposing the effects of inputs x on outputs Y in that setting are
varied. Many methods focus in particular on GP regression, but with no less diversity despite
(model) specificity. Oakley and O’Hagan (2004) offer what is perhaps the first complete

15https://en.wikipedia.org/wiki/Cook’s_distance

https://en.wikipedia.org/wiki/Cook's_distance
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treatment, although efforts date back to Welch et al. (1992) with revisions from Morris et al.
(2008).

The approach presented here has many aspects in common with these ideas, and with Marrel
et al. (2009), whose analysis tailors first-order Sobol indices (Sobol, 1993, 2001) to surrogates
derived from GP predictive equations. Yet our presentation will lean more generic. By not
focusing expressly on GP equations we can, among other things, accommodate a higher-order
analysis under a more unified umbrella. Our approach follows the Saltelli (2002) school of
thought in numerical integration: what happens to predictive means and variances when
fixing some input coordinates and integrating out others? While illustrations will focus
on GP regression, as our preferred surrogate, I won’t leverage GPs in our methodological
development. The edited volume by Saltelli et al. (2000) provides an overview of the field.
Valuable recent work on smoothing methods (Storlie and Helton, 2008; Da Veiga et al.,
2009; Storlie et al., 2009) provide a nice overview of nonparametric regression coupled with
sensitivity analysis.

8.2.1 Uncertainty distribution

If we’re going to say how sensitive outputs are to changes in inputs, it makes sense to first
say what inputs we expect/care about, and how much they themselves may change/vary.
Underlying the Saltelli method is a reference distribution for x, sometimes called an un-
certainty distribution U(x). U can represent uncertainty about future values of x, or the
relative amount of research interest in various areas of the input space. In many applications,
the uncertainty distribution is simply uniform over a bounded region.

In Bayesian optimization (Chapter 7), U can be used to express prior information from
experimentalists or modelers on where to look for solutions. For example, when there’s
a large number of input variables over which an objective function is to be optimized,
typically only a small subset will be influential within the confines of their uncertainty
distribution. Sensitivity analysis can be used to reduce the volume of the search space of
such optimizations (Taddy et al., 2009). Finally, in the case of observational systems such as
air-quality or smog levels (§8.2.4), U(x) may derive from an estimate of the density governing
natural occurrence of x factors, e.g., air pressure, temperature, wind and cloud cover. In
such scenarios, sensitivity analysis attempts to resolve natural variability in responses Y (x).

Although one can adapt the type of sampling described shortly to account for correlated
inputs in U (Saltelli and Tarantola, 2002), we treat here the standard and computationally
convenient independent specification,

U(x) =
m∏
k=1

uk(xk),

where uk, for k = 1, . . . ,m, represent densities assigned to the margins of x. With U being
specified probabilistically, readers may not be surprised to see sampling feature as a principal
numerical device for averaging over uncertainties, i.e., over variability in U . Such averages
approximate expectations, which are integrals. Latin hypercube sampling (LHS; §4.1) was
conceived to reduce variability in exactly that sort of Monte Carlo (MC) approximation to
integrals. Accordingly, LHSs with margins uk feature heavily in our Saltelli-style calculation
of Sobol sensitivity indices.
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8.2.2 Main effects

The simplest sensitivity indices are main effects, which deterministically vary one input
variable, j, while averaging others over U−j :

me(xj) ≡ EU−j{y | xj} =
∫ ∫
X−j

yp(y | x1, . . . , xm) · u−j(x1, xj−1, xj+1, xm) dx−jdy. (8.5)

Above, u−j =
∏
k 6=j uk(xk) represents density derived from the joint distribution U without

coordinate j, i.e. U−j with X−j and x−j defined similarly, and p(y | x1, . . . , xm) ≡ p(Y |
x) ≡ p(Y (x) = y) comes from the surrogate, e.g., a GP predictor.

Algorithmically, calculating main effects proceeds as follows: grid out X -space in each
coordinate with values xji, for i = 1, . . . , G say; gather me(xji)-values holding the jth

coordinate fixed at each xji, in turn, and average over the rest (and y) in an MC fashion;
finally plot all me(xji) on a common x-axis. A pseudocode in Algorithm 8.3 formalizes that
sequence of steps with some added numerical detail. The algorithm utilizes samples of size
N in its MC approximations. Although Eq. (8.5) and Algorithm 8.3 showcase mean main
effects µ(x) =

∫
yp(y | x) dy, any aspect of p(y | x) which may be expressed as an integral

can be averaged with respect to U in this manner. Quantiles are popular, for example, since
they may be plotted on the same axes as means.

Algorithm 8.3 Main Effects

Assume m-dimensional coded inputs x ∈ [0, 1]m and interest in mean main effects
µ(x) =

∫
yp(y | x) dy, although µ(x) may stand in below for other quantities available

from predictive equations.

Require uncertainty distribution U which may readily be sampled, say with LHS via
margins u1, . . . , um; a desired sample size N controlling accuracy of the MC calculation;
surrogate or predictive equations p(y | x), say from a GP, generating µ(x) or another
quantity of interest; grid 0 ≤ g1, . . . , gG ≤ 1 which may be applied separately but
identically to each margin of x.

For each coordinate of xj , as j = 1, . . . ,m, and each grid element of gi, as i = 1, . . . , G,
i.e., a double-“for” loop . . .
1. Draw N samples from U−j and combine with gi to create N ×m predictive matrix
Xj whose jth column has N copies of gi and remaining columns hold the samples.

2. Evaluate the surrogate at Xj , saving predictive means µ(Xj) in N -vector ŷ,
• or similarly for another predictive quantity of interest.

3. Average over the N samples to save approximate me(xji) as meji = 1
N

∑N
s=1 ŷs.

End For

Return m×G matrix “me” or, more commonly, plot each of m row-vectors mej on
a common x-axis with coordinates g1, . . . , gG.

In situations where sampling from U is computationally expensive, one may prefer instead
to pre-sample a single N ×m matrix U of deviates in lieu of the m×G separate N × (m− 1)
samples implied by each iterate of Step 1 within the “for” loop. In that setup, a revised
Step 1 would instead de-select the jth column to create N × (m− 1) matrix U−j , combining
with grid entries to create Xj in Step 2. Reusing deviates from U in this manner, where
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each iterate of the double-“for” loop involves similar U−j , induces correlation in otherwise
independent calculations. That increases MC error which can be mitigated, to a certain
extent, with larger N . Whether by pre-sampling, or with the original Step 1, LHS from U is
common as a means of reducing variability for fixed MC sample size N .

Before jumping into an illustration, it’s worth commenting on a common alternative “main
effect” that avoids integration over “−j” input coordinates, instead replacing them with
their mean value.

me(xj) ≡ E{y | xj , x̄−j}

This is not the same thing, and it’s not even really a poor man’s approximation. The
behavior of responses as a function of typical (average) input values is not the same as
average behavior over all input values. But that doesn’t make it wrong or mean it’s not an
interesting thing to look at. However most would argue that it provides, at best, a limited
view into the effect of inputs on outputs. I tend to agree. Situations where this alternative
is, for the most part, adequate correspond to settings where far simpler surrogates (e.g.,
linear/polynomial) may have been sufficient to begin with. In those situations, the methods
of Chapter 3 provide more precise and satisfying results.

To kick the tires a bit, return to the Friedman data (5.12) from §5.2.5 which combines a
nice span of nonlinear, linear, and useless effects. The function is pasted below.

fried <- function (n, m=6)
{
if(m < 5) stop("must have at least 5 cols")
X <- randomLHS(n, m)
Ytrue <- 10*sin(pi*X[,1]*X[,2]) + 20*(X[,3] - 0.5)^2 + 10*X[,4] + 5*X[,5]
Y <- Ytrue + rnorm(n, 0, 1)
return(data.frame(X, Y, Ytrue))
}

To create a dataset for surrogate learning, let’s evaluate fried on a random design of size
250. Then fit a GP surrogate.

data <- fried(250)
gpi <- newGPsep(as.matrix(data[,1:6]), data$Y, d=0.1,
g=var(data$Y)/10, dK=TRUE)

mle <- mleGPsep(gpi, param="both", tmin=rep(eps, 2),
tmax=c(10, var(data$Y)))

Begin by keeping it simple with uniform U(x) in [0, 1]6. The code chunk below allocates
space necessary to calculate MC averages of size N = 10K on a uniform grid of G = 30
values in each xj .

N <- 10000
G <- 30
m <- q1 <- q2 <- matrix(NA, ncol=6, nrow=G)
grid <- seq(0, 1, length=G)
XX <- matrix(NA, ncol=6, nrow=N)
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Then, the double-“for” loop may commence. Below main effects are collected for predictive
means, and central 90% predictive quantiles so that we may also inspect error-bars on
main effects. Since emphasis here is on the mean, nonug=TRUE is provided when gathering
predictive summaries. Although these data are inherently noisy, epistemic uncertainty in
main effects should decrease to zero as the number of training data points grows toward
infinity (uniformly within a finite study region).

for(j in 1:6) {
for(i in 1:G) {
XX[,j] <- grid[i]
XX[,-j] <- randomLHS(N, 5)
p <- predGPsep(gpi, XX, lite=TRUE, nonug=TRUE)
m[i,j] <- mean(p$mean)
q1[i,j] <- mean(qnorm(0.05, p$mean, sqrt(p$s2)))
q2[i,j] <- mean(qnorm(0.95, p$mean, sqrt(p$s2)))

}
}

Figure 8.12 provides a visualization of these mean main effects. Error-bars will be added
momentarily, but it’s easier to focus on one thing at a time. There are already six lines in
the figure; adding error-bars will make eighteen.

plot(0, xlab="grid", ylab="main effect", xlim=c(0,1),
ylim=range(c(q1,q2)), type="n")

for(j in 1:6) lines(grid, m[,j], col=j, lwd=2)
legend("bottomright", paste0("x", 1:6), fill=1:6, horiz=TRUE, cex=0.75)
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FIGURE 8.12: Mean main effects for Friedman data observed with irrelevant input x6.

First, note that the scale of the y-axis isn’t directly meaningful. Apparently, mean responses
vary from about ten to twenty. Considering what we know about the Friedman function,
the lines in the figure make sense. For example, x1 and x2 contribute in a similar, non-
linear (perhaps sinusoidal) manner. Since they only interact in a product, their effects are
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indistinguishable from one another when holding one fixed and averaging over the other.
Input x3 augments with a face-up parabola; x4 and x5 factor in linearly. Finally, x6 is flat.
It has no effect on the response when averaging over other inputs.

Figure 8.13 updates with 90% central error-bars. Observe that there’s substantial variability
in these main effects. Still, changes in mean main effects across the x-axis far exceeds the
width of the interval(s) for all except input x6. We have our first indication that x6 is a
useless input.

plot(0, xlab="grid", ylab="main effect", xlim=c(0,1),
ylim=range(c(q1,q2)), type="n")

for(j in 1:6) {
lines(grid, m[,j], col=j, lwd=2)
lines(grid, q1[,j], col=j, lty=2)
lines(grid, q2[,j], col=j, lty=2)

}
legend("bottomright", paste0("x", 1:6), fill=1:6, horiz=TRUE, cex=0.75)
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FIGURE 8.13: Main effects from Figure 8.12 augmented with quantiles.

A larger training set would drive down predictive variability and make these error-bars
even narrower. Two-hundred fifty data points isn’t much in six input dimensions. Were it
a gridded design, that would be equivalent to a mere three unique settings for each input.
That we’re able to view a bit of nuance in mean main effects with a sample of this size is a
testament to LHS design, offering more diversity in the margins than a regular grid.

8.2.3 First-order and total sensitivity

Main effects make pretty pictures but they promote a qualitative impression of variable
influence. By marginalizing out other inputs, they ignore how variables work together
to affect changes in the response. The most common notion of sensitivity is tied to the
relationship between conditional and marginal variance for Y . Variance-based methods
decompose uncertainties in objective function evaluations and their surrogates into variances
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of conditional expectations, all with respect to U(x). These are a natural measure of output
association with specific sets of variables and provide a basis upon which the importance of
individual inputs may be judged.

The variance-based approach presented here is originally due to Sobol, wherein a deterministic
objective function is decomposed into summands of functions on lower dimensional subsets
of the input space. Consider the functional decomposition

f(x1, . . . , xm) = f0 +
m∑
j=1

fj(xj) +
∑

1≤i<j≤m
fij(xj , xi) + · · ·+ f1,...,m(x1, . . . , xm).

When f is modeled as a stochastic process Y (x) conditional on inputs x, we can develop a
similar decomposition of response distributions which arise when Y (x) has been integrated
over one subset of covariates xJ = {xj : j ∈ J}, where J ⊆ {1, . . . ,m}, and where the
complement of this subset, x−J = {xj : j /∈ J} is allowed to vary according to a marginalized
uncertainty distribution. For example, we may study the marginal conditional expectation

EU−J{µ(x) | xJ} =
∫
X−J

E{y | x}u−J(x−J) dx−J ,

where the subsequent marginal uncertainty density is given by uJ(xJ) =
∫
X−J u(x) dx−J .

Observe that this generalizes the expectation used to define main effects (8.5).

Sobol-based sensitivity analysis attempts to decompose, and quantify, variability in E{y | xJ}
with respect to changes in xJ according to UJ (xJ ). If U is such that inputs are uncorrelated,
the variance decomposition is available as

Var(EU−J{y | x}) =
m∑
j=1

Vj +
∑

1≤i<j≤m
Vij + · · ·+ V1,...,m,

where Vj = VarUj (EU−j{y | xj}), Vij = VarUij (EU−ij{y | xi, xj}) − Vi − Vj , and so on.
When inputs are correlated this identity no longer holds, although a “less-than-or-equal-to”
inequality is always true. But nevertheless it’s still useful to retain an intuitive interpretation
of the VJ ’s as a portion of overall marginal variance.

First-order sensitivity

With that motivation in mind, define first-order sensitivity indices as

Sj =
VarUj (EU−j{y | xj})

VarU (y) , j = 1, . . . ,m. (8.6)

In words, Sj is the proportion of variability in the (mean surrogate) response attributable to
the jth input, i.e., response sensitivity to variable main effects. As you can see, Sj is scalar,
so a first-order analysis reports m numbers, which is of lower dimension than main effects,
providing m functions.

Perhaps main effects could be categorized as “zeroth-order” sensitivity indices, but that
sells them short because of the high dimensional, functional view they provide. Yet upon
conditioning there’s no notion of variability. By replacing that grid-wise evaluation with
a variance calculation – i.e., another integral – first-order sensitivities offer more global
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perspective wrapped in a neat package. As a proportion of variability, Sj also provides a
relative notion of variable importance.

Observe that lower-case y’s are used above, even though the posterior predictive quantity
Y (x) | Yn, as in our intended surrogate GP application, is clearly a random variable. This is
to emphasize that, in calculating Sj , all expectations and variances are taken with respect
to uncertainty distribution U . Integrating over y to extract posterior predictive means is
implicit for GPs, or can be ignored in the case where y = f(x) can be probed directly and
without noise. Throughout our sensitivity index presentation, inner expectations are taken
over X−j ∼ U−j and outer variances over the only remaining random quantity, Xj ∼ Uj .
When variances/expectations are not nested, as in the variance in the denominator (8.6),
integration over all of X ∼ U is implied. Below we shall drop distributional subscripts VarUj
and EU−j to streamline the notation, but the same principles are in play.

MC approximation of first-order indices Sj benefits from the following development. Using
the definition for variance, we have

Sj = E{E2{y | xj}} − E2{y}
Var(y) (8.7)

since E2
Uj
{EU−j{y | xj}} = E2

U{y} ≡ E2{y}. Eq. (8.7) follows (8.6) by taking inner ex-
pectation over X−j , and outer one over Xj , combining to integrate over all of X ∼ U .
To calculate those expectations, let M and M ′ be samples of size N from U , e.g., from
LHSs respecting U , being comprised of m-length row vectors sk and s′k, for k = 1, . . . , N
respectively. Approximate unconditional quantities as

Ê{y} = 1
N

N∑
k=1

E{y | sk} and V̂ar(y) = 1
N

E{y |M}>E{y |M} − Ê2{y},

where E{y | M} is the column vector [E{y | s1}, · · · ,E{y | sN}]> and Ê2{y} = Ê{y}Ê{y}.
Approximating the rest of Sj , through conditional expectations, requires mixing columns of
M with a similarly built matrix M ′ of s′k conditioned columns. Independence in coordinates
of U is crucial here. Let M ′j be M ′ with jth column replaced by the jth column of M , and
likewise let Mj be M with the jth column of M ′. Then, the conditional second moment
required for Sj may be approximated as

̂E{E2{y | xj}} = 1
N − 1E{y |M}

>E{y |M ′j}.

A formal algorithm is coming shortly, but to save a little space we’ll wait until after providing
details on total sensitivity indices as the two share many subroutines. First, an illustration:
let’s run through the math above in code below on the Friedman data. Unconditional
quantities may be approximated as follows, based on a single m-dimensional LHS M of size
N .

M <- randomLHS(N, 6)
pM <- predGPsep(gpi, M, lite=TRUE, nonug=TRUE)
Ey <- mean(pM$mean)
Vary <- (t(pM$mean) %*% pM$mean)/N - Ey^2

Then, using mixtures of columns of a second LHS with those of the first, approximations to
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conditional quantities may be combined with the unconditional ones above to estimate Sj ,
for j = 1, . . . ,m.

Mprime <- randomLHS(N, 6)
S <- EE2j <- rep(NA, 6)
for(j in 1:6) {
Mjprime <- Mprime
Mjprime[,j] <- M[,j]
pMprime <- predGPsep(gpi, Mjprime, lite=TRUE, nonug=TRUE)
EE2j[j] <- (t(pM$mean) %*% pMprime$mean)/(N - 1)
S[j] <- (EE2j[j] - Ey^2)/Vary

}

Estimated first-order indices are quoted below.

S

## [1] 0.22156 0.19778 0.09057 0.38071 0.09384 0.01413

According to those numbers, our surrogate is most sensitive to input four. This agrees with
Figures 8.12–8.13 providing main effects plot(s) which show x4’s marginal response varying
over the largest range of the y-axis. Given what we know about the true data generating
mechanism, this summary is correct. Although input x3 (being quadratic) has the potential
for bigger effect (x4’s is but linear), that could only happen for |x3 − 0.5| > 1, lying outside
the study area. Inputs x1 and x2 have the second highest first-order sensitives, being similar
to one another. This too makes sense: they only work together in interaction and, as products
of numbers less than one in absolute value, span a smaller range of outputs despite sharing
the same amplitude as x4, namely 10.

Total sensitivity

Total sensitivity indices are the mirror image of first-order indices:

Tj = E{Var(y | x−j)}
Var(y) .

Observe that E{Var(y | x−j)} = Var(y)−Var(E{y | x−j}), so Tj measures residual variance
in conditional expectation and thus represents all influence connected to a given variable.
Consequently the difference between first-order and total sensitivities, Tj − Sj , measures
variability in y due to the interaction between input j and the other inputs. A large difference
Tj − Sj can trigger additional local analysis to determine its functional form.

Again, expanding out the definition for variance as a difference in squared expectations, we
have

Tj = 1− E{E2{y | x−j}} − E2{y}
Var(y) .

So there’s only one additional quantity required to calculate Tj beyond elements needed for
Sj . Similarly,
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̂E{E2{y | x−j}} = 1
N − 1E{y |M

′}>E{y |M ′j}

≈ 1
N − 1E{y |M}

>E{y |Mj},

with the latter approximation saving us the effort of predicting at locations inM ′ by re-using
those on hand at M .

Consider total sensitivity indices on the Friedman data.

T <- EE2mj <- rep(NA, 6)
for(j in 1:6) {
Mj <- M
Mj[,j] <- Mprime[,j]
pMj <- predGPsep(gpi, Mj, lite=TRUE, nonug=TRUE)
EE2mj[j] <- (t(pM$mean) %*% pMj$mean)/(N - 1)
T[j] <- 1 - (EE2mj[j] - Ey^2)/Vary

}
deleteGPsep(gpi)

As shown below, input four again has the highest index, with inputs one and two close
behind.

T

## [1] 0.271472 0.247760 0.077858 0.366271 0.080405 0.001955

Although the information seems redundant, their difference can be used to order potential
for interaction among pairs of input variables . . .

I <- T-S
I[I < 0] <- 0
I

## [1] 0.04991 0.04998 0.00000 0.00000 0.00000 0.00000

. . . which we know is correct from the definition of the fried function. Notice that any
negative differences are thresholded above. This is to compensate for sampling variability in
the MC approximation. Theoretically, T ≥ S when inputs are independent under U . (All
bets are off for dependent inputs.) MC error, leading to negative I, can be exacerbated by
one of the big drawbacks of Saltelli/Sobol analysis: first-order and total indices may fail
to sum to the total variance. Although both measure a proportion, they don’t partition
variability. To address this issue, Owen (2014) proposed an alternative sensitivity measure
called a Shapely effect, motivated by Shapley values from game theory. Shapley effects
always partition variance when inputs are independent under U . Unfortunately, estimating
Shapley effects can be cumbersome computationally. Song et al. (2016) suggest one possible
approach, as well as provide an excellent survey of the modern landscape of sensitivity
estimation when there are many inputs.

So that everything is in one place, Algorithm 8.4 codifies the sequence of steps re-
quired to calculate first-order and total sensitivity indices. The set of input locations
which must be evaluated under the surrogate for each calculation of indices Sj and Tj
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Algorithm 8.4 Sobol First-Order and Total Sensitivity Indices

Assume m-dimensional inputs x.

Require uncertainty distribution U which may readily be sampled, say with LHS via
margins u1, . . . , um; a desired sample size N controlling MC accuracy; surrogate or
predictive equations p(y | x), say from a GP, generating µ(x).

Then
1. Draw two N ×m LHSs from U , and denote these as

M =


s11 s12 · · · s1m
s21 s22 · · · s2m
...

...
. . .

...
sN1 sN2 · · · sNm

 and M ′ =


s′11

s′12
· · · s′1m

s′21
s′22

· · · s′2m
...

...
. . .

...
s′N1

s′N2
· · · s′Nm

 .

2. Evaluate surrogate (GP) predictive equations at M , saving mean N -vector ŷ with
ith component µ(si), and approximate

Ê{y} = 1
N

N∑
i=1

µ(si) and V̂ar(y) = ŷ>ŷ

N
− Ê2{y}.

For each coordinate xj of x, i.e., for j = 1, . . . ,m, do . . .
3. Create column-swapped matrices M ′j and Mj from M and M ′ as follows

M ′j =


s′11

· · · s1j · · · s′1m
s′21

· · · s2j · · · s′2m
...

...
...

. . .
...

s′N1
· · · sNj · · · s′Nm

 and Mj =


s11 · · · s′1j · · · s1m
s21 · · · s′2j · · · s2m
...

...
...

. . .
...

sN1 · · · s′Nj · · · sNm

 .

4. Evaluate surrogate (GP) predictive equations atM ′j andMj saving mean N -vectors
ŷ′j and ŷj analogous to Step 2, above, and approximate

̂E{E2{y | xj}} =
ŷ>ŷ′j
N − 1 and ̂E{E2{y | x−j}} = ŷ>ŷj

N − 1 .

5. Finally, build first-order and total indices by combining quantities calculated above
as follows:

Sj =
̂E{E2{y | xj}} − Ê2{y}

V̂ar(y)
and Tj = 1−

̂E{E2{y | x−j}} − Ê2{y}
V̂ar(y)

.

End For

Return m-vectors S and T .
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is {M,M ′,M ′1,M1, . . . ,M
′
m,Mm}, which is N(2m + 2) in total. Saltelli’s original version

involves N(m + 2), almost half as many, but I find the variation in Algorithm 8.4 to be
easier to explain and implement. Saltelli also recommends using an alternative estimate
Ê{y} = 1

N−1E{y | M}
>E{y | M ′} in calculating first-order indices, Sj , as this brings the

index closer to zero for non-influential variables. In my experience, that trick can induce
bias in estimates and suffer from numerical instability. Instead I prefer the simpler, default
setup presented above.

LHSs M and M ′ can be re-used to estimate main effects, at little extra computational
cost, as a byproduct of calculations required for Sobol indices. A post-processing one-
dimensional nonparametric regression through the scatterplot of [s1j , . . . , sNj , s

′
1j , . . . , s

′
Nj

]
vs. [E{y |M},E{y |M ′}] for each of j = 1, . . . ,m input variables may be snapped to a grid
for plotting purposes. I’ve found this approach to be quite robust to choices of smoother
since 2N typically represents a very large sample in 1d. For example, lowess works well
in R. This technique is utilized by the tgp package (Gramacy and Taddy, 2016) for fully
Bayesian sensitivity and main effects, discussed in more detail momentarily.

As a final note before showcasing that library implementation, the numerical integration
scheme(s) outlined above extend(s) nicely to other Sobol indices (e.g., second-order, etc.) for
particular combinations of inputs. For details and further discussion, the curious reader is
invited to explore some of the references offered at the start of this section (§8.2), particularly
the edited volume by Saltelli et al. (2000). Such extensions are less common in the surrogate
modeling literature.

8.2.4 Bayesian sensitivity

Now those were just point estimates – by which I mean everything we did above on main
effects and first-order/total sensitivity – derived from MLE GP fits. We visualized quantiles
of main effects, but that offered a higher resolution view of the concept of main effect rather
than a quantification of their uncertainty. Like any quantity estimated from data, sensitivity
indices have a sampling distribution. In turn, their distribution could help determine, say,
which indices are indeed substantially bigger than others or bigger than some baseline like
zero.

Considering the MC nature of calculations, closed form derivation of the sampling distribution
of sensitivity indices is a nonstarter. One option is the bootstrap. I don’t know if this has ever
been done for main, first-order and total Sobol indices with GP surrogates. The (parametric)
bootstrap has been used with GP surrogates and for other applications, such as KOH-style
calibration (Gramacy et al., 2015). Yet use of the bootstrap in this context, where the
prevailing view is Bayesian (§5.3.2), feels like a mismatch of technologies at best, and
incoherent at worst.

Sampling from the posterior distribution of all unknown quantities when surrogate modeling,
including hyperparameters, is no different in principle than MCMC for calibration parameters,
e.g., Algorithm 8.1. Augmenting that MCMC with an extra layer of MC over U LHSs is
pretty straightforward. (Hopefully it’s not too confusing that both are notated by u.)
Yet implementing such a method is too cumbersome for Rmarkdown presentation here.
Fortunately it’s implemented in software, in several packages actually.

Here I shall illustrate the implementation in tgp, as described by Gramacy and Taddy (2010),
which is based on a flexible family of (treed) GPs. Simpler, traditional GP formulations may
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leverage a greater degree of analytic tractability (Oakley and O’Hagan, 2004). See GPMSA
software for implementation.

library(tgp)

More detail on tgp is provided in §9.2.2. Similar functionality is provided in dynaTree
(Gramacy et al., 2017) on CRAN; for more details on dynamic trees as an alternative to
GPs for surrogate modeling see §9.2.3. For use in optimization and sensitivity analysis see
Gramacy et al. (2013). In tgp, the function sens invokes a sensitivity analysis.16 Providing
model=bgp indicates a Bayesian GP surrogate. Argument nn.lhs is like N . However the
extra layer of MC offered by posterior sampling with MCMC, which by default involves
T = 4000 iterations, allows smaller N like nn.lhs=1000 to be used compared to our earlier,
pointwise, analysis. The effective number of LHS draws for U derives from their product,
which in this case is 4 million.

sf <- tgp::sens(data[,1:6], data$Y, nn.lhs=1000, model=bgp, verb=0)

The tgp package provides a plot method for "tgp"-class objects, which has an optional
argument layout="sens" furnishing visuals for a suite of main effects, first-order and total
sensitivities. These are shown in Figure 8.14.

plot(sf, layout="sens", legendloc="topleft")
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FIGURE 8.14: Summary of Bayesian sensitivity on the Friedman data.

As you can see, boxplots for first-order and total indices offer a window into posterior
uncertainty in these calculations. The boxplot corresponding to first-order indices for x6
indicates not much more than 50% probability of being positive, providing strong indication
that this input is not affecting the response. In fact, a common tactic is to deliberately

16The tgp package defines sens as an ordinary function, but dynaTree treats it as an identically named
S3 method. To avoid confusion and runtime errors, explicit tgp::sens calls are used for code chunks in this
chapter. In your own R session the tgp:: prefix is only required if dynaTree is also loaded.
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insert a dummy, useless input like x6 to get a baseline S and T distribution through which
to gauge better what might be an important effect. By default, main effects are visualized
without error-bars in order to reduce clutter. An optional argument maineff allows the user
to specify which inputs to view main effects on, and when that argument is provided 90%
error-bars are added to the resulting plot(s). See Figure 8.15.

plot(sf, layout="sens", maineff=t(1:5))
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FIGURE 8.15: Bayesian main effects with error-bars on the Friedman data.

Superficially, the view here is quite similar to our mean-and-quantile point estimate-based
main effects from Figure 8.13. This time, however, dashed errorbars capture full posterior
uncertainty in Y (x) as each coordinate is varied while the others are integrated out.

When searching for interactions, a posterior probability can be calculated as follows.

I <- sf$sens$T - sf$sens$S
I[I < 0] <- 0
colMeans(I)

## [1] 0.11730 0.12255 0.06226 0.05820 0.06160 0.04901

Observe that x1 and x2 have the highest posterior probability of being involved in an
interaction. The others are reasonably high too. One disadvantage to tgp’s implementation
here is that its sampling scheme doesn’t support a nonug option. In other words, indices are
calculated over Y (x) rather than µ(x), conditional on training data. Consequently, resulting
posterior summaries of sensitivity appear noisier, reflecting greater uncertainty than typically
presented. A more favorable assessment would be that, as a result, they offer a conservative
view by averaging over a more complete assessment of posterior variability; hence a large
probability of (potential) interaction for all variables.

As another illustration, consider the airquality data in the base distribution of R. These
data contain daily readings of mean ozone in parts per billion (Ozone), solar radiation
(Solar.R), wind speed (Wind), and maximum temperature (Temp), for New York City
between May 1 and September 30, 1973. The tgp package supports specification of Beta-
distributed marginals for use in sensitivity analysis. Admittedly, this is somewhat restrictive
in the landscape of statistical distributions. However, most studies focus on limited ranges for
inputs, coded to the unit cube, and uncertainty distributions of interest tend to be unimodal.
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Beta marginals offer a relatively flexible, and straightforwardly specified, parametric family
meeting that description.

Suppose we take each margin to be scaled beta with shape=2 and mode equal to the average
setting for that input. Specifying a beta distribution in this way is thought to be somewhat
more intuitive than the typical a and b arguments.

X <- airquality[, 2:4]
Z <- airquality$Ozone
rect <- t(apply(X, 2, range, na.rm=TRUE))
mode <- apply(X, 2, mean, na.rm=TRUE)
shape <- rep(2, 3)

This dataset has missing values. These are automatically discarded by tgp, however a warning
is printed to the screen. To keep our presentation tidy, the code chunk below suppresses
those warnings for the sensitivity analysis.

s.air <- suppressWarnings(tgp::sens(X=X, Z=Z, nn.lhs=300, rect=rect,
shape=shape, mode=mode, model=bgp, verb=0))

Figure 8.16 shows the default sensitivity layout.

plot(s.air, layout="sens")
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FIGURE 8.16: Sensitivity summary on the air quality data.

Main effects show nonlinear marginal relationships for all three predictors. Solar radiation
has the smallest effect on the response, which is echoed in all three measurements. Wind
has the largest. Differences in first and total indices indicate modest pairwise interactions
among all three variables.
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I <- s.air$sens$T - s.air$sens$S
I[I < 0] <- 0
colMeans(I)

## [1] 0.2999 0.3648 0.3640

More options for sensitivity analysis in tgp are detailed by Gramacy et al. (2013), with
supplements in the package documentation.

Hopefully the illustration herein offers a glimpse into what’s possible by pairing surrogate
modeling with a generous helping of Monte Carlo integration, supporting a curiosity to
tinker so long as one has the patience to let it all run. Sensitivity analysis and calibration are
numerical procedures which attempt to salvage, or squeeze out, a degree of interpretability
from an otherwise opaque nonparametric predictor. Often the great flexibility offered by
surrogates, like those based on GPs, thwarts concrete statements derived from inference
through optimization and sampling. Critics rightly point to identifiability concerns, for
example. Yet much insight can be gleaned from these “beasts” with a few simple tools. That
is, until the data get big . . .

8.3 Homework exercises

A sample of exercises on calibration and sensitivity analysis follows. Most of these focus on
calibration, as there’s rather more to explore there – fewer implementations left to libraries.

#1: Calibration with free computer model simulation

Revisit the ball dropping calibration example from §8.1.2 Figure 8.1, with field data in
ball.csv17. Assume that the computer model timedrop is free to evaluate for any height
and gravity parameter(s). Specifically, there’s no need to fit a surrogate, and thus the setup
follows Higdon’s special case of the KOH framework (8.1)–(8.2).

a. Develop a calibration apparatus for this situation. In your description, be clear about
what quantities are being modeled and how they’re being estimated. As in the chapter,
provide two versions: (i) one where discrepancy between the computer model and field
data is estimated; and (ii) where discrepancy is assumed to be zero.

b. Implement both versions (i–ii) and carry out an analysis that reports on the estimated
calibration parameter, ĝ, in natural units.

c. Provide predictions for time(s) as a function of height for both versions (i–ii) which fully
propagates all uncertainties, excepting ones due to hyperparameters (e.g., lengthscales
and nuggets to GPs).

d. Finally, re-implement the cross validation (CV) exercise and compare the two methods
based on their proper scores. Report the jackknife sampling distribution for ĝ in both
cases and comment.

17http://bobby.gramacy.com/surrogates/ball.csv

http://bobby.gramacy.com/surrogates/ball.csv
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#2: Calibration and sensitivity in 2d

Consider the following mathematical description of a computer model via inputs x ∈ [0, 1]2
and calibration parameter u ∈ [0, 1]2:

yM (x, u) =
(

1− e−
1

2x2

) 1000u1x
3
1 + 1900x2

1 + 2092x1 + 60
100u2x3

1 + 500x2
1 + 4x1 + 20 .

Now suppose that field data are generated as

Y F (x) = yM (x, u?) + b(x) + ε, where b(x) = 10x2
1 + 4x2

2
50x1x2 + 10 and ε

iid∼ N (0, 0.252),

using u? = (0.2, 0.1). See §9.3.6 for implementation in R.

a. Generate an LHS of size 500 in four-dimensional (x, u)-space and evaluate the computer
model at those locations. Based on those runs, provide visualizations of main effects,
first-order, and total sensitivity indices for each of the four variables.

b. Create a field data design XnF under a 2d LHS of size 50 and two replicates at each
location so that nF = 100. Then obtain û estimates under both the bias corrected and
nobias modularized KOH calibration apparatus. Use a Beta(2, 2) prior independently on
the margins of u and GP predictors throughout. How do your û estimates compare to
the true u? value?

c. Generate a testing set of yR(x)-values (i.e., without noise), under 2d LHS of size
NR = 1000. Which of your two calibrated predictors, bias corrected and nobias, yield
better scores on the testing set?

d. Suppose you were to use the true u? value in place of û, in both bias corrected and
nobias alternatives above. How do the resulting “oracle-calibrated” scores compare to
the ones you calculated above. Are you at all surprised by the results?

#3: Bayesian version of #2

Revisit exercise #2b with a more fully Bayesian treatment (§8.1.5), ideally using the same
data. Compare the posterior distribution for u with the point estimate û you obtained in
#2. As above, use a Beta(2, 2) prior independently on the margins of u.

#4: KOH (Bayesian) prediction

In the KOH framework, . . .

a. . . . derive the posterior predictive distribution Y F (X ) | [YnM , YnF ], u conditional on all
other hyperparameters defining the GPs for surrogate and bias. Use MVN conditional
identities similar to those involved in prediction with ordinary GPs (5.2).

b. Implement that predictor in the context of the (four-dimensional (x, u)) exercises #2c
and #3 above, simultaneously averaging over all u(t) sampled from the posterior. Or,
if you haven’t worked on those exercises, similarly extend the Bayesian analysis of the
ball drop example (§8.1.5). Report predictive uncertainty on the testing set (#2c, or
the grid from the chapter) and compare these to Figure 8.6 obtained from the modular
optimization framework. Your comparison should be both qualitative, and quantitative
(i.e., compared to the truth).
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#5: Sensitivity in high dimension

Oakley and O’Hagan (2004) consider a fifteen dimensional problem whose specification18

includes five variables having a substantial effect on the response, five with a smaller effect,
and five with almost no contribution. Fit a separable GP to responses obtained on a size-250
maximin LHS (§4.3) in fifteen dimensions. Note that your estimated lengthscales should be
quite long (if you allow them to be). Use predictive equations from that fit to visualize main
effects and calculate first-order sensitivity indices Sj , for j = 1, . . . , 15. (No Tj are required
since Oakley & O’Hagan didn’t present those.) You may need to increase the MC size N
due to the much higher dimensional input space. See if you can partition inputs into three
“effect classes” of five based on main effects and first-order indices. Compare your results
to Table 1 from Oakley and O’Hagan (2004). Note that they used Ui ≡ N (0, 1). Contrast
with the fully Bayesian alternative provided by tgp. Be careful about how you “map” a
Gaussian uncertainty distribution to tgp’s Beta(s); longer MCMC than the sens default
may be needed due to the higher dimensional space. You may fix a small nugget by providing
nug.p=0 and gd=c(0.0001, 0.1) to sens.

18https://www.sfu.ca/~ssurjano/oakoh04.html

https://www.sfu.ca/~ssurjano/oakoh04.html
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Gaussian processes are fantastic, but they’re not without drawbacks. Computational complex-
ity is one. Flops in O(n3) for matrix decompositions, furnishing determinants and inverses,
is severe. Many practitioners point out that storage, which is in O(n2), is the real bottleneck,
at least on modern laptops and workstations. Even if you’re fine with waiting hours for
MVN density calculation for a single likelihood evaluation, chances are you wouldn’t have
enough high-speed memory (RAM) to store the n× n matrix Σn, let alone its inverse too
and any auxiliary space required. There’s some truth to this, but usually I find time to be
the limiting factor. MLE calculations can demand hundreds of decompositions. Big memory
supercomputing nodes are a thing, with orders of magnitude more RAM than conventional
workstations. Big time nodes are not. Except when executions can be massively parallelized,
supercomputers aren’t much faster than high-end laptops.

Although GP inference and prediction (5.2)–(5.3) more prominently feature inverses Σ−1
n ,

it’s actually determinants |Σn| that impose the real bottleneck. Both are involved in MVN
density/likelihood evaluations. Conditional on hyperparameters, only Σ−1

n is required. A
clever implementation could solve the requisite system of equations for prediction, e.g.,
Σ−1
n Yn for the mean and Σ−1

n Σ(Xn, x) for the variance, without explicitly calculating an
inverse. Parallelization over elements of x ∈ X , extending to Σ−1

n Σ(Xn,X ), is rather trivial.
All that sounds sensible and actionable, but actually it’s little more than trivia. Knowing
good hyperparameters (without access to the likelihood) is “rare” to say the least. Let’s
presume likelihood-based inference is essential and not pursue that line of thinking further.
Full matrix decomposition is required.

Most folks would agree that Cholesky decomposition1, leveraging symmetry in distance-based
Σn, offers the best path forward.2 The Cholesky can furnish both inverse and determinant
in O(n3) time, and in some cases even faster depending on the libraries used. Divide-and-
conquer parallelization also helps on multi-core architectures. I strongly recommend Intel
MKL3 which is the workhorse behind Microsoft R Open4 on Linux and Windows, and the
Accelerate Framework5 on OSX. Both provide conventional BLAS6/LAPACK7 interfaces
with modern implementations and customizations under the hood. An example of the
potential with GP regression is provided in Appendix A. As explained therein, OpenBLAS8

is not recommended in this context because of thread safety issues which become relevant in
nested, and further parallelized application (e.g., §9.3).

Ok, that’s enough preamble on cumbersome calculations. Computational complexity is one
barrier; flexibility is another. Stationarity of covariance is a nice simplifying assumption, but

1https://en.wikipedia.org/wiki/Cholesky_decomposition
2LU decomposition is also popular. See, e.g., Ambikasaran et al. (2015).
3https://software.intel.com/en-us/articles/using-intel-mkl-with-r
4https://mran.microsoft.com/open
5https://developer.apple.com/documentation/accelerate
6https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
7https://en.wikipedia.org/wiki/LAPACK
8https://www.openblas.net/
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it’s not appropriate for all data generating mechanisms. There are many ways data can be
nonstationary. The LGBB rocket booster (see §2.1), whose simulations are deterministic,
exhibits mean nonstationarity along with rather abrupt regime changes from steep to flat
dynamics. When data/simulations are noisy, variance nonstationarity or heteroskedasticity
may be a concern: noise levels which are input-dependent. Changes in either may be smooth
or abrupt. GPs don’t cope well in such settings, at least not in their standard form. Enhancing
fidelity in GP modeling, to address issues like mean and variance nonstationarity, is easy
in theory: just choose a nonstationary kernel. In practice it’s harder than that. What
nonstationary kernel? What happens when regimes change and dynamics aren’t smooth?

Often the two issues, speed and flexibility, are coupled together. Coherent high-fidelity
GP modeling schemes have been proposed, but in that literature there’s a tendency to
exacerbate computational bottlenecks. Coupling processes together, for example to warp
a nonstationary surface into one wherein simpler stationary dynamics reign (e.g., Schmidt
and O’Hagan, 2003; Sampson and Guttorp, 1992) adds layers of additional computational
complexity and/or requires MCMC. Consequently, such methods have only been applied on
small data by modern standards. Yet observing complicated dynamics demands rich and
numerous examples, putting data collection at odds with modeling goals. In a computer
surrogate modeling context, where design and modeling go hand in hand, this state of
affairs is particularly limiting. Surrogates must be flexible enough to drive sequential design
acquisitions towards efficient learning, but computationally thrifty enough to solve underlying
decision problems in time far less than it would take to run the actual simulations – a
hallmark of a useful surrogate (§1.2.2).

This chapter focuses on GP methods which address those two issues, computational thrift
and modeling fidelity, simultaneously. GPs can only be brought to bear on modern big data
problems in statistics and machine learning (ML) by somehow skirting full dense matrix
decomposition. There are lots of creative ways of doing that, some explicitly creating sparse
matrices, some implicitly. Approximation is a given. A not unbiased selection of examples
and references is listed below.

• Pseudo-inputs (Snelson and Ghahramani, 2006) or the predictive process (PP; Banerjee
et al., 2008); both examples of methods based on inducing points

• Iterating over batches (Haaland and Qian, 2011) and sequential updating (Gramacy and
Polson, 2011)

• Fixed rank kriging (Cressie and Johannesson, 2008)
• Compactly supported covariances and fast sparse linear algebra (Kaufman et al., 2011;

Sang and Huang, 2012)
• Partition models (Gramacy and Lee, 2008a; Kim et al., 2005)
• Composite likelihood (Eidsvik et al., 2014)
• Local neighborhoods (Emery, 2009; Gramacy and Apley, 2015)

The literature on nonstationary modeling is more niche, although growing. Only a couple of
the ideas listed above offer promise in the face of both computational and modeling challenges.
This will dramatically narrow the scope of our presentation, as will the accessibility of public
implementation in software.

There are a few underlying themes present in each of the approaches above: inducing points,
sparse matrices, partitioning, and approximation. In fact all four can be seen as mechanisms
for inducing sparsity in covariance. But they differ in how they leverage that sparsity to
speed up calculations, and in how they offer scope for enhanced fidelity. It’s worth noting
that you can’t just truncate as a means of inducing sparsity. Rounding small entries Σijn to
zero will almost certainly destroy positive definiteness.
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We begin in this chapter by illustrating a distance-based kernel which guarantees both
sparsity and positive definiteness, however as a device that technique underwhelms. Sparse
kernels compromise on long-range structure without gaining enhanced local modeling fidelity.
Calculations speed up, but accuracy goes down despite valiant efforts to patch up long-range
effects.

We then turn instead to implicit sparsity via partitioning and divide-and-conquer. These
approaches, separately leveraging two key ideas from computer science – tree data structures
on the one hand and transductive learning on the other – offer more control on speed
versus accuracy fronts, which we shall see are not always at odds. The downside however is
potential lack of smoothness and continuity. Although GPs are famous for their gracefully
flowing surfaces and sausage-shaped error-bars, there are many good reasons to eschew that
aesthetic when data get large and when mean and variance dynamics may change abruptly.

Finally, Chapter 10 focuses explicitly on variance nonstationarity, or input dependent noise,
and low-signal scenarios. Stochastic simulations represent a rapidly growing sub-discipline of
computer experiments. In that context, and when response surfaces are essential, tightly
coupled active learning and GP modeling strategies (not unlike the warping ideas dismissed
above) are quite effective thanks to a simple linear algebra trick, and generous application
of replication as a tried and true design strategy for separating signal from noise.

9.1 Compactly supported kernels

A kernel krmax(r) is said to have compact support if krmax(r) = 0 when r > rmax. Recall from
§5.3.3 that r = |x− x′| for a stationary covariance. We may still proceed component-wise
with rj = |xj − x′j | and rj,max for a separable compactly supported kernel, augment with
scales for amplitude adjustments, nuggets for noisy data and embellish with smoothness
parameters (Matèrn), etc. Rate of decay of correlation can be managed by lengthscale
hyperparameters, a topic we shall return to shortly.

A compactly supported kernel (CSK) introduces zeros into the covariance matrix, so sparse
matrix methods may be deployed to aid in computations, both in terms of economizing on
storage and more efficient decomposition for inverses and determinants. Recall from §5.3.3
that a product of two kernels is a kernel, so a good way to build a bespoke CSK with certain
properties is to take a kernel with those properties and multiply it by a CSK – an example
of covariance tapering (Furrer et al., 2006).

Two families of CSKs, Bohman and truncated power, offer decent approximations to the
power exponential family (§5.3.3), of which the Gaussian (power α = 2) is a special case.
These kernels are zero for r > rmax, and for r ≤ rmax:

kB
rmax

(r) =
(

1− r

rmax

)
cos
(
πr

rmax

)
+ 1
π

sin
(
πr

rmax

)
ktp
rmax

(r;α, ν) = [1− (r/rmax)α]ν , where 0 < α < 2 and ν ≥ νm(α).

The function νm(α) in the definition of the truncated power kernel represents a restriction
necessary to ensure a valid correlation in m dimensions, with limα→2 νm(α) =∞. Although
it’s difficult to calculate νm(α) directly, there are known upper bounds for a variety of
α-values between 1.5 and 1.955, e.g., v1(3/2) ≤ 2 and v1(5/3) ≤ 3. Chapter 9 of Wendland
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(2004) provides several other common CSKs. The presentation here closely follows Kaufman
et al. (2011), concentrating on the simpler Bohman family as a representative case.

Bohman CSKs yield a mean-square differentiable process, whereas the truncated power family
does not (unless α = 2). Notice that rmax plays a dual role, controlling both lengthscale
and degree of sparsity. Augmenting with explicit lengthscales, i.e., rθ = r/

√
θ, enhances

flexibility but at the expense of identifiability and computational concerns. Since CSKs are
chosen over other kernels with computational thrift in mind, fine-tuning lengthscales often
takes a back seat.

9.1.1 Working with CSKs

Let’s implement the Bohman CSK and kick the tires.

kB <- function(r, rmax)
{
rnorm <- r/rmax
k <- (1 - rnorm)*cos(pi*rnorm) + sin(pi*rnorm)/pi
k <- k*(r < rmax)
}

To have some distances to work with, the code below calculates a rather large 2000× 2000
distance matrix based on a dense grid in [0, 10].

library(plgp)
X <- matrix(seq(0, 10, length=2000), ncol=1)
D <- distance(X)

We can then feed these distances into kBrmax
(·) and check for sparsity under several choices

of rmax. Careful: kB is defined for ordinary, rather than squared, pairwise distances. For
comparison, an ordinary/dense Gaussian covariance is calculated and saved as K.

eps <- sqrt(.Machine$double.eps) ## numerical stability
K <- exp(-D) + diag(eps, nrow(D))
K2 <- kB(sqrt(D), 2)
K1 <- kB(sqrt(D), 1)
K025 <- kB(sqrt(D), 0.25)
c(mean(K > 0), mean(K2 > 0), mean(K1 > 0), mean(K025 > 0))

## [1] 1.00000 0.35960 0.18955 0.04889

Indeed, as rmax is decreased, the proportion of nonzero entries decreases. Observe that
Bohman-based correlation matrices do not require jitter along the diagonal. Like Matèrn,
Bohman CSKs provide well-conditioned correlation matrices.

Investigating the extent to which those levels of sparsity translate into computational savings
requires investing in a sparse matrix library e.g., spam (Furrer, 2018) or Matrix (Bates and
Maechler, 2019). Below I choose Matrix as it’s built-in to base R, however CSK-GP fitting
software illustrated later uses spam.
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library(Matrix)
c(system.time(chol(K))[3],

system.time(chol(Matrix(K2, sparse=TRUE)))[3],
system.time(chol(Matrix(K1, sparse=TRUE)))[3],
system.time(chol(Matrix(K025, sparse=TRUE)))[3])

## elapsed elapsed elapsed elapsed
## 1.002 0.267 0.115 0.061

As you can see, small rmax holds the potential for more than an order of magnitude
speedup. Further improvements may be possible if the matrix can be built natively in sparse
representation. So where is the catch? Such (speed) gains must come at a cost (to modeling
and inference). We want to encourage sparsity because that means speed, but getting enough
sparsity requires lots of zeros, and that means sacrificing long range spatial correlation. If
local modeling is sufficient, then why bother with a global model? In §9.3 we’ll do just
that: eschew global modeling all together. For now, let’s explore the cost–benefit trade-off
with CSK and potential for mitigating compromises on predictive quality and uncertainty
quantification (UQ) potential.

Consider a simple 1d random process, observed on a grid.

x <- c(1, 2, 4, 5, 6, 8, 9, 10)/11
n <- length(x)
D <- distance(as.matrix(x))
K <- exp(-5*sqrt(D)^1.5) + diag(eps, n)
library(mvtnorm)
y <- t(rmvnorm(1, sigma=K))

Here are predictions gathered on a dense testing grid in the input space from the “ideal fit”
to that data, using an ordinary GP conditioned on known hyperparameterization. (It’s been
a while – way back in Chapter 5 – since we entertained such calculations by hand.)

xx <- seq(0, 1, length=100)
DX <- distance(as.matrix(x), as.matrix(xx))
KX <- exp(-5*sqrt(DX)^1.5)
Ki <- solve(K)
m <- t(KX) %*% Ki %*% y
Sigma <- diag(1+eps, ncol(KX)) - t(KX) %*% Ki %*% KX
q1 <- qnorm(0.05, m, sqrt(diag(Sigma)))
q2 <- qnorm(0.95, m, sqrt(diag(Sigma)))

Before offering a visual, consider the analog of those calculations with a Bohman CSK using
rmax = 0.1.

K01 <- kB(sqrt(D), 0.1)
KX01 <- kB(sqrt(DX), 0.1)
Ki01 <- solve(K01)
m01 <- t(KX01) %*% Ki01 %*% y
tau2 <- drop(t(y) %*% Ki01 %*% y)/n
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Sigma01 <- tau2*(1 - t(KX01) %*% Ki01 %*% KX01)
q101 <- qnorm(0.05, m01, sqrt(diag(Sigma01)))
q201 <- qnorm(0.95, m01, sqrt(diag(Sigma01)))

Figure 9.1 shows the randomly generated training data and our two GP surrogate fits. “Full”,
non-CSK, predictive summaries are shown in black, with a solid line for means and dashed
lines for 90% quantiles. Red lines are used for the CSK analog.

plot(x, y, xlim=c(0, 1.3), ylim=range(q101, q201))
lines(xx, m)
lines(xx, q1, lty=2)
lines(xx, q2, lty=2)
lines(xx, m01, col=2)
lines(xx, q101, col=2, lty=2)
lines(xx, q201, col=2, lty=2)
legend("topright", c("full", "CSK"), lty=1, col=1:2, bty="n")
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FIGURE 9.1: Predictions under CSK compared to the ideal full GP.

Relative to the ideal baseline, Bohman CSK predictions are too wiggly in the mean and too
wide in terms of uncertainty. Predictive means are off because aggregation transpires in a
narrower window. Variance is larger simply because sparse K leads to larger K−1. Evidently,
inducing sparsity can have deleterious effects on GP prediction equations. What can be
done?

9.1.2 Sharing load between mean and variance

A key idea in Kaufman et al. (2011) is to “mop up” long range non-linearity with rich mean
structure, leaving a residual that may be modeled by shorter-range (sparse) correlations,
via CSKs. In the GP surrogate modeling landscape, where mean-zero processes are the
default, this represents somewhat of a paradigm shift. In ML and geostatistics, non-zero
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mean modeling is more common however simple linear means are the norm. Shifting more of
the burden of modeling from covariance to mean is clever because it taps an underutilized
resource. There are, of course, many ways that idea could be operationalized. Recall, e.g.,
that there are covariance kernels that can implement linear means (§5.3.3). Kaufman’s
partition of focus, shifting between mean and variance, is therefore somewhat arbitrary. Yet
human capacity to intuit statistical modeling dynamics generally favors locations over scales.

One alternative that’s similar to Kaufman’s idea in spirit, but different in form, is full-scale
approximation (FSA; Sang and Huang, 2012). FSA partitions effort between two spatial
processes: a predictive process (PP; Banerjee et al., 2008; Finley et al., 2009) for long range
dependence, and a CSK for short-range spatial correlations. To establish a conceptual link
between Kaufman and FSA, imagine the PP mapping to a nonparametric (nonlinear) mean
structure. That analogy is imperfect because PPs are covariance-centric. Inference remains
tractable because PPs emit a reduced rank approximation whose covariance structure can
be decomposed quickly through the Sherman–Morrison–Woodbury identity9, circumventing
O(n3) matrix manipulation.

A downside to FSA is that implementing PP requires inferring a potentially large set of
reference knots whose desired number, and subsequent inference, may become unwieldy as
input dimension gets large. Many of the geo-spatial applications targeted by FSA/PP are
two-dimensional, where they have enjoyed considerable success in large-n settings. While
there are no fundamental or theoretical barriers to applying FSA more widely, e.g., to
address larger input spaces more common in computer experiments and ML, I’m unaware of
any successful ports to surrogate modeling. Pseudo inputs (Snelson and Ghahramani, 2006),
an ML take on PPs, have been applied more widely, but to my knowledge they have not
been combined with CSK or an FSA-style analysis.

Kaufman’s rich-mean/CSK hybrid more squarely targets modestly higher-dimensional com-
puter surrogate modeling contexts. For that reason, the narrative here focuses on that
approach. You may recall from a homework problem in §5.5 that augmenting GPs with
unknown linear mean structure can be accommodated analytically: closed-form expressions
concentrate out – i.e., marginalize in the Bayesian setting, or replace with MLE for profile
likelihoods – unknown regression coefficients, even ones derived from rather large nonlinear
bases. The result is an inferential procedure demanding time in O(n(n2

sparse) + p3) where
nsparse is the average number of non-zero entries in a row of a CSK matrix, and p is the size
of the basis encoding the mean.

There are many reasonable families of bases to choose from. Kaufman et al. found that
Legendre polynomials10 work well. The presentation below reverse engineers some of the
computational details from their setup, which is packaged together in an R library called
SparseEm (for sparse emulation) that can be downloaded from Cari Kaufman’s web page11.

library(SparseEm)

Unfortunately, Cari’s version fails to install in more modern R environments. I’ve provided
a slightly modified version12 which is more up-to-date in terms of package structure, and
should install for most Rs. Code below creates a degree four Legendre polynomial basis over
training x values used by the simple 1d example in Figure 9.1.

9https://en.wikipedia.org/wiki/Sherman-Morrison_formula
10https://en.wikipedia.org/wiki/Legendre_polynomials
11https://www.stat.berkeley.edu/~cgk/rcode/index.html
12http://bobby.gramacy.com/surrogates/SparseEm_0.2-2.tar.gz

https://en.wikipedia.org/wiki/Sherman-Morrison_formula
https://en.wikipedia.org/wiki/Legendre_polynomials
https://www.stat.berkeley.edu/~cgk/rcode/index.html
http://bobby.gramacy.com/surrogates/SparseEm_0.2-2.tar.gz
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leg01 <- legFun(0, 1)
degree <- 4
X <- leg01(x, terms=polySet(1, degree, 2, degree))
colnames(X) <- paste0("l", 0:(ncol(X) - 1))
X <- data.frame(X)
X

## l0 l1 l2 l3 l4
## 1 1 -1.4171 1.1273 -0.3757 -0.5243
## 2 1 -1.1022 0.2402 0.8210 -1.2784
## 3 1 -0.4724 -0.8686 0.9482 0.3608
## 4 1 -0.1575 -1.0903 0.3558 1.0329
## 5 1 0.1575 -1.0903 -0.3558 1.0329
## 6 1 0.7873 -0.4250 -1.1827 -0.6391
## 7 1 1.1022 0.2402 -0.8210 -1.2784
## 8 1 1.4171 1.1273 0.3757 -0.5243

First, let’s see how well this basis works on its own, i.e., in a linear regression with iid noise
structure (no GP). Notice that leg01 generates its own intercept column.

lfit <- lm(y ~ . -1, data=X)

This leg01 basis must also be evaluated on the xx testing grid before it can be fed into
predict.lm.

XX <- leg01(xx, terms=polySet(1, degree, 2, degree))
colnames(XX) <- paste0("l", 0:(ncol(X) - 1))
p <- predict(lfit, newdata=data.frame(XX), interval="prediction", level=0.9)

Figure 9.2 augments Figure 9.1. Perhaps with all those lines the plot is a bit busy. Yet it’s
plain to see that the new leg01 fit, using lm on a Legendre basis, offers a better fit than
CSK, but perhaps not as good as the ideal full GP fit.

plot(x, y, xlim=c(0, 1.35), ylim=range(q101, q201, p[,2], p[,3]))
lines(xx, m)
lines(xx, q1, lty=2)
lines(xx, q2, lty=2)
lines(xx, m01, col=2)
lines(xx, q101, col=2, lty=2)
lines(xx, q201, col=2, lty=2)
lines(xx, p[,1], col=3)
lines(xx, p[,2], col=3, lty=2)
lines(xx, p[,3], col=3, lty=2)
legend("topright", c("full", "CSK", "leg01"), lty=1, col=1:3, bty="n")

The linear/Legendre predictive surface is over-smooth, and consequently its error-bars are
everywhere too large compared to ideal. Independent error modeling is a mismatch to our
data generating mechanism, being used here to exemplify inherently deterministic computer
model simulation. CSK’s error-bars can be even wider, but that surface still interpolates due
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FIGURE 9.2: Legendre-basis linear prediction versus CSK and the ideal GP from Figure
9.1.

to its nugget-free inverse distance-based covariance structure. It may be worth repeating this
example in your own R session to observe a diversity of behaviors across data realizations
and subsequent fits. You might also try higher degree Legendre bases (5 or 6, say).

Separately, neither Legendre basis nor CSK are on par with the ideal full GP, but how about
together? As a quick illustration of potential, with a more coherent and Bayesian hybrid on
the horizon, consider applying CSK on residuals from Legendre basis-derived fitted values.

m2 <- t(KX01) %*% Ki01 %*% lfit$resid
tau22 <- drop(t(lfit$resid) %*% Ki01 %*% lfit$resid)/n
Sigma2 <- tau22*(1 - t(KX01) %*% Ki01 %*% KX01)

Now consider predictive summaries formed by combining Legendre basis means with CSK
covariances. Uncertainties are not properly managed in this hybrid, but my aim is simply to
illustrate potential.

m2 <- p[,1] + m2
q12 <- qnorm(0.05, m2, sqrt(diag(Sigma2)))
q22 <- qnorm(0.95, m2, sqrt(diag(Sigma2)))

Figure 9.3 shows the resulting predictive surface. In place of green Legendre lines and red
CSK lines, blue hybrid lines show how Legendre–CSK predictions compare to the ideal GP
fit from earlier.

plot(x, y, xlim=c(0, 1.35), ylim=range(q1, q2, q12, q22))
lines(xx,m)
lines(xx, q1, lty=2)
lines(xx, q2, lty=2)
lines(xx, m2, col=4)
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lines(xx, q12, col=4,lty=2)
lines(xx, q22, col=4,lty=2)
legend("topright", c("full", "hybrid"), lty=1, col=c(1,4), bty="n")

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

x

y

full
hybrid

FIGURE 9.3: Comparing hybrid Legendre basis/CSK covariance to the ideal GP.

Although the two surfaces are not identical, they’re indeed very similar. Combining a
Legendre basis-expanded linear mean with CSK structure on residuals does an excellent
job of mimicking an ideal GP fit, at least on this very simple example. Observe that the
hybrid predictive surface interpolates. It bears repeating that this illustration doesn’t provide
full UQ. In particular, we used only the mean of the Legendre basis fit p[,1], ignoring
uncertainty stored in p[,2:3]. So our fitted error-bars should actually be even wider. At the
same time, we cheated by using true values of the correlation function in our ideal GP fit as
plug-ins. So our benchmark is similarly too good to be true. Finally, we didn’t estimate the
CSK range parameter rmax; the only hyperparameter fit from data was scale τ̂2 . . .

c(ideal=tau2, CSKresid=tau22)

## ideal CSKresid
## 0.73559 0.01439

. . . which is (reasonably) lower for the residual process, compared to the original.

9.1.3 Practical Bayesian inference and UQ

Kaufman et al. argue that the simplest, coherent way to put this hybrid together, and fully
account for all relevant uncertainties in prediction while retaining a handle on trade-offs
between computational complexity and accuracy (though CSK sparsity), is with Bayesian
hierarchical modeling. They describe a prior linking together separable rmax,j hyperparame-
ters, for each input dimension j. That prior encourages coordinates to trade-off against one
another – competing in a manner not unlike in L1 penalization for linear regression using



9.1 Compactly supported kernels 389

lasso13 – to produce a covariance matrix with a desired degree of sparsity. That is, some
directions yield zero correlations faster than others as a function of coordinate-wise distance.
Specifically, Kaufman et al. recommend

rmax uniform in RC =

rmax ∈ Rd : rmax,j ≥ 0,
d∑
j=1

rmax,j ≤ C

 . (9.1)

Said another way, this penalty allows some rmax,j to be large to reflect a high degree of
correlation in particular input directions, shifting the burden of sparsity to other coordinates.
Parameter C determines the level of sparsity in the resulting MVN correlation matrix.

That prior on rmax is then paired with the usual reference priors for scale τ2 and regression
coefficients β through the Legendre basis. Conditional on rmax, calculations similar to those
required for an exercise in §5.5, analytically integrating out τ2 and β, yield closed form
expressions for the marginal posterior density. For details, see, e.g., Appendix A of Gramacy
(2005). Inference for rmax and any other kernel hyperparameters may then be carried out
with a conventional mixture of Metropolis and Gibbs sampling steps.

It remains to choose a C yielding enough sparsity for tractable calculation given data sizes
present in the problem on hand. Kaufman et al. produced a map, which I shall not duplicate
here, relating degree of sparsity to computation time for various data sizes, n. That map
helps mitigate search efforts, modulo computing architecture nuances, toward identifying
C yielding a specified degree of sparsity. Perhaps more practically, they further provide a
numerical procedure which estimates the value of C required, after fixing all other choices
for priors and their hyperparameters. I shall illustrate that pre-processing step momentarily.

As one final detail, Kaufman et al. recommend Legendre polynomials up to degree 5 in a
“tensor product” form for their motivating cosmology example, including all main effects, and
all two-variable interactions in which the sum of the maximum exponent in each interacting
variable is constrained to be less than or equal to five. However, in their simpler coded
benchmark example14, which we shall borrow for our illustration below, it would appear
they prefer degree 2.

Borehole example

Consider the borehole data15, which is a classic synthetic computer simulation example
(Morris et al., 1993), originally described by Worley (1987). It’s a function of eight inputs,
modeling water flow through a borehole.

y = 2πTu[Hu −Hl]
log
(
r
rw

) [
1 + 2LTu

log(r/rw)r2
wKw

+ Tu
Tl

] .
Input ranges are

rw ∈ [0.05, 0.15] r ∈ [100, 5000] Tu ∈ [63070, 115600]
Tl ∈ [63.1, 116] Hu ∈ [990, 1110] Hl ∈ [700, 820]
L ∈ [1120, 1680] Kw ∈ [9855, 12045].

13https://en.wikipedia.org/wiki/Lasso_(statistics)
14https://www.stat.berkeley.edu/~cgk/rcode/assets/SparseEmExample.R
15https://www.sfu.ca/~ssurjano/borehole.html

https://en.wikipedia.org/wiki/Lasso_(statistics)
https://www.stat.berkeley.edu/~cgk/rcode/assets/SparseEmExample.R
https://www.sfu.ca/~ssurjano/borehole.html
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The function below provides an implementation in coded inputs.

borehole <- function(x)
{
rw <- x[1]*(0.15 - 0.05) + 0.05
r <- x[2]*(50000 - 100) + 100
Tu <- x[3]*(115600 - 63070) + 63070
Hu <- x[4]*(1110 - 990) + 990
Tl <- x[5]*(116 - 63.1) + 63.1
Hl <- x[6]*(820 - 700) + 700
L <- x[7]*(1680 - 1120) + 1120
Kw <- x[8]*(12045 - 9855) + 9855
m1 <- 2*pi*Tu*(Hu - Hl)
m2 <- log(r/rw)
m3 <- 1 + 2*L*Tu/(m2*rw^2*Kw) + Tu/Tl
return(m1/m2/m3)
}

Consider the following Latin hypercube sample (LHS; §4.1) training and testing partition a
la Algorithm 4.1.

n <- 4000
nn <- 500
m <- 8
library(lhs)
x <- randomLHS(n + nn, m)
y <- apply(x, 1, borehole)
X <- x[1:n,]
Y <- y[1:n]
XX <- x[-(1:n),]
YY <- y[-(1:n)]

Observe that the problem here is bigger than any we’ve entertained so far in this text. However
it’s worth noting that n = 4000 is not too big for conventional GPs. Following from Kaufman’s
example, we shall provide a full GP below which (in being fully Bayesian and leveraging a
Legendre basis-expanded mean) offers a commensurate look for the purpose of benchmarking
computational demands. Yet Appendix A illustrates a thriftier GP implementation leveraging
the MKL library which can handle more than n = 10000 training data points on this very
same borehole problem. But that compares apples with oranges. Therefore we shall press on
with the example, whose primary role – by the time the chapter is finished – will anyway
be to serve as a straw man against more recent advances in the realm of local–global GP
approximation.

The first step is to find the value of C that provides a desired level of sparsity. I chose 99%
sparse through an argument den specifying density as the opposite of sparsity.

C <- find.tau(den=1 - 0.99, dim=ncol(x))*ncol(X)
C

## [1] 2.708
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Next, R code below sets up a degree-two Legendre basis with all two-variable interactions,
and then collects two thousand samples from the posterior. Compute time is saved for later
comparison. Warnings that occasionally come from spam, when challenges arise in solving
sparse linear systems, are suppressed in order to keep the document clean.

D <- I <- 2
B <- 2000
tic <- proc.time()[3]
suppressWarnings({
samps99 <- mcmc.sparse(Y, X, mc=C, degree=D, maxint=I,
B=B, verbose=FALSE)

})
time99 <- as.numeric(proc.time()[3] - tic)

Output samps99 is a B × d matrix storing rmax,j samples from the posterior distribution
for each input coordinate, j = 1, . . . , d. Trace plots for these samples are shown in Figure
9.4. The left panel presents each rmax,j marginally; on the right is their aggregate as in
the definition of RC (9.1). Observe how that aggregate bounces up against the estimated
C-value of 2.71. Even with Legendre basis mopping up a degree of global nonlinearity, the
posterior distribution over rmax,j wants to be as dense as possible in order to capture spatial
correlations at larger distances. A low C-value is forcing coordinates to trade off against one
another in order to induce the desired degree of sparsity.

par(mfrow=c(1,2))
matplot(samps99, type="l", xlab="iter")
plot(rowSums(samps99), type="l", xlab="iter", ylab="Rc")
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FIGURE 9.4: Trace plots of rmax,j (left) and their aggregate
∑
j rmax,j (right).

Both trace plots indicate convergence of the Markov chain after five hundred or so iterations
followed by adequate – certainly not excellent – mixing. Marginal effective sample size
calculations indicate that very few “equivalently independent” samples have been obtained
from the posterior, however this could be improved with a longer chain.
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library(coda)
burnin <- 500
apply(samps99[-(1:burnin),], 2, effectiveSize)

## [1] 1.925 1.932 2.013 2.762 2.142 4.139 3.686 1.632

Considering that it has already taken 41 minutes to gather these two thousand samples, it
may not be worth spending more time to get a bigger collection for this simple example.
(We’ll need even more time to convert those samples into predictions.)

time99/60

## [1] 40.72

Instead, perhaps let me encourage the curious reader to explore longer chains offline. Pushing
on, the next step is to convert those hyperparameters into posterior predictive samples on a
testing set. Below, discard the first five hundred iterations as burn-in, then save subsamples
of predictive evaluations from every tenth iteration thereafter.

index <- seq(burnin+1, B, by=10)
tic <- proc.time()[3]
suppressWarnings({
p99 <- pred.sparse(samps99[index,], X, Y, XX, degree=D,
maxint=I, verbose=FALSE)

})
time99 <- as.numeric(time99 + proc.time()[3] - tic)
time99/60

## [1] 49.09

The extra work required to make this conversion depends upon the density of the predictive
grid, XX. In this particular case it doesn’t add substantially to the total compute time,
which now totals 49 minutes. The keen reader will notice that we didn’t factor in time to
calculate C with find.tau above. Relative to other calculations, this represents a rather
small, fixed-cost pre-processing step.

Before assessing the quality of these predictions, consider a couple alternatives to compare
to. Kaufman et al. provide a non-sparse version, that otherwise works identically, primarily
for timing and accuracy comparisons. That way we’ll be comparing apples to apples, at least
in terms of inferential apparatus, when it comes to computation time. Working with dense
covariance matrices in this context is really slow. Therefore, the code below collects an order
of magnitude fewer MCMC samples from the posterior. (Sampling and predictive stages are
combined.) Again, I encourage the curious reader to gather more for a fairer comparison.

tic <- proc.time()[3]
suppressWarnings({
samps0 <- mcmc.nonsparse(Y, X, B=B/3, verbose=FALSE)

})
index <- seq(burnin/3 + 1, B/3, by=10)
suppressWarnings({
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p0 <- pred.nonsparse(samps0[index,], X, Y, XX, 2, verbose=FALSE)
})
time0 <- as.numeric(proc.time()[3] - tic)

As illustrated in Figure 9.5, 667 samples are not nearly sufficient to be confident about
convergence. Admittedly, I’m not sure why the mixing here seems so much worse than in
the CSK analog. It may have been that Kaufman didn’t put as much effort into fine-tuning
this straw man relative to their showcase methodology.

matplot(samps0, type="l", xlab="iter")
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FIGURE 9.5: Trace plot of lengthscales under the full (non CSK) GP posterior; compare
to the left panel of Figure 9.4.

Considering the amount of time it took to get as many samples as we did, we’ll have to be
content with extrapolating a bit to make a proper timing comparison.

time0/60

## [1] 51.12

Gathering the same number of samples as in the 99% sparse CSK case would’ve required
more than 2 hours of total compute time. For a comparison on accuracy grounds, consider
pointwise proper scores via Eq. (27) from Gneiting and Raftery (2007). Also see §8.1.4.
Higher scores are better.

scorep <- function(YY, mu, s2) { mean(-(mu - YY)^2/s2 - log(s2)) }
scores <- c(sparse99=scorep(YY, p99$mean, p99$var),
dense=scorep(YY, p0$mean, p0$var))

scores

## sparse99 dense
## -1.918 -6.966
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CSK is both faster and more accurate on this example. It’s reasonable to speculate that
the dense/ordinary GP results could be improved with better MCMC. Perhaps MCMC
proposals, tuned to work well for short rmax,j on residuals obtained from a rich Legendre
basis, work rather less well for ordinary lengthscales θj applied directly on the main process.
In §9.3.4 we’ll show how a full GP under MLE hyperparameters can be quite accurate on
these data.

To add one final comparator into the mix, let’s see how much faster and how much less
accurate a 99.9% sparse version is. Essentially cutting and pasting from above . . .

C <- find.tau(den=1 - 0.999, dim=ncol(x))*ncol(x)
tic <- proc.time()[3]
suppressWarnings({
samps999 <- mcmc.sparse(Y, X, mc=C, degree=D, maxint=I,
B=B, verbose=FALSE)

})
index <- seq(burnin+1, B, by=10)
suppressWarnings({
p999 <- pred.sparse(samps999[index,], X, Y, XX, degree=D,
maxint=I, verbose=FALSE)

})
time999 <- as.numeric(proc.time()[3] - tic)

In terms of computing time, the 99.9% sparse version is almost an order of magnitude faster.

times <- c(sparse99=time99, dense=time0, sparse999=time999)
times

## sparse99 dense sparse999
## 2945.4 3066.9 351.7

In terms of accuracy, it’s just a little bit worse than the 99% analog and much better than
the slow and poorly mixing full GP.

scores <- c(scores, sparse999=scorep(YY, p999$mean, p999$var))
scores

## sparse99 dense sparse999
## -1.918 -6.966 -2.105

To summarize this segment on CSKs, consider the following notes. Sparse covariance matrices
decompose faster compared to their dense analogs, but the gap in execution time is only
impressive when matrices are very sparse. In that context, intervention is essential to mop
up long-range structure left unattended by all those zeros. A solution entails hybridization
between processes targeting long- and short-distance correlation. Kaufman et al. utilize a
rich mean structure; Sang and Huang’s FSA stays covariance-centric. Either way, both agree
that Bayesian posterior sampling is essential to average over competing explanations. We
have seen that the MCMC required can be cumbersome: long chains “eat up” computational
savings offered by sparsity. Nevertheless, both camps offer dramatic success stories. For
example, Kaufman fit a surrogate to more than twenty thousand runs of a photometric
redshift simulation – a cosmology example – in four input dimensions, and predict with full
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UQ at more then eighty thousand sites. Results are highly accurate, and computation time
is reasonable.

One big downside to these ideas, at least in the context of our motivation for this chapter,
is that neither approach addresses nonstationarity head on. Computational demands are
eased, somewhat, but modeling fidelity has not been substantially increased. I qualify
with “substantially” because the introduction of a basis-expanded mean does hold the
potential to enhance even though it was conceived to compensate. Polynomial bases, when
dramatically expanded both by location and degree, do offer a degree of nonstationary
flexibility. Smoothing splines16 are a perfect example; also see the splines supplement17. But
such techniques break down computationally when input dimension is greater than two.
Exponentially many more knots are required as input dimension grows. A more deliberate
and nonparametric approach to obtaining local variation in a global landscape could represent
an attractive alternative.

9.2 Partition models and regression trees

Another way to induce sparsity in the covariance structure is to partition the input space
into independent regions, and fit separate surrogates therein. The resulting covariance
matrix is block-diagonal after row–column reordering. In fact, you might say it’s implicitly
block-diagonal because it’d be foolish to actually build such a matrix. In fact, even “thinking”
about the covariance structure on a global scale, after partitioning into multiple local models,
can be a hindrance to efficient inference and effective implementation.

The trouble is, it’s hard to know just how to split things up. Divide-and-conquer is almost
always an effective strategy computationally. But dividing haphazardly can make conquering
hard. When statistical modeling, it’s often sensible to let the data decide. Once we’ve figured
that out – i.e., how to let data say how it “wants” to be partitioned for independent modeling
– many inferential and computational details naturally suggest themselves.

One happy consequence of partitioning, especially when splitting is spatial in nature, is a
cheap nonstationary modeling mechanism. Independent latent processes and hyperparame-
terizations, thinking particularly about fitting GP surrogates to each partition element, kills
two birds with one stone: 1) disparate spatial dynamics across the input space; 2) smaller
matrices to decompose for faster local inference and prediction. The downside is that all
bets for continuity are off. That “bug” could be a “feature”, e.g., if the data generating
mechanism is inherently discontinuous, which is not as uncommon as you might think. But
more often a scheme for smoothing, or averaging over all (likely) partitions is desired.

Easy to say, hard to do. I know of only two successful attempts involving GPs on partition
elements: 1) with Voronoi tessellations (Kim et al., 2005); 2) with trees (Gramacy and Lee,
2008a). In both cases, those references point to the original attempts. Other teams of authors
have subsequently refined and extended these ideas, but the underlying themes remain the
same. Software is a whole different ballgame; I know of only one package for R.

Tessellations are easy to characterize mathematically, but a nightmare computationally.
Trees are easy mathematically too, and much friendlier in implementation. Although no walk

16https://en.wikipedia.org/wiki/Smoothing_spline
17http://bobby.gramacy.com/surrogates/splines.html

https://en.wikipedia.org/wiki/Smoothing_spline
http://bobby.gramacy.com/surrogates/splines.html
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in the park, tree data structures are well developed from a software engineering perspective.
Translating tree data structures from their home world of computer science textbooks over
to statistical modeling is relatively straightforward, but as always the devil is in the details.

Figure 9.6 shows a partition tree T in two views. The left-hand drawing offers a graph view,
illustrating a tree with two internal, or splitting nodes, and three leaf or terminal nodes
without splits. Internal nodes are endowed with splitting criteria, which in this case refers
to conditional splits in a two-dimensional x-space. Internal nodes have two children, called
siblings. All nodes have a parent except the root, paradoxically situated at the top of the
tree.

FIGURE 9.6: Tree graph (left) and partition of a 2d input space (right). Borrowed from
Chipman et al. (2013) with many similar variations elsewhere; used with permission from
Wiley.

The right-hand drawing illustrates the recursive nature of those splits geographically in the
input space, creating an axis-aligned partition. A generic 2d input coordinate x would land
in one of the three leaf nodes, depending on the setting of its two coordinates x1 and x2.
Leaf node η(x) resides in the lower-left partition of the input space.

For statistical modeling, the idea is that recursive, axis-aligned, splits represent a simple yet
effective way to divvy up the input space X into independent predictive models for responses
y. Predictions ŷ(x) are dictated by tree structure, X and leaf model: historically, a simple
prediction rule tailored to the subset of data residing at each terminal node. My plan is to
showcase GPs at the leaves, but let’s take a step back first.

9.2.1 Divide-and-conquer regression

Use of trees in regression dates back to AID (automatic interaction detection) by Morgan
and Sonquist (1963). Classification and regression trees (CART; Breiman et al., 1984), a
suite of methods obtaining fitted partition trees, popularized the idea. The selling point was
that trees facilitate parsimonious divide-and-conquer, leading to flexible yet interpretable
modeling.

Fitting partition structure (depth, splits, etc.) isn’t easy, however. You need a leaf
model/prediction rule, goodness-of-fit criteria, and a search algorithm. And there are lots
of very good ways to make choices in that arena. In case it isn’t yet obvious, I prefer
likelihood whenever possible. Although other approaches are perhaps more common in
the trees literature, with as many/possibly more contributions from computer science as
statistics, likelihoods rule the roost as a default in modern statistics.
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Given a particular tree, T , the (marginal) likelihood factorizes into a product form.

p(yn | T , xn) ≡ p(y1, . . . , yn | T , x1, . . . , xn) =
∏
η∈LT

p(yη | xη)

Above, shorthand xn = x1, . . . , xn and yn = y1, . . . , yn represents the full dataset of n pairs
(x, y)n = {(xi, yi) : i = 1, . . . , n}. Analogously, superscript η represents those elements of
the data which fall into leaf node η. That is, (x, y)η = {(xi, yi) : xi ∈ η, i = 1, . . . , n}. The
product arises from independent modeling, and by indexing over all leaf nodes in T , η ∈ LT ,
we cover all indices i ∈ {1, . . . , n}. All that remains in order to complete the specification is
to choose a model for p(yη | xη) to apply at leaf nodes η.

Usually such models are specified parametrically, via θη, but calculations are simplified
substantially if those parameters can be integrated out. Hence the parenthetical “marginal”
above. The simplest leaf model for regression is the constant model with unknown mean
and variance θη = (µη, σ2

η):

p(yη | µη, σ2
η, x

η) ∝ σ−|η|η exp
{
− 1

2σ2
η

∑
y∈η(y − µη)2

}
so that p(yη | xη) = 1

(2π)
|η|−1

2

1√
|η|

(
s2
η

2

)− |η|−1
2

Γ
(
|η| − 1

2

)

upon taking reference prior p(µη, σ2
η) ∝ σ−2

η . Above, |η| is a count of the number of data
points in leaf node η, and s2

η ≡ σ̂2
η is the typical residual sum of squares from ȳη ≡ µ̂η.

Concentrated analogs, i.e., not committing to a Bayesian approach, are similar. However the
Bayesian view is natural from the perspective of coherent regularization.

Clearly some kind of penalty on complexity is needed for inference, otherwise marginal
likelihood is maximized when there’s one leaf for each observation. The original CART
family of methods relied on minimum leaf-size and other heuristics, paired with a cross
validation (CV) pruning stage commencing after greedily growing a deep tree. The fully
Bayesian approach, which is more recent, has a more natural feel to it although at the
expense of greater computation through MCMC. A silver lining, however, is that the Monte
Carlo can smooth over hard breaks and lend a degree of continuity to an inherently “jumpy”
predictive surface.

Completing the Bayesian specification requires a prior over trees, p(T ). There were two
papers, published at almost the same time, proposing a so-called Bayesian CART model,
or what is known as the Bayesian treed constant model in the regression (as opposed to
classification) context. Denison et al. (1998) were looking for a light touch, and put a Poisson
on the number of leaves, but otherwise specified a uniform prior over other aspects such as
tree depth. Chipman et al. (1998) called for a more intricate class of priors which allowed
heavier regularization to be placed on tree depth. Time says they won the argument, although
the reasons for that are complicated. Almost everyone has since adopted the so-called CGM
prior, although that’s not evidence of much except popularity. (VHS beat out BetaMax in
the videotape format war18, but not because the former is better.) If the last twenty years
have taught us nothing, we’ve at least learned that a hearty dose of regularization – even
when not strictly essential – is often a good default.

CGM’s prior is based on the following tree growing stochastic process. A tree T may grow
from one of its leaf nodes η, which might be the root, with a probability that depends

18https://en.wikipedia.org/wiki/Videotape_format_war

https://en.wikipedia.org/wiki/Videotape_format_war
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on the depth Dη of that node in the tree. The family of probabilities preferred by CGM,
dictating terms for when such a leaf node might split into two new children, is provided by
the expression below.

psplit(η, T ) = α(1 +Dη)−β

One can use this probability to simulate the tree growing process, generating recursively
starting from a null, single leaf/root tree, and stopping when all leaves refuse to draw a
split. CGM studied this distribution under various choices of hyperparameters 0 < α < 1
and β ≥ 0 in order to provide insight into characteristics of trees which are typical under
this prior.

Of course, the primary aim here isn’t to generate trees a priori, but to learn trees via
partitions of the data and the subsequent patchwork of regressions they imply. For that, a
density on T is required. It’s simple to show that this prior process induces a prior density
for tree T through the probability that internal nodes IT split and leaves LT do not:

p(T ) ∝
∏
η∈IT

psplit(η, T )
∏

η ∈LT

[1− psplit(η, T )].

As in the DMS prior (Denison et al., 1998), CGM retains uniformity on everything else:
splitting location/dimension, number of leaf node observations. Note that a minimum number
of observations must be enforced in order to ensure proper posteriors at the leaves. That
is, under the reference prior p(µη, σ2

η) ∝ σ−2
η , we must have at least |η| ≥ 2 observations in

each leaf node η ∈ LT .

Inference

Posterior inference proceeds by MCMC. Note that there are no parameters except tree T
when leaf-node θη are integrated out. Here is how a single iteration of MCMC would go.
Randomly choose one of a limited number of stochastic tree modification operations (grow,
prune, change, swap, rotate; more below), and conditional on that choice, randomly select a
node η ∈ T on which that proposed modification would apply. Those two choices comprise
proposal q(T , T ′) for generating a new tree T ′ from T , taking a step along a random walk
in tree space. Accept the move with Metropolis–Hastings (MH) probability:

p(T ′ | yn, xn)
p(T | yn, xn) ×

q(T ′, T )
q(T , T ′) = p(yn | T ′, xn)

p(yn | T , xn) ×
p(T ′)
p(T ) ×

q(T ′, T )
q(T , T ′) .

There’s substantial scope for computational savings here with local moves q(T , T ′) in tree
space, since many terms in the big product over η ∈ LT in the denominator marginal
likelihood, and over η′ ∈ LT ′ in the numerator one, would cancel for unaltered leaves in
T → T ′.

What do tree proposals q look like? Well, they can be whatever you like so long as they’re
reversible19, which is required by the ergodic theorem for MCMC convergence, providing
samples from the target distribution p(T | yn, xn). That basically means proposals must be
matched with an opposite, undo proposal. Figure 9.7 provides an example of the four most
popular tree moves, converting tree T from Figure 9.6 to T ′ shown in the same two views.

19https://en.wikipedia.org/wiki/Markov_chain#Reversible_Markov_chain

https://en.wikipedia.org/wiki/Markov_chain#Reversible_Markov_chain
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FIGURE 9.7: Random-walk proposals in tree space graphically (left four) and as partitions
(right four). Borrowed from Chipman et al. (2013) with many similar variations elsewhere;
used with permission from Wiley.

Observe that these moves have reversibility built in. Grow and prune are the undo of one
another, and change and swap are the undo of themselves. Grow and prune are extremely
local moves, acting only on leaf nodes and parents thereof, respectively. Swap and change
are slightly more global as they may be performed on any internal node, or adjacent pair
of nodes, respectively. Consequently, they may shuffle the contents of all their descendant
leaves. Such “high up” proposals can have low MH acceptance rates because they tend to
create T ′ far from T .

Several new moves have been introduced to help. Gramacy and Lee (2008a) provide rotate
which, like swap, acts on pairs of nodes which might reside anywhere in the tree. However,
no matter how high up a rotation is, leaf nodes always remain unchanged. Thus acceptance
is determined only by the prior. The idea comes from tree re-balancing in the computer
science literature, for example as applied for red–black trees20. Wu et al. (2007) provide
a radical restructure move targeting similar features, but with greater ambition. Pratola
(2016) offers an alternative rotate targeting local moves which traverse disparate regions of
partition space along contours of high, rather than identical likelihood.

To illustrate inference under the conventional move set, consider the motorcycle accident
data in the MASS library for R. These data are derived from simulation of the acceleration of
the helmet of a motorcycle rider before and after an impact. The pre- and post-whiplash
effect, which we shall visualize momentarily, is extremely hard to model, whether using
parametric (linear) models, or with GPs.

library(MASS)
library(tgp)

We shall utilize a Bayesian CART (BCART) implementation from the tgp package (Gramacy
and Taddy, 2016) on CRAN. One quirk of tgp is that you must provide a predictive grid,
XX below, at the time of fitting. Trees are complicated data structures, which makes saving
samples from lots of MCMC iterations cumbersome. It’s far easier to save predictions derived
from those trees, obtained by dropping elements of x ∈ X ≡ XX down to leaf(s). In fact,
it’s sufficient to save the average means and quantiles accumulated over MCMC iterations.
For each x ∈ X , one can separately aggregate µ̂η(x) and quantiles µ̂η(x) + 1.96σ̂η(x) for all
η(x) ∈ LT , for every tree T visited by the Markov chain, normalizing at the end. That quick
description is close to what tgp does by default.

XX <- seq(0, max(mcycle[,1]), length=1000)
out.bcart <- bcart(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=100, verb=0)

20https://en.wikipedia.org/wiki/Red-black_tree

https://en.wikipedia.org/wiki/Red-black_tree
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Another peculiarity here is the argument R=100, which calls for one hundred restarts of the
MCMC. CGM observed that mixing in tree space can be poor, resulting in chains becoming
stuck in local posterior maxima. Multiple restarts can help alleviate this. Whereas posterior
mean predictive surfaces require accumulating predictive draws over MCMC iterations, the
most probable predictions can be extracted after the fact. Code below utilizes predict.tgp
to extract the predictive surface from the most probable tree, i.e., the maximum a posteriori
(MAP) tree T̂ .

outp.bcart <- predict(out.bcart, XX=XX)

It’s worth reiterating that this way of working is different from the typical fit-then-predict
scheme in R. The main prediction vehicle in tgp is driven by providing XX to bcart and
similar methods. Still both surfaces, posterior mean and MAP, offer instructive visualizations.
To that end, the R code below establishes a macro that I shall reuse, in several variations,
to visualize predictive output from fitted tree models.

plot.moto <- function(out, outp)
{
plot(outp$XX[,1], outp$ZZ.km, ylab="accel", xlab="time",
ylim=c(-150, 80), lty=2, col=1, type="l")

points(mcycle)
lines(outp$XX[,1], outp$ZZ.km + 1.96*sqrt(outp$ZZ.ks2), col=2, lty=2)
lines(outp$XX[,1], outp$ZZ.km - 1.96*sqrt(outp$ZZ.ks2), col=2, lty=2)
lines(out$XX[,1], out$ZZ.mean, col=1, lwd=2)
lines(out$XX[,1], out$ZZ.q1, col=2, lwd=2)
lines(out$XX[,1], out$ZZ.q2, col=2, lwd=2)
}

Observe in the macro that solid bold (lwd=2) lines are used to indicate posterior mean
predictive; thinner dashed lines (lty=2) indicate the MAP. On both, black (col=1) shows
the center (mean of means or MAP mean) and red (col=2) shows 95% quantiles. Figure 9.8
uses this macro for the first time in the context of our Bayesian CART fit, also for the first
time showing the training data.

plot.moto(out.bcart, outp.bcart)

What can be seen in these surfaces? Organic nonstationarity and heteroskedasticity, that’s
what. The rate of change of outputs is changing as a function of inputs, and so is the noise
level. Training data exhibit these features, and predictive surfaces are coping well, albeit
not gracefully. Variances, exhibited by quantiles, may be too high (wide) at the end. The
whiplash effect in the middle of the data appears overly dampened by forecasts on the testing
grid.

The MAP surface (dashed lines) in the figure exemplifies an “old CART way” of regression.
Hard breaks abound, being both unsightly and a poor surrogate for what are likely smooth
physical dynamics. Posterior mean predictive summaries (solid lines) are somewhat more
smooth. Averaging over the posterior for T with MCMC smooths over abrupt transitions
that come in disparate form with each individual sample from the chain. Yet the surface,
even after aggregation, is still blocky: like a meandering staircase with rounded edges. A
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FIGURE 9.8: Bayesian treed constant model fit to the motorcycle accident data in terms
of means and 95% quantiles. Posterior means are indicated by solid lines; MAP dashed.

longer MCMC chain, or more restarts, could smooth things out more, but with diminishing
return.

Other leaf models

One of the cool things about this setup is that any data type/leaf model may be used
without extra computational effort if p(yη | xη) is analytic; that is, as long as we can evaluate
the marginal likelihood, integrating out parameters θη in closed form. Fully conjugate,
scale-invariant, default (non-informative) priors on θη make this possible for a wide class
of models for response y, even conditional on x. A so-called Bayesian treed linear model
(BTLM; Chipman et al., 2002) uses

p(yη | βη, σ2
η, x

η) ∝ σ−|η|η exp{(yη −Xηβη)2/2σ2
η} and p(βη, σ2

η) ∝ σ−2
η .

In that case we have

p(yη | xη) = 1
(2π)

|η|−d−1
2

(
|G−1
η |
|η|

) 1
2
(
s2
η −Rη

2

)− |η|−m−1
2

Γ
(
|η| − d− 1

2

)
,

where Gη = X̄>η X̄η, Rη = β̂>η Gηβ̂η and intercept-adjusted (m+ 1)-column X̄η is a centered
Xη.

Without getting too bogged down in details, how about a showcase of BTLM in action
through it’s tgp implementation? Again, we must specify XX during the fitting stage for full
posterior averaging in prediction.

out.btlm <- btlm(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=100, verb=0)
outp.btlm <- predict(out.btlm, XX=XX)
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As before, a MAP predictor may be extracted after the fact. Figure 9.9 reuses the plotting
macro in order to view the result, and qualitatively compare to the earlier BCART fit.

plot.moto(out.btlm, outp.btlm)
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FIGURE 9.9: Bayesian treed linear model fit to the motorcycle accident data; compare to
Figure 9.8.

The MAP surface (dashed) indicates fewer partitions compared to the BCART analog, but
the full posterior average (solid) implies greater diversity in trees and linear-leaves over
MCMC iterations. In particular, there’s substantial posterior uncertainty in timing of the
impact, when acceleration transitions from level at zero into whiplash around time=14. For
the right third of inputs there’s disagreement about both slope and noise level. Both BTLM
surfaces, MAP and posterior mean, dampen the whiplash to a lesser extent compared to
BCART. Which surface is better likely depends upon intended use.

If responses y are categorical, then a multinomial leaf model and Dirichlet prior pair leads to
an analytic marginal likelihood (Chipman et al., 1998). Other members of the exponential
family proceed similarly: Poisson, exponential, negative binomial. . . Yet to my knowledge
none of these choices – besides multinomial – have actually been implemented in software as
leaf models in a Bayesian setting.

Technically, any leaf model can be deployed by extending the MCMC to integrate over
leaf parameters θη too; in other words, replace analytic integration to calculate marginal
likelihoods, in closed form, with a numerical alternative. Since the dimension of the parameter
space is changing when trees grow or prune, reversible jump MCMC (Richardson and Green,
1997) is required. Beyond that technical detail, a more practical issue is that deep trees/many
leaves can result in a prohibitively large parameter space. An important exception is GPs.
GPs offer a parsimonious take on nonlinear nonparametric regression, mopping up much of
the variability left to the tree with simpler leaf models. GP leaves encourage shallow trees
with fewer leaf nodes. At the same time, treed partitioning enables (axis aligned) regime
changes in mean stationarity and skedasticity.

Before getting into further detail, let’s look at a stationary GP fit to the motorcycle data.
The tgp package provides a Bayesian GP fitting method that works similarly to bcart and
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btlm. Since GP MCMC mixes well, fewer restarts need be entertained. (Even then default
of R=1 works well.)

out.bgp <- bgp(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=10, verb=0)
outp.bgp <- predict(out.bgp, XX=XX)

Although the code above executes an order of magnitude fewer MCMC iterations, runtimes
(not quoted here) are much slower for BGP due to the requisite matrix decompositions.
Figure 9.10, again using our macro, shows predictive surfaces which result.

plot.moto(out.bgp, outp.bgp)
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FIGURE 9.10: Bayesian GP fit to the motorcycle data; compare to Figures 9.8–9.9.

Both are nice and smooth, but lead to a less than ideal fit especially as regards variance.
In fact you might say that GP and tree-based predictors are complementary. Where one is
good the other is bad. Can they work together in harmony?

9.2.2 Treed Gaussian process

Bayesian treed Gaussian process (TGP) models (Gramacy and Lee, 2008a) can offer the best
of both worlds, marrying the smooth global perspective of an infinite basis expansion, via
GPs, with the thrifty local adaptivity of trees. Their divide-and-conquer nature means faster
computation from smaller matrix decompositions, and nonstationary and heteroskedasticity
effects as conditionally independent leaves allow for disparate spatial dependencies. Perversely,
the two go hand in hand. The more the training data exhibit nonstationary/heteroskedastic
features, the more treed partitioning and the faster it goes!

There are too many modeling and implementation details to introduce here. References shall
be provided – in addition to the original methodology paper cited above – in due course. For
now the goal is to illustrate potential and then move on to more ambitious enterprises with
TGP. The program is the same as above, using tgp from CRAN, but with btgp instead.
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Bayesian posterior sampling is extended to cover GP hyperparameters (lengthscales and
nuggets) at the leaves.

out.btgp <- btgp(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=30,
bprior="b0", verb=0)

Previous calls to tgp’s suite of b* functions specified verb=0 to suppress MCMC progress
output printed to the screen by default. The call above is no exception. That output was
suppressed because it was either excessive (bcart and btlm) or boring (bgp). Situated in-
between on the modeling landscape, btgp progress statements are rather more informative,
and less excessive, providing information about accepted tree moves and giving an online
indication of trade-offs navigated between smooth and abrupt dynamics. I recommend trying
verb=1.

Argument bprior="b0", above, is optional. By default, tgp fits a linear mean GP at the
leaves, unless meanfn="constant" is given. Specifying bprior="b0" creates a hierarchical
prior linking βη and σ2

η, for all η ∈ LT , together. That makes sense for the motorcycle data
because it starts and ends flat. Under the default setting of bprior="bflat", βη and σ2

η

parameters of the linear mean are unrestricted. Results are not much different in that case.

As before, the MAP predictor may be extracted for comparison.

outp.btgp <- predict(out.btgp, XX=XX)

Figure 9.10, generated with our macro, provides a summary of both mean and MAP predictive
surfaces.

plot.moto(out.btgp, outp.btgp)
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FIGURE 9.11: Bayesian treed GP fit to the motorcycle data; compare to Figures 9.8–9.10.

It’s hard to imagine a better compromise. Both surfaces offer excellent fits on their own, but
the posterior mean clearly enjoys greater smoothness, which is warranted by the physics under
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study. Both surfaces, but particularly the posterior mean, reflect uncertainty in the location
of the transition between zero-acceleration and whiplash dynamics for time ∈ (10, 15). The
posterior over trees supports many transition points in that region more-or-less equally.

Often having a GP at all leaves is overkill, and this is the case with the motorcycle accident
data. The response is flat for the first third of inputs, and potentially flat in the last third
too. Sometimes spatial correlation is only expressed in some input coordinates; linear may
be sufficient in others. Gramacy and Lee (2008b) explain how a limiting linear model (LLM)
can allow the data to determine the flexibility of the leaf model, offering a more parsimonious
fit and speed enhancements when training data determine that a linear model is sufficient
to explain local dynamics.

For now, consider how LLMs work in the simple 1d case offered by mcycle.

out.btgpllm <- btgpllm(X=mcycle[,1], Z=mcycle[,2], XX=XX, R=30,
bprior="b0", verb=0)

outp.btgpllm <- predict(out.btgpllm, XX=XX)

Figure 9.12, showcasing btgpllm, offers a subtle contrast to the btgp fit shown in Figure
9.11.

plot.moto(out.btgpllm, outp.btgpllm)
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FIGURE 9.12: Bayesian treed GP with jumps to the limiting linear model (LLM) on the
motorcycle data; compare to Figure 9.11.

Observe how the latter third of inputs enjoys a slightly tighter predictive interval in this
setting, borrowing strength from the obviously linear (actually completely flat) fit to the first
third of inputs. Transition uncertainty from zero-to-whiplash is also somewhat diminished.

For a two-dimensional example, revisit the exponential data first introduced in §5.1.2. In
fact, that data was created to showcase subtle nonstationarity with TGP. A data-generating
shorthand is included in the tgp package.
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exp2d.data <- exp2d.rand(n1=30, n2=70)
X <- exp2d.data$X
Z <- exp2d.data$Z
XX <- exp2d.data$XX

The exp2d.rand function works with a grid in the input space and allows users to specify
how many training data points should come from the interesting, lower-left quadrant of the
input space versus the other three flat quadrants. The call targets slightly higher sampling
in the interesting region, taking remaining grid elements as testing locations. Consider an
ordinary (Bayesian) GP fit to these data as a warm up. To illustrate some of the alternatives
offered by tgp’s GP capability, the call below asks for isotropic Gaussian correlation with
corr="exp".

out.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0)

The tgp package provides a somewhat elaborate suite of plot methods defined for "tgp"-
class objects. Figure 9.13 utilizes a paired image layout for mean and variance (actually 90%
quantile gap) surfaces.

plot(out.bgp, pc="c")
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FIGURE 9.13: Bayesian GP fit to the 2d exponential data (§5.1.2) via mean (left) and
uncertainty (right; difference between 95% and 5% quantiles).

Occasionally the predictive mean surface (left panel) is exceptionally poor, depending on
the random design and response generated by exp2d.data. The predictive variance (right)
almost always disappoints. That’s because the GP is stationary which implies, among other
things, uniform uncertainty in distance. Consequently, the uncertainty surface is unable to
reveal what is intuitively obvious from the pictures: that the interesting quadrant is harder
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to predict than the other flat ones. The uncertainty surface is sausage-shaped: higher where
training data is scarce. To learn otherwise requires building in a degree of nonstationary
flexibility, which is what the tree in TGP facilitates. Consider the analogous btgp fit, with
modest restarting to avoid the Markov chain becoming stuck in local posterior modes. With
GPs at the leaves, rather than constant or linear models, trees are less deep so tree movement
is more fluid.

out.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", R=10, verb=0)

Analogous plots of posterior predictive mean and uncertainty reveal a partition structure
that quarantines the interesting region away from the rest, and learns that uncertainty is
indeed higher in the lower-left quadrant in spite of denser sampling there. Dashed lines in
Figure 9.14 correspond to the MAP treed partition found during posterior sampling.

plot(out.btgp, pc="c")
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FIGURE 9.14: Bayesian treed GP fit to the 2d exponential data; compare to Figure 9.13.

Recursive axis-aligned partitioning is both a blessing and curse in this example. Notice that
one of the flat quadrants is needlessly partitioned away from the other two. But the view in
the figure only depicts one, highly probable tree. Posterior sampling averages over many
other trees. In fact, a single accepted swap move would result in the diametrically opposed
quadrant being isolated instead. This averaging over disparate, highly probable partitions
explains why variance is about the same in these two regions. Unfortunately, there’s no
support for viewing all of these trees at once, which would anyways be a mess.

Increased uncertainty for the lower-left quadrant in the right panel of Figure 9.14 is primarily
due to the shorter lengthscale and higher nugget estimated for data in that region, as
supported by many of the trees sampled from the posterior, particularly the MAP. The
diagram in Figure 9.15 provides another visual of the MAP tree, relaying a count of the
number of observations in each leaf and estimated marginal variance therein.
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tgp.trees(out.btgp, heights="map")

x1 <> 2.4  
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 height=3, log(p)=391.503

FIGURE 9.15: MAP tree under Bayesian treed GP. Leaf information includes an estimate
of local scale (equivalent to τ̂2) and number of observations.

Again, the tree indicates that only the lower-left quadrant has substantial uncertainty.
Having a regional notion of model inadequacy is essential to sequential design efforts which
utilize variance-based acquisition. Examples are ALM/C, IMSPE, etc., from Chapter 6. All
those heuristics are ultimately space-filling unless the model accommodates nonstationary
flexibility. A homework exercise in §9.4 targets exploration of these ideas on the motivating
NASA rocket booster data (§2.1). In an earlier §6.4 exercise we manually partitioned these
data to affect sequential design decisions and direct acquisition towards more challenging-to-
model regimes. TGP can take the human out of that loop, automating iteration between
flexible learning and adaptive design.

Revisiting LGBB (rocket booster) data

TGP was invented for the rocket booster data. NASA scientists knew they needed to
partition modeling, and accompanying design, to separate subsonic and supersonic speeds.
They had an idea about how the partition might go, but thought it might be better if the
data helped out. Below we shall explore that potential with data collected from a carefully
implemented, sequentially designed, computer experiment conducted on NASA’s Columbia
supercomputer21.

lgbb.as <- read.table("lgbb/lgbb_as.txt", header=TRUE)
lgbb.rest <- read.table("lgbb/lgbb_as_rest.txt", header=TRUE)

Those files contain training input–output pairs obtained with ALC-based sequential design
(§6.2.2) selected from a dense candidate grid (Gramacy and Lee, 2009). Un-selected elements
from that grid form a testing set on which predictions are desired. Here our illustration
centers on depicting the final predictive surface, culminating after a sequential design effort
on the lift output, one of six responses. The curious reader may wish to repeat this analysis
and subsequent visuals with one of the other five output columns. Code below sets up the
data we shall use for training and testing.

21https://en.wikipedia.org/wiki/Columbia_(supercomputer)

https://en.wikipedia.org/wiki/Columbia_(supercomputer)
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X <- lgbb.as[,2:4]
Y <- lgbb.as$lift
XX <- lgbb.rest[2:4]
c(X=nrow(X), XX=nrow(XX))

## X XX
## 780 37128

The training set is modestly sized and the testing set is big. Fitting isn’t speedy, so we won’t
do any restarts (using default R=1). Even better results can be obtained with larger R and
with more MCMC iterations, which is controlled with the BTE argument (“B”urn-in, “T”otal
and thinning level to save “E”very sample). Defaults used here target fast execution, not
necessarily ideal inferential or predictive performance. CRAN requires all coded examples in
documentation files finish in five seconds. This larger example has no hope of achieving that
speed, however results with the defaults are acceptable as we shall see.

t1 <- system.time(fit <- btgpllm(X=X, Z=Y, XX=XX, bprior="b0", verb=0))[3]
t1/60

## elapsed
## 59.37

A fitting time of 59 minutes is quite a wait, but not outrageous. Compared to CSK timings
from earlier, these btgpllm calculations are slower even though the training data entertained
here is almost an order of magnitude smaller. The reason is that our “effective” covariance
matrices from treed partitioning aren’t nearly as sparse. We entertained CSKs at 99%
and 99.9% sparsity but our btgpllm MAP tree yields effective sparsity closer to 30%, as
we illustrate below. Also, keep in mind that tgp bundles fitting and prediction, and our
predictive set is huge. CSK examples entertained just five-hundred predictive locations.

Figure 9.16 provides a 2d slice of the posterior predictive surface where the third input,
side-slip angle (beta), is fixed to zero. The plot.tgp method provides several hooks that
assist in 2d visualization of higher dimensional fitted surfaces through slices and projections.
More details can be found in package documentation.

plot(fit, slice=list(x=3, z=0), gridlen=c(100, 100),
layout="surf", span=0.01)

Observe that the predictive mean surface is able to capture the ridge nearby low speeds
(mach) and for high angles of attack (alpha), yet at the same time furnish a more slowly
varying surface at higher speeds. That would not be possible under a stationary GP: one of
the two regimes (or both) must compromise, and the result would be an inferior fit.

The MAP tree, visualized in Figure 9.17, indicates a two-element partition.

tgp.trees(fit, heights="map")

The number of data points in each leaf implies an effective (global) covariance matrix that’s
about 30% sparse, with the precise number depending on the random seed used to generate
this Rmarkdown build. Code for a more precise calculation – for a more interesting case with
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FIGURE 9.16: Slice of the Bayesian TGP with LLM predictive surface for the LGBB lift
response.

mach <> 1.45 

0.0026 
537 obs

1

0.0284 
243 obs

2

 height=2, log(p)=3309.44

FIGURE 9.17: MAP tree for the lift response.

more leaves – is provided momentarily. Note this applies only for the MAP tree; the other
thousands of trees visited by the Markov chain would likely be similar but seldom identical.

By default, bt* fitting functions begin with a null tree/single leaf containing all of the data,
implying a 100% dense 780× 780 covariance matrix. So the first several hundred iterations
of MCMC, before the first grow move is accepted, may be particularly slow. Even after
successfully accepting a grow, subsequent prunes entertain a full 780×780, covariance matrix
when evaluating MH acceptance ratios. Thus the method is still in O(N3), pointing to
very little improvement on computation, at least in terms of computational order. A more
favorable assessment would be that we get enhanced fidelity at no extra cost compared to a
(dense covariance) stationary GP. More aggressive use of the tree is required when speed is
a priority. But let’s finish this example first.

A slightly tweaked plot.tgp call can provide the predictive variance surface. See Figure
9.18. As in our visuals for the 2d exponential data (e.g., Figure 9.14), training inputs (dots)
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and testing locations (open circles) are shown automatically. A dense testing grid causes
lots of open circles to be drawn, which unfortunately darkens the predictive surface. Adding
pXX=FALSE makes for a prettier picture, but leaves the testing grid to the imagination. (Here,
that grid is pretty easy to imagine in the negative space.) The main title says “z ALM stats”,
which should be interpreted as “variance of the response(s)”. Recall that ALM sequential
design from §6.2.1 involves a maximizing variance heuristic.

plot(fit, slice=list(x=3,z=0), gridlen=c(100,100), layout="as", as="alm",
span=0.01, pXX=FALSE)
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FIGURE 9.18: Predictive uncertainty surface for a slice of the lift response with MAP
partition and training data (in slice) overlayed.

Several notable observations can be drawn from this surface. First, the partition doesn’t
split the input space equally in a geographic sense. However it does partition the 780 inputs
somewhat more equally. This is because the design is non-uniform, emphasizing low-speed
inputs. Sequential design was based on ALC, not ALM, but since both focus on variance
they would recommend similar acquisitions. Observe that predictive uncertainty is much
higher in the low-speed regime, so future acquisitions would likely demand even heavier
sampling in that region. In the next iteration of an ALC/M scheme, one might select a
new run from the lower-left (low mach, low alpha) region to add into the training data.
Finally, notice how high uncertainty bleeds across the MAP partition boundary – a relic of
uncertainty in the posterior for T .

The tgp package provides a number of “knobs” to help speed things up at the expense of
faithful modeling. One way is through the prior. For example, psplit arguments α (bigger)
and β (smaller) can encourage deeper trees and consequently smaller matrices and faster
execution.

Another way is through MCMC initialization. Providing linburn=TRUE will burn-in treed
GP MCMC with a treed linear model, and then switch-on GPs at the leaves before collecting
samples. That facilitates two economies. For starters it shortcuts an expensive full GP burn-
in while waiting for accepted grow moves to organically partition up the input space into
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smaller GPs. More importantly, it causes the tree to over-grow, ensuring smaller partitions,
initializing the chain in a local mode of tree space that’s hard to escape out of even after GPs
are turned on. Once that happens some pruning is typical, but almost never entirely back to
where the chain should be under the target distribution. You might say that linburn=TRUE
takes advantage of poor tree mixing, originally observed by CGM, to favor speed.

Consider a btgpllm call identical to the one we did above, except with linburn=TRUE.

t2 <- system.time(
fit2 <- btgpllm(X=X, Z=Y, XX=XX, bprior="b0", linburn=TRUE, verb=0))[3]

As you can see in Figure 9.19, our new visual of the beta=0 slice is not much different than
Figure 9.16’s ideal fit. Much of the space is plausibly piecewise linear anyway, but it helps
to smooth out rough edges with the GP.

plot(fit2, slice=list(x=3, z=0), gridlen=c(100, 100),
layout="surf", span=0.01)
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FIGURE 9.19: Approximate LGBB lift posterior mean slice under linear model burn-in;
compare to Figure 9.16.

It’s difficult to speculate on the exact nature of the aesthetic difference between this new
linburn=TRUE surface and the earlier ideal one. Sometimes the thriftier surface over-smooths.
Sometimes it under-smooths revealing kinks or wrinkles. Sometimes it looks pretty much
the same. What is consistent, however, is that nothing looks entirely out of place while
execution time is about 22 times faster than otherwise, taking about 3 minutes in this build.
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c(full=t1, linburn=t2)

## full.elapsed linburn.elapsed
## 3562.4 162.6

To explain the speedup, code below calculates the effective degree sparsity realized by the
MAP tree.

map.height <-fit2$post$height[which.max(fit2$posts$lpost)]
leafs.n <- fit2$trees[[map.height]]$n
1 - sum(leafs.n^2)/(sum(leafs.n)^2)

## [1] 0.9139

Approximately 91% sparse – much closer to the 99% of CSK. Maybe its predictive surface
isn’t as smooth as it could be, or as would be ideal, say for a final visualization in a published
article. For most other purposes, however, linburn fits possess all of the requisite ingredients.

One such purpose is sequential design, where turning around acquisitions quickly can be
essential to applicability. We already talked about ALM: an estimate of predictive variance at
XX locations comes for free. Usually, although not in all Rmarkdown builds, the ALM/variance
surface plotted in Figure 9.20 demands future acquisitions in the interesting part of the space,
for low speeds and high angles of attack. Even when that’s not the case, the maximizing
location is usually sensible. An important thing to keep in mind about sequential design,
especially when individual decisions seem erratic, is that the long run of many acquisitions
is what really counts.

plot(fit2, slice=list(x=3,z=0), gridlen=c(100,100), layout="as", as="alm",
span=0.01, pXX=FALSE)
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FIGURE 9.20: Approximate LGBB lift posterior mean slice under linear model burn-in;
compare to Figure 9.16.
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Having to specify XX locations in advance rules out continuous optimization of acquisition
criteria, say with optim. Gramacy and Lee (2009) describe a sequential treed maximum
entropy (ME) candidate-based scheme for coping with this drawback. The essence is to seek
space-filling candidates separately in each region of the MAP partition. ALC (§6.2.2) is
available via Ds2x=TRUE, signaling calculations of integrated change in variance ∆σ2(x) for
all x ∈ XX. Testing XX locations are also used as reference sites in a sum approximating the
ALC integral (6.7). This makes the computational expense quadratic in nrow(XX), which
can be a tall order for testing sets sized in the tens of thousands (7803 � 371282). Treed
ME XX thus prove valuable as reference locations as well. Finally, additional computational
savings may be realized by undoing some of tgp’s defaults, such as automatic predictive
sampling at training X locations. Those aren’t really necessary for acquisition and can be
skipped by providing pred.n=FALSE.

Often simple leaf models, e.g., constant or linear, lead to great sequential designs. Variance
estimates can be quite good, on relative terms, even if predictive means are unfaithful to
dynamics exhibited by the response surface. Consequently ALM/C heuristics work quite
well. You don’t need smooth prediction to find out where model uncertainty (predictive
variance) is high. Consider the treed linear model . . .

t3 <- system.time(
fit3 <- btlm(X=X, Z=Y, XX=XX, BTE=c(2000, 7000, 10), R=10, verb=0))[3]

. . . and resulting ALM surface provided in Figure 9.21. Treed partitioning can be quite
heavy, so option pparts=FALSE suppresses those colorful rectangles to provide a clearer view
of spatial variance.

plot(fit3, slice=list(x=3,z=0), gridlen=c(100,100), layout="as", as="alm",
span=0.01, pparts=FALSE, pXX=FALSE)
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FIGURE 9.21: Even more approximate predictive uncertainty surface under a Bayesian
treed LM for a slice of the lift response; compare to Figures 9.18 and 9.20.

That surface indicates a sufficiently localized sense of uncertainty despite having, what would
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most certainly be, a highly discontinuous (and thus potentially quite inaccurate) predictive
mean analog. Despite a factor of R=10 more MCMC sampling, that fit takes a fraction of
the time: 1 minute(s), which is 52 times faster than a full TGP.

c(full=t1, linburn=t2, btlm=t3)

## full.elapsed linburn.elapsed btlm.elapsed
## 3562.44 162.57 68.15

Sometimes treed LMs provide even better acquisitions than treed GPs do. In my experience,
this only happens in the latter stages of sequential design. Early on, GP smoothness – at
least in part – is key to sensible acquisition. Linear models only have high variance at the
edges, i.e., at partition boundaries, which can cause self-reinforcing acquisitions and trigger
a vicious cycle. Boundary-targeting sequential design puts a heavy burden on tree mixing in
the MCMC, which CGM remind is problematic for linear and constant leaves. If speed is a
concern, my preference is for a treed GP with linburn=TRUE shortcuts over wholesale treed
linear or constant models. Treed LM burn-in offers a nice compromise: fast predictions and
design estimates; smoothed out rough edges, reducing spurious variances due to “over-quilted”
input spaces arising from deep trees compensating for crude linear fits at the leaves.

9.2.3 Regression tree extensions, off-shoots and fix-ups

The tgp package also supports expected improvement (EI) for Bayesian optimization (BO;
§7.2). Providing improv=TRUE to any b* function causes samples to be gathered from the
posterior mean of improvements, converted from raw improvement I(x) using Y (x) sampled
from the posterior predictive distribution. So you get a fully Bayesian EI, averaged over
tree and leaf model uncertainty, for a truly Bayesian BO. (Before the “B” in BO meant
marginalizing over a GP latent field; see §5.3.2. Here it means averaging over all uncertainties
through posterior integration over the full set of unknown parameters, including trees.)
A downside is that candidates, as with other Bayesian TGP sampling of active learning
heuristics (ALC/M), must be specified in advance of sampling, thwarting acquisition by
local optimization. The upside is that such sampling naturally extends to powered up
improvements, encouraging exploration, and ranking by improvement for batch sequential
optimization (Taddy et al., 2009).

For more details on tgp, tutorials and examples, see

• Gramacy (2007): a beginner’s primer, including instruction on custom compilation
for fast linear algebra and threaded prediction for large XX, e.g., for LGBB; also see
vignette("tgp") in the package;

• Gramacy and Taddy (2010): advanced topics like EI, categorical inputs (Broderick and
Gramacy, 2011), sensitivity analysis, and importance tempering (Gramacy et al., 2010)
to improve MCMC mixing; also see vignette("tgp2") in the package.

Several authors have further extended TGP capability. Konomi et al. (2017) demonstrate a
nonstationary calibration framework (§8.1) based on TGP. MATLAB® code is provided as
supplementary material supporting their paper. Classification with TGP, utilizing a logit
linked multinomial response model paired with latent (treed) GP random field, has been
explored (Broderick and Gramacy, 2011). However synergy between tree and GP is weaker
here than in the regression context. Notions of smoothness are artificial when classification
labels are involved. A GP latent field can mimic tree-like partitioning features without the
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help of the tree. Yet the authors were able to engineer some examples where their hybrid
was successful.

Another popular approach to tree regression is to combine many simple trees additively. This
idea was first introduced in ML as boosting decision stumps22. Perhaps the most popular
such implementation is gradient tree boosting23. See the gbm package (Greenwell et al.,
2019), originally from Ridgeway (2007), and xgboost (Chen et al., 2019) on CRAN. More
recently, Bayesian additive regression trees (BART) from CGM (Chipman et al., 2010) has
gained traction as a sampling-based alternative offering better UQ which can be key in
surrogate modeling applications such as BO. Although BART has a built-in additive error
model, tweaks can be applied in order to mimic sausage-shaped error-bars when modeling
deterministic computer simulations (Chipman et al., 2012). Several R packages support
BART, including BayesTree (Chipman and McCulloch, 2016) and BART (McCulloch et al.,
2019), with the latter accommodating a multitude of response types. The space of BART
research is quite active and I’d expect many new developments in future. Perhaps the only
downside to BART is that predictive surfaces are pathologically non-smooth. Its additive
structure does however lend great flexibility and reactiveness to the mean surface which is a
substantial asset.

Dynamic trees (DTs; Taddy et al., 2011) were developed specifically to target sequential
applications, such as arise in computer simulation, active learning, and BO, with additional
support for input importance and sensitivity analysis (§8.2) applications (Gramacy et al.,
2013). An implementation is provided by dynaTree (Gramacy et al., 2017) on CRAN. DT
development revisits the tree prior as a process evolving sequentially in time, and extends
that prior to posterior updates as new data arrive. A new data point (xt+1, yt+1) may
support tree growth or pruning, or neither in favor of the status quo. Inference for DT
processes is facilitated by the sequential Monte Carlo24 method of particle learning (Carvalho
et al., 2010). Dynamic trees have been applied on a wide variety of computer surrogate
modeling tasks such as computer code semantic translation and autotuning (Balaprakash
et al., 2013b,a), stochastic control for epidemic management, financial options pricing, and
autonomous vehicle tracking (Gramacy and Ludkovski, 2015). Streaming applications, which
deploy data point retirement in order to work in fixed memory and forgetting factors in the
face of concept drift (a target response surface that’s evolving in time), are described by
Anagnostopoulos and Gramacy (2013).

library(dynaTree)

For applications which are not inherently sequential in nature, DTs can be applied to random
data orderings. Randomization over the “arrival-time” of data has a simultaneous bootstrap25

and likelihood annealing26 effect. The results are, at least in some cases, astounding. Consider
the following multiple DTs (dynaTrees) fit to mcycle data (§9.2.1), separately under constant
and linear leaves.

XX <- seq(0,max(mcycle[,1]), length=1000)
out.dtc <- dynaTrees(X=mcycle[,1], y=mcycle[,2], XX=XX, verb=0, pverb=0)

22https://en.wikipedia.org/wiki/Boosting_(machine_learning)
23https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting
24https://en.wikipedia.org/wiki/Particle_filter
25https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
26https://en.wikipedia.org/wiki/Simulated_annealing

https://en.wikipedia.org/wiki/Boosting_(machine_learning)
https://en.wikipedia.org/wiki/Gradient_boosting#Gradient_tree_boosting
https://en.wikipedia.org/wiki/Particle_filter
https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Simulated_annealing
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out.dtl <- dynaTrees(X=mcycle[,1], y=mcycle[,2], XX=XX, model="linear",
verb=0, pverb=0)

Unfortunately the structure of the output objects doesn’t align with tgp so we can’t use the
plotting macro from earlier. Similar code, evaluated below, aggregates means and quantiles
extracted from 1000 random re-passes through the data.

plot(out.dtc$XX[,1], rowMeans(out.dtc$mean), type="l", ylim=c(-160, 110),
ylab="accel", xlab="time")

points(mcycle)
lines(out.dtc$XX[,1], rowMeans(out.dtc$q1), lty=2)
lines(out.dtc$XX[,1], rowMeans(out.dtc$q2), col=1, lty=2)
lines(out.dtl$XX[,1], rowMeans(out.dtl$mean), col=2)
lines(out.dtl$XX[,1], rowMeans(out.dtl$q1), col=2, lty=2)
lines(out.dtl$XX[,1], rowMeans(out.dtl$q2), col=2, lty=2)
legend("topleft", legend=c("DT constant", "DT linear"), bty="n",
lty=1, col=1:2)
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FIGURE 9.22: Dynamic trees posterior predictive surfaces on the motorcycle accident
data.

The first time I saw these plots I was blown away. Aesthetically, constant leaves seem to
offer better compromise between dynamic reactivity and smoothing. But how can piecewise
constant models look so smooth, on average, but still mimic abrupt features in the data?
Bootstrap aggregation, or bagging27, manifest as random data orderings in DT, is a powerful
tool. Bagging is the workhorse behind random forest (RF)28 models, supported by several
packages including randomForest (Breiman et al., 2018) on CRAN. Indeed, RFs make
similarly strong surrogates, however extracting full predictive uncertainty can be challenging.
A review paper by Chipman et al. (2013) provides more in-depth qualitative and quantitative
comparison between Bayesian (and classical) tree-based regression methods. In fairness, not

27https://en.wikipedia.org/wiki/Bootstrap_aggregating
28https://en.wikipedia.org/wiki/Random_forest

https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Random_forest
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all examples (whether via dynaTree, bcart, btlm or BayesTree) look as good as the mcycle
ones presented here. GPs are hard to beat in bakeoffs spanning diverse data-generating
mechanisms, input dimensions and sizes (so long as the calculations remain computationally
tractable).

Finally, tessellation-based partition modeling has been revisited from several angles in
recent literature. Rushdi et al. (2017) provide new data structures and new computational
approaches to shortcut expensive search subroutines required for prediction under Voronoi
piecewise surrogates. Park and Apley (2018) consider patching together piecewise fits to
furnish a degree of smoothness across partition boundaries. Rullière et al. (2018) propose a
nested approach to divide-and-conquer modeling. Those are just a few, non-representative
examples; I doubt we’ve heard the last word on partition-based regression and surrogate
modeling. Divide-and-conquer remains an attractive device for marrying computational
thrift with modeling fidelity.

9.3 Local approximate GPs

A local approximate Gaussian process (LAGP), which I’ve been so excited to tell you about
for hundreds of pages, has aspects in common with partition based schemes, in the sense
that it creates sparsity in the covariance structure in a geographically local way. In fact,
LAGP is a partitioning scheme in a limiting sense, although delving too deeply into that
connection is counterproductive because the approach is quite different from partitioning
in spirit. The core LAGP innovation is reminiscent of what Cressie (1992, pp. 131–134)
called “ad hoc local kriging neighborhoods”. Perhaps in 1992 the basic idea, which at face
value isn’t mind blowing but might have gotten less credit than it deserves, was simply a
little ahead of its time. I think that the geostatistical community of that era may not have
anticipated the scale of modern data, a ubiquity of applications to computer simulation and
ML (with inputs other than longitude and latitude), and the architecture of contemporary
supercomputers. Multi-core/cluster parallelization begs for divide-and-conquer.

All in all, LAGP’s building blocks and their synthesis are more modern, both technologically
and culturally, than could have been anticipated thirty-odd years ago. Technology wise,
it draws on recent findings for approximate likelihoods in spatial data (e.g., Stein et al.,
2004), and active learning techniques for sequential design (e.g., Cohn, 1994). But the big
divergence, particularly from geostatistics, is cultural. Interest in LAGP lies squarely in
prediction, which is the primary goal in computer experiments and ML applications.

Although designed for large-scale statistical surrogate modeling, the LAGP mindset is
distinctly ML. The methodology is an example of transductive learning (Vapnik, 2013),
with training tailored to predictive goals. This is as opposed to the more familiar inductive
sort, where model fitting and prediction transpire in serial, usually in two distinct stages.
A transductive learner utilizes training data differently depending on where prediction is
required and to what end predictions might be used. Consequently the enterprise is more
about reaction, decision and adaptation than it is about inference.
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9.3.1 Local subdesign

For the next little bit, focus on prediction at a single testing location x. Coordinates encoded
by x are arbitrary; it’s only important that it be a single location in the input space X . Let’s
think about the properties of a GP surrogate at x. Training data far from x have vanishingly
small influence on GP predictions, especially when correlation is measured as an inverse of
exponentiated Euclidean distances. This is what motivates a CSK approach to inducing
sparsity (§9.1), but the difference here is that we’re thinking about a particular x, not the
entire spatial field.

The crux of LAGP is a search for the most useful training data points – a subdesign relative
to x – for predicting at x, without considering/handling large matrices. One option is a
nearest neighbor (NN) subset. Specifically, fill Xn(x) ⊂ XN with local-n � full-N closest
locations to x. Notice that I’ve tweaked notation a bit to have big N represent the size of a
potentially enormous training set, unwieldy for conventional GPs, and now little n denotes
a much smaller, more manageable size. Derive GP predictive equations under Y (x) | Dn(x)
where Dn(x) = (Xn, Yn), pretending that no other data exist. The best reference for this
idea is Emery (2009). This prediction rule is as simple to implement as it is to describe,
and it’s very fast on relative terms when n � N . Costs are in O(n3) and O(n2 + N) for
decomposition(s) and storage, respectively; and NNs can be found in O(n logN) time with
k-d trees29 after an up-front O(N logN) build cost. In practice, one can choose local-n as
large as computational constraints allow, although there may be reasons to prefer smaller
n on reactivity grounds. Predictors may potentially be more accurate at x if they’re not
burdened by information from training data far from x.

This is different, and much simpler than, what other authors have recently dubbed nearest
neighbor GP regression (NNGP; Datta et al., 2016), which is a potential source of confusion.
NNGP is clever, but targets global rather than local inference and prediction. The way in
which neighbors are used is not akin to canonical NN30, i.e., nonparametric regression and
classification where each testing prediction conditions only on a small set of very closest
training points. Neighborhood sets in NNGP, rather, anchor an approximate Cholesky
decomposition leading to a joint distribution similar to what could be obtained at greater
computational expense under a full conditioning set. This so-called Vecchia approximation
(Vecchia, 1988; Stroud et al., 2017) induces sparsity in the inverse covariance structure. After
this fashion, NNGP might be more aptly named “Bayesian Vecchia”. Also see Katzfuss and
Guinness (2018) for a more general treatment of conditioning sets toward that end. Both
groups of authors provide implementations on CRAN; see spBayes (Finley and Banerjee,
2019) and GpGp (Guinness and Katzfuss, 2019), respectively. Empirical performance with these
packages, tackling large geospatial data and furnishing accurate predictions and estimates
of uncertainty, is impressive. As far as I know, they’re untested in (higher dimensional)
computer surrogate modeling and ML contexts.

Ok, apologies for the short digression. The essence of NN-based local GP approximation,
using as training data that Dn(x) which is closest to predictive location x, is embodied
by the cartoon in Figure 9.23. Gridded black dots represent a massive training design XN .
There are mere thousands of such dots in the grid, but imagine hundreds of thousands or
millions. Five solid, colored dots in the figure represent potential x sites. Open circles of the
same color indicate NN subdesigns Xn(x) ⊂ XN corresponding to those predictive locations.

Notice how topology of the global design XN impacts the shape of local designs Xn(x).

29https://en.wikipedia.org/wiki/K-d_tree
30https://en.wikipedia.org/wiki/Nearest_neighbor_search

https://en.wikipedia.org/wiki/K-d_tree
https://en.wikipedia.org/wiki/Nearest_neighbor_search
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FIGURE 9.23: Local neighborhoods (colored open circles) based on NN subdesign for
predictive locations (colored filled dots) as selected from a large design (small black dots).

When two predictive locations are nearby, as illustrated in pink and red, training data sites
may be shared by subdesigns. There are no hard boundaries whereby adjacent, arbitrarily
close predictive locations might be trained on totally disjoint data subsets. It’s even possible
to have two very close predictive locations x 6= x′ with the same subdesign Xn(x) = Xn(x′)
when they share the same NN sets.

What can be said about this NN-based GP approximation? Is it sensible? Under fixed
hyperparameterization and some regularity conditions that would be a distraction to review,
one can show that as n → N predictions Y (x) | Dn → Y (x) | DN . In other words, larger
local design size means better approximation. Being endowed with the label “approximate”
requires some notion of accuracy relative to an exact alternative. It can also be shown, again
under some regularity conditions, that V (x) | Dn � V (x) | DN , reflecting uncertainties
inflated by the smaller design, where σ2(x) = τ̂2V (x).

Is it good? Empirically, yes, but it’s not optimal given computational limits, n (Vecchia, 1988;
Stein et al., 2004). Of all size-n subsets of N training data sites, those residing closest to x
in terms of Euclidean distance are not optimal for predicting at x. Clearly it’s good to have
some, perhaps many, nearby training sites. However, some farther out sites – not included
because they’re not part of the NN set – may be useful as anchors, providing long-range
spatial dependence information. That information is potentially of greater value because
it’s less correlated/more independent than that which is provided by closer-in points. (If we
already have a bunch of nearby points, the marginal value of another one has diminishing
returns. It could be better to have independent information farther out.) That being said,
finding the optimal n of N , of which there are

(
N
n

)
alternatives, could be a combinatorially

huge undertaking.

So that begs the question: can we do better than NN (in terms of prediction accuracy)
without much extra effort (in terms of computational cost)? More precisely, n-NN GP
prediction requires computation in O(n3). So can we find a dataset Dn(x), using time in



9.3 Local approximate GPs 421

O(n3) combining search, hyperparameter inference, and prediction, where accuracy at x
based on that set is no worse than under D(NN)

n (x), the NN special case? Of course by
“no worse” I really mean “hopefully much better”, but choose to manage expectations by
phrasing things conservatively.

The answer to that question is a qualified “Yes!”, with a greedy31/forward stepwise32 scheme.
For a particular predictive location x, solve a sequence of easy decision problems.

For j = n0, . . . , n:

1. given Dj(x), choose xj+1 according to some criterion;
2. augment the designDj+1(x) = Dj(x)∪(xj+1, y(xj+1)) and update the GP approximation.

Optimizing the criterion (1), and updating the GP (2), must not exceed O(j2) so the total
scheme remains in O(n3). Initialize with a small Dn0(x) comprised of NNs.

Gramacy and Apley (2015), G&A below, proposed the following criterion for sequential
subdesign. Given Dj(x) for particular x, search for xj+1 ∈ XN \ Xn(x) considering its
impact on predictive variance Vj(x) ≡ V (x) | Dj(x), while taking into account uncertainty
in hyperparameters θ, by minimizing empirical Bayes mean-squared prediction error :

J(xj+1, x) = E{[Y (x)− µj+1(x; θ̂j+1)]2 | Dj(x)}

≈ Vj(x | xj+1; θ̂j) +
(
∂µj(x; θ)

∂θ

∣∣∣
θ=θ̂j

)2/
Gj+1(θ̂j). (9.2)

The approximation stems from Gaussian instead of Student-t predictive equations, and
plugging in estimated kernel hyperparameters θ̂j instead of θ̂j+1. Student-t equations arise
upon estimating, or integrating out, the covariance scale τ2. This detail is glossed over in
our Chapter 5 introduction; since predictive equations presented therein were Gaussian,
these were technically an approximation as well. As N , or in this context n, gets larger
(� 30, say), the approximation error is small. Plugging in θ̂j for θ̂j+1 avoids entertaining
how estimated lengthscales might change as new yj+1 are incorporated, depending on the
selected xj+1 location. In practice θ is fixed throughout sequential design iterations; more
implementation details will be covered later.

Let’s break down elements of the MSPE criterion J(xj+1, x). Apparently it combines
variance and rate of change of the mean at x. G&A’s presentation, and indeed the original
laGP package implementation (Gramacy and Sun, 2018), emphasized isotropic lengthscale
parameters θ. Our summary here follows that simplified setup. For extensions to vectorized
θ for separable, coordinate-wise, lengthscales see the appendix to the original paper. A
subsequently updated version of laGP supports separable lengthscales, as detailed by our
empirical work below.

The first part of J , namely Vj(x | xj+1; θ), is our old friend: an estimate of the new variance
that will result after adding xj+1 into Dj , treating θ as known.

Vj(x | xj+1; θ) = ψj
j − 2vj+1(x; θ),

where vj+1(x; θ) =
[
Kj+1(x, x)− k>j+1(x)K−1

j+1kj+1(x)
]

and ψj = jτ̂2
j .

Integrating Vj(x|xj+1; θ) over x yields the ALC acquisition criterion for approximate global

31https://en.wikipedia.org/wiki/Greedy_algorithm
32https://en.wikipedia.org/wiki/Stepwise_regression

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Stepwise_regression
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A-optimal design (Seo et al., 2000; Cohn, 1994). §6.3 showed how vj+1 can be updated from
vj , and other quantities available at iteration j, in O(j2) time.

Next, ∂µj(x;θ)
∂θ is the partial derivative of the predictive mean at x, given Dj , with respect to

lengthscale:

∂µj(x; θ)
∂θ

= K−1
j [k̇j(x)− K̇jK

−1
j kj(x)]>Yj ,

where k̇j(x) is a length-j column vector of derivatives of kernel correlations K(x, xk), for
k = 1, . . . , j, taken with respect to θ. So it’s the rate of change of predictive mean with
respect to changes in lengthscale(s). These can be updated in O(j2) too; see G&A for more
details.

Finally, Gj+1(θ) is also an old friend (§6.2.3): the Fisher information (FI) from Dj , including
an expected component from future Yj+1 at xj+1:

Gj+1(θ) = Fj(θ) + E
{
−∂

2`j(yj+1; θ)
∂θ2

∣∣∣Yj ; θ}
≈ Fj(θ)+ 1

2Vj(xj+1; θ)2×
(
∂Vj(xj+1; θ)

∂θ

)2
+ 1
Vj(xj+1; θ)

(
∂µj(xj+1; θ)

∂θ

)2
,

where Fj(θ) = −`′′(Yj ; θ), and with K̇j = K̇jK
−1
j and k̃j(x) = K−1

j kj(x),

∂Vj(x; θ)
∂θ

=
Y >j K

−1
j K̇jYj
j − 2

(
K(x, x)− k>j (x)k̃j(x)

)
− ψj

[
k̇j(x)k̃j(x) + k̃j(x)>(k̇j(x)− K̇jkj(x))

]
.

G&A similarly detail how the derivative of Vj may be updated in O(j2) time which is nearly
identical to our development for vj provided in §6.3.

Observe how inverse FI, which for vectorized θ would be a matrix inverse and applied in
full quadratic form as (∂µj)>G−1

j+1(∂µj), serves as a weight in a trade-off between variance
reduction and sensitivity of predictive mean to hyperparameters θ. Referring back to our
global FI-based sequential design illustration from §6.2.3, FI generally increases as more
samples are added. Therefore the weight applied to the second term in the MSPE criterion
J in Eq. (9.2) diminishes as j increases, effectively up-weighting reduction in variance.

Although MSPE nests an ALC-like criteria (§6.2.2), importantly we don’t need to integrate
(or in practice sum) over reference locations. The single testing location x is our (only)
reference location. Reducing future variance is a sensible criterion in its own right, and
considering that the FI-based weight acts most strongly for low j, one may wonder whether
the extra complication of calculating first and second derivatives is “worth it” for full MSPE?
Perhaps ALC on its own – basing sequential subdesign decisions on Vj(x | xj+1; θ) only –
is sufficient to beat the simple NN set. Let’s see how these two alternatives, referred to as
MSPE and ALC below, compare qualitatively and empirically in a simple example.

9.3.2 Illustrating LAGP: ALC v. MSPE

Consider a design of size N ≈ 40, 000 on a 2d grid in [−2, 2]2.
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xg <- seq(-2, 2, by=0.02)
X <- as.matrix(expand.grid(xg, xg))
nrow(X)

## [1] 40401

Technically, greedy subdesign search (using ALC or MSPE) doesn’t require a response.
Conditional on hyperparameters θ, calculations involve XN and x only. Still, being engineered
to furnish predictions, laGP wants responses YN too, i.e., the full DN . We’ll be looking at
those predictions shortly anyways, so this is as good a time as any to introduce a challenging
test problem.

The function below was chosen by G&A because it’s sufficiently complicated to warrant
a large training set despite being in relatively small input dimension. Some have taken to
calling this “Herbie’s tooth”; it was dreamed up as a challenging Bayesian optimization
test problem by Herbie Lee (Lee et al., 2011), my PhD advisor, and looks like a molar
when plotted in 2d. We used it in §7.3.7 to illustrate an augmented Lagrangian BO method.
Although most uses, including the original, are in 2d, the function is sometimes mapped to
higher input dimension. Let

g(z) = exp (−(z − 1)2) + exp (−0.8(z + 1)2)− 0.05 sin (8(z + 0.1)) , (9.3)

be defined for scalar inputs z. Then, for inputs x with m coordinates x1, . . . , xm, the response
is f(x) = −

∏m
j=1 g(xj). Some variations in the literature use −f(x) instead, depending on

whether the application (e.g., optimization) emphasizes minima or maxima. The un-negated
version is easier to visualize with perspective plots, as we do shortly.

An implementation is provided below, modified from the Chapter 7 version to handle generic
input dimension.

herbtooth <- function(X)
{
g <- function(z)

return(exp(-(z - 1)^2) + exp(-0.8*(z + 1)^2) - 0.05*sin(8*(z + 0.1)))
return(-apply(apply(X, 2, g), 1, prod))
}

In spite of that upgrade in generality, we shall apply Herbie’s tooth here, over our large
gridded X ≡ XN , in the easy-to-visualize 2d case. For a four-dimensional application, see
Section 4.3 of Sun et al. (2019a).

Y <- herbtooth(X)

Now consider predictive location x, denoted by Xref in the code below, via local designs
constructed greedily based on MSPE and ALC.

library(laGP)
Xref <- matrix(c(-1.725, 1.725), nrow=1)
p.mspe <- laGP(Xref, 6, 50, X, Y, d=0.1, method="mspe")
p.alc <- laGP(Xref, 6, 50, X, Y, d=0.1, method="alc")
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As specified by the calls above, both design searches initialize with n0 = 6 NNs, make
greedy selections until n = 50 locations are chosen, and use an isotropic d ≡ θ = 0.1
hyperparameterized Gaussian kernel. The goal is to interpolate these deterministic evaluations.
Although one can specify a zero nugget, a more conservative default setting of g=1e-4 is
used to ensure numeric positive-definiteness. When numerics are more favorable, smaller g
often leads to better results, as we shall illustrate later in a more ambitious setting. Figure
9.24 shows the resulting selections.

plot(X[p.mspe$Xi,], xlab="x1", ylab="x2", type="n",
xlim=range(X[p.mspe$Xi,1]), ylim=range(X[p.mspe$Xi,2]))

text(X[p.mspe$Xi,], labels=1:length(p.mspe$Xi), cex=0.7)
text(X[p.alc$Xi,], labels=1:length(p.alc$Xi), cex=0.7, col=2)
points(Xref[1], Xref[2],pch =19, col=3)
legend("right", c("mspe", "alc"), text.col=c(1,2), bty="n")
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FIGURE 9.24: Comparing LAGP subdesigns under MSPE (9.2) and the ALC special case.
The predictive location x is a filled-green dot. Numbers indicate the order in which each
training-data location was greedily selected for the local subdesign.

The green dot is x ≡ Xref. Each number plotted, whether in red for ALC or black for MSPE,
indicates the order in which greedy selections were made. Although the grid of possible
candidates XN \ Xn0(x) is not shown, it’s easy to mentally visualize them filling in the
negative space. Notice that there are early selections which are not NNs, and there are late
selections which are. The order in which an NN or non-NN is chosen is hard to predict.
Non-NN subdesign selections are sometimes called satellite points. Although these satellites
are not NNs, they aren’t that far from x in the entire space, which is [−2, 2]2. (Observe that
the plotting domain is smaller than the full span of the design XN .) Finally, any differences
between ALC and MSPE are slight at best, at least aesthetically speaking.

Is the result in the figure surprising? Why do the criteria not prefer only the closest possible
points, i.e., NNs? An exponentially decaying correlation should substantially devalue locations
far from x. Gramacy and Haaland (2016) explain that the form of the correlation has very
little to do with it. Consider (scale free) reduction in variance, an expression we’ve seen
before (6.9):
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vj(x; θ)− vj+1(x; θ) = k>j (x)Gj(xj+1)vj(xj+1)kj(x) + · · ·+K(xj+1, x)2/vj(xj+1).

Although quadratic in inverse distance K(xj+1, x)2, terms are also quadratic in inverse
inverse distance, e.g.,

Gj(x′) ≡ gj(x′)g>j (x′) where gj(x′) = K−1
j kj(x′)/vj(x′).

So the criteria make a trade-off: minimize scaled distance to x while maximizing distance (or
minimizing inverse distance) to the existing design Xj(x). Or in other words, the potential
value of new design element (xj+1, yj+1) depends not just on its proximity to x, but also on
how potentially different that information is to where we already have (lots of) it, at Xj(x).

Both MSPE and ALC provide a mixture of NNs and satellite points. What about the rays,
emanating from x, that satellite points seem to arrange themselves around? Those are due
to the radial structure of our isotropic kernel. Satellite points would like to be even more
radial except that a discrete, gridded XN is thwarting that outcome. Gramacy and Haaland
show some of the interesting patterns, manifest as ribbons and rings, that materialize in
local designs depending on kernel and hyperparameterization.

How about prediction? The two local subdesigns are qualitatively similar. Predictions are,
empirically speaking, nearly identical:

p <- rbind(c(p.mspe$mean, p.mspe$s2, p.mspe$df),
c(p.alc$mean, p.alc$s2, p.alc$df))

colnames(p) <- c("mean", "s2", "df")
rownames(p) <- c("mspe", "alc")
p

## mean s2 df
## mspe -0.3725 2.519e-06 50
## alc -0.3725 2.445e-06 50

Despite being built under greedy criteria for fixed lengthscale θ = 0.1, the predictive equations
output by laGP utilize local MLEs based on data subset Dn(x). That is, after n selections,
θ̂n(x) | Dn(X) is calculated before applying the usual GP predictive equations (5.2).

mle <- rbind(p.mspe$mle, p.alc$mle)
rownames(mle) <- c("mspe", "alc")
mle

## d dits
## mspe 0.3589 7
## alc 0.3378 7

These are also nearly identical for the two sequential subdesign criteria. Very few Newton
iterations (dits) are required for convergence to θ̂n(x). Finally, both local subdesign searches
are fast.

ts <- c(mspe=p.mspe$time, alc=p.alc$time)
ts
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TABLE 9.1: Summarizing calculation times in local lengthscale estimation.

mean s2 df d dits ts
mspe -0.3725 0 50 0.3589 7 0.177
alc -0.3725 0 50 0.3378 7 0.052
nn -0.3726 0 50 0.2096 6 0.005

## mspe.elapsed alc.elapsed
## 0.177 0.052

ALC is about 3× faster because it bypasses derivative calculations, motivating that choice
as the default in the package. For a point of reference, inverting a 4000× 4000 matrix takes
about five seconds on the same machine, but this can be improved upon with customized
linear algebra (Appendix A); an improvement which would be enjoyed by laGP as well.
Never mind a 40, 000× 40, 000 decomposition – impossible on ordinary workstations.

Calculating an NN subdesign is faster even though the computational order is the same.
Constant and lower order (quadratic and linear terms) add substantially to the work required
to make greedy ALC selections. Yet calculating MLE θ̂n(x) at the end is what dominates.
Table 9.1 summarizes predictive quantities and calculations involved in local lengthscale
estimation.

p.nn <- laGP(Xref, 6, 50, X, Y, d=0.1, method="nn")
p <- rbind(p, nn=c(p.nn$mean, p.nn$s2, p.nn$df))
mle <- rbind(mle, nn=p.nn$mle)
ts <- c(ts, nn=p.nn$time)
kable(cbind(p, mle, ts),
caption="Summarizing calculation times in local lengthscale estimation.")

NN is the exception in lengthscale hyperparameter d ≡ θ̂n(x) and speed. NN’s shorter
lengthscale can be explained by its more compact subdesign: longer lengthscales require
support from (absent) longer pairwise distances. Considering speed differences, it’s worth
asking if the extra effort of ALC or MSPE local subdesign is worth it compared to NN.
Until we’re able to collect predictions at a suite of testing locations, for many x ∈ X , it’s not
worth commenting in finer detail on relative accuracies. If you want to take my word for it:
for fixed subdesign size n, ALC and MSPE outperform NN. But a more natural comparator
is NN based on a bigger n′ > n, one requiring a commensurate amount of computational
time to compute. That’s a difficult comparison to make, or at least to make fair. See, for
example, Section 3.1 of Gramacy (2016) which illustrates that, in at least one view on the
borehole data, n = 50 ALC-based subdesigns yield predictions that are more accurate than
ones based on much larger n′ = 200 NN local subsets in about the same amount of time.

Complicating things further, there are several mechanisms built into laGP targeting search
speedups at the expense of (possibly) less faithful greedy selection. A parameter close adjusts
the scope of candidates entertained for local acquisition. Rather than search over all XN \
Xj(x), one can safely entertain only close ≡ N ′ � N NNs, say close=1000 (the default),
without any effect on the chosen subdesign compared to one obtained under an exhaustive
search. Sung et al. (2018) show how an even smaller, but more dynamically determined,
set can be entertained by ruling out large swaths of XN \ Xj(x) as “noncompetitive for
selection”. Gramacy et al. (2014) demonstrate how greedy selection among tens of thousands
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of candidates can be off-loaded to a GPU for essentially instantaneous execution; Gramacy
and Haaland (2016) illustrate how exhaustive discrete searches over XN \ Xj(x) can be
replaced by simple 1d line searches, along rays emanating from x, whose solutions may be
snapped back to the original (un-selected) design locations; finally Sun et al. (2019b) provide
a similar – perhaps more exact but also more involved – approach using gradients.

In a nutshell, one can dramatically speed up greedy ALC and MSPE searches with little
impact on accuracy, furnishing predictions more accurate than NN in about the same amount
of time. All of the methods listed above are built into laGP for ALC (and some also for
MSPE). An exercise in §9.4 entertains some of these alternatives alongside defaults. Perhaps
the best reason to prefer ALC and MSPE over NN is that G&A show empirically that
those methods lead to better numerical conditioning of the resulting n× n local covariance
matrices. When training data are too close together in the design space, the covariance
structure becomes difficult to decompose. Local GP approximation via NN can exacerbate
this numerical challenge; satellite points from ALC and MSPE offer some relief. Numerically
stable local prediction is a crucial engineering detail to consider in repeated application, say
over a dense testing set – which is our next subject.

9.3.3 Global LAGP surrogate

How can this local strategy be extended to predict on a big testing/predictive set X ? One
simple option is to serialize: tack on a for loop over each x ∈ X . But why serialize when
you can parallelize? Each Dn(x) is obtained independently of other x’s, so they may be
constructed simultaneously. In laGP’s C implementation, that’s as simple as a parallel
for OpenMP33 pragma.

#ifdef _OPENMP
#pragma omp parallel for private(i)

#endif
for(i = 0; i < npred; i++) { ...

It really is that simple. The original implementation in laGP used exactly that pragma.
Subsequent versions have upgraded to more elaborate families of pragmas in order to trim
overheads inherent in parallel for.

With modern laptops having two hyperthreaded cores (meaning they can run four threads
in parallel), and many desktops having eight (16 threads) or more, parallelization in imple-
mentation is essential to taking full advantage of contemporary architectures. OpenMP is
the simplest way to accomplish shared memory parallelization (SMP)34 in C and Fortran.
Statistically speaking, leveraging SMP means exploiting or introducing statistical indepen-
dence. Local approximation with LAGP imposes exactly this kind of statistical, and thus
algorithmic independence structure already. No further approximation is required in order
to predict with laGP in parallel for many x.

To illustrate, consider the following ≈ 10K-element predictive grid in [−2, 2]2, spaced to
avoid the original N ≈ 40K design.

xx <- seq(-1.97, 1.95, by=0.04)

33https://www.openmp.org/
34https://en.wikipedia.org/wiki/Parallel_programming_model#Shared_memory

https://www.openmp.org/
https://en.wikipedia.org/wiki/Parallel_programming_model#Shared_memory
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XX <- as.matrix(expand.grid(xx, xx))
YY <- herbtooth(XX)

The aGP function automates “iteration” over elements of X = XX, and its omp.threads
argument controls the number of OpenMP threads. Here we’ll use 8 threads, even though
my desktop is hyperthreaded (can do 16).

nth <- 8
P.alc <- aGP(X, Y, XX, omp.threads=nth, verb=0)
P.alc$time

## elapsed
## 70.71

Observe that the compute time reflects almost linear scaling by comparison to the time
extrapolated for our earlier singleton ALC run.

p.alc$time*nrow(XX)/8

## elapsed
## 63.71

Figure 9.25 offers a view of the predictive mean surface thus obtained. That surface is
negated to ease visibility in this perspective.

persp(xx, xx, -matrix(P.alc$mean, ncol=length(xx)), phi=45, theta=45,
xlab="x1", ylab="x2", zlab="yhat(x)")

x1 x2

yhat(x)

FIGURE 9.25: Global approximation by independent and parallel LAGP predictions on
Herbie’s tooth.
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Perhaps you can see why this surface is called “Herbie’s tooth”. Although input dimension is
low, input–output relationships are nuanced and merit a dense design to fully map. For a
closer look, consider a slice through that predictive surface at x2 = 0.51. R code below sets
up that slice . . .

med <- 0.51
zs <- XX[,2] == med
sv <- sqrt(P.alc$var[zs])
r <- range(c(-P.alc$mean[zs] + 2*sv, -P.alc$mean[zs] - 2*sv))

. . . followed by its visualization in Figure 9.26. A 1d view allows us to inspect error-bars
and compare to the truth all in the same plotting window.

plot(XX[zs,1], -P.alc$mean[zs], type="l", lwd=2, ylim=r,
xlab="x1", ylab="y")

lines(XX[zs,1], -P.alc$mean[zs] + 2*sv, col=2, lty=2, lwd=2)
lines(XX[zs,1], -P.alc$mean[zs] - 2*sv, col=2, lty=2, lwd=2)
lines(XX[zs,1], -YY[zs], col=3, lwd=2, lty=3)
legend("bottom", c("mean", "95% interval", "truth"), lwd=2, lty=1:3,
col=1:3, bty="n")
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FIGURE 9.26: Slice x2 = 0.51 through Figure 9.25, augmented with predictive interval
and true response.

What do we see? Prediction is accurate; had the green-dotted truth line been plotted first,
with black mean coming after, the black would’ve completely covered the green, rendering
it invisible. Error bars are very tight on the scale of the response; again, had black come
after red we’d barely see red peeking out around black. Despite no continuity being enforced
– calculations at nearby locations are independent and potentially occur in parallel – the
resulting surface looks smooth to the eye.

What don’t we see? Accuracy, despite generally being high, is not uniform. Consider
discrepancy with the truth, measured out-of-sample.
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diff <- P.alc$mean - YY

Figure 9.27 uses the same slice as above. We’re over-predicting. Systematic pattern and
persistent positive bias is evident, although extremely small, judging by the scale of the
y-axis.

plot(XX[zs,1], diff[zs], type="l", lwd=2, xlab="x1", ylab="yhat-y")
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FIGURE 9.27: Illustrating bias through differences between predictions and truth in the
slice from Figure 9.26.

Remember that we’re using a zero-mean GP. Evidently in this slice, mean reversion is pulling
us up a little too far, away from the training data and consequently away from the true
response at these testing locations. Having an explanation helps, but it’s still unsatisfying to
be leaving systematic predictive potential on the table. Also notice the lack of smoothness
in the discrepancy surface. Training and testing responses are both smooth (and observed
without noise), so it must be that the predictor – the LAGP surrogate – is not smooth. In
fact it’s discontinuous, but on a small scale and not everywhere. Nearby predictive locations
eventually share the same subdesign (as x′ → x) and thus inherit GP smoothness properties
on a fine local scale.

Focusing on patterns evident in the bias plotted in Figure 9.27, what limits LAGP’s dynamic
ability? Why does it leave such strong signal in the residuals? Considering the density of
the input design in 2d, perhaps the fit is not flexible enough to characterize fast-moving
changes in input–output relationships. Although an approximation, the local nature of
modeling means that, from a global perspective, the predictor is more flexible than a full-N
stationary GP predictor. So we can rest assured that an ordinary full GP wouldn’t fare any
better in this regard, assuming the calculations were computationally tractable. Statistically
independent fits in space, across elements of a vast predictive grid, lends aGP a degree of
nonstationarity. By default, the laGP calls inside aGP go beyond that by learning separate
θ̂n(x) local to each x ∈ X by maximizing local likelihoods.

In fact local lengthscales vary spatially, and relatively smoothly. Figure 9.28 plots θ̂n(x) as
x varies along our 1d slice. A loess smoothed alternative is overlayed in dashed-red.
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plot(XX[zs,1], P.alc$mle$d[zs], type="l", lwd=2, xlab="x1",
ylab="thetahat(x)")

df <- data.frame(y=log(P.alc$mle$d), XX)
lo <- loess(y ~ ., data=df, span=0.01)
lines(XX[zs,1], exp(lo$fitted)[zs], col=2, lty=2, lwd=2)
legend("topleft", "loess smoothed", col=2, lty=2, lwd=2, bty="n")
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FIGURE 9.28: Locally estimated and smoothed lengthscales along the slice from Figures
9.26–9.27.

Spatial signal in rate of decay of inverse exponentiated squared Euclidean distance-based
correlation is distinct in Figure 9.28, but the pattern doesn’t perfectly align with spatial
bias along the slice shown in Figure 9.26. Smoothing θ̂n(x) may help downplay numerical
instabilities, but can in general represent a problem just as computationally difficult as the
original one: an implicitly large-N spatial regression. Exceptions arise when working with
grids, which is not uncommon if predicting for the purpose of visualization. (In other words,
the tail doesn’t necessarily wag the dog when smoothing over θ̂n(x)’s spatially in x.)

Although the spatial field is locally isotropic, tacitly assuming stationarity to a certain extent,
globally characteristics are less constrained. Nevertheless, the extra degree of flexibility
afforded by spatially varying θ̂n(x) is not enough to entirely mitigate the small amount of
bias we saw above. Several enhancements offer potential for improved performance. Perhaps
the first, and most obvious, entails deploying an anisotropic/separable correlation structure.
That’s a mere implementation detail, so hold that thought for a moment.

Another option is to put those θ̂n(x) to better use. You see, the local subdesign process
must start somewhere – condition on “known” quantities – and laGP utilizes a fixed θ0 ≡
d to that end. By default, aGP invokes a built-in function called darg to choose a d to use
identically for all x ∈ X ≡ XX. Alternatively, a two-stage scheme, re-designing Xn(x) | θ̂n(x),
could help soften the influence of that ultimately arbitrary initialization. Below, subdesign
search is based on the smoothed lengthscales from the first stage.
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P.alc2 <- aGP(X, Y, XX, d=exp(lo$fitted), omp.threads=nth, verb=0)

Basically, we’re redoing the whole local analysis, globally over all x ∈ X , but with a lengthscale
unique to x and thus a subdesign tailored to dynamics nearby x. Previously only the topology
of the global design XN mattered nearby x to determine Xn(x). Now conditioning on θ̂n(x)
from an earlier run gets responses Yn involved too. Comparing predictions from the first
iteration to those from the second in terms of RMSE . . .

rmse <- data.frame(alc=sqrt(mean((P.alc$mean - YY)^2)),
alc2=sqrt(mean((P.alc2$mean - YY)^2)))

rmse

## alc alc2
## 1 0.0006453 0.0003161

. . . reveals a degree of improvement, albeit perhaps not by an impressive amount (a factor
of around 2 in this case). Such a two-stage analysis offers consistent, if slight improvement
across a large swath of examples. Yet that thinking represents the tip of an iceberg: there
are lots of ways to prime the pump, as it were. Before we get to those, let’s transition to
a more ambitious example. By going back to the borehole (§9.1.3) we’ll be able to draw
comparisons to a wider range of alternatives, coming full circle to CSK. (Objects x and y
are unchanged from our earlier borehole examples, but X, Y and XX must be rebuilt from
those.)

X <- x[1:n,]
Y <- y[1:n]
XX <- x[-(1:n),]
YY <- y[-(1:n)]

The borehole example benefits from long lengthscales, so aGP calls below adjust the default
maximum lengthscale upwards to twenty. As with the default nugget g=1e-4, darg’s are
conservative, but hold that thought for a moment. Long lengthscales are likely to yield
poorly conditioned covariance matrices. Below an ordinary aGP run is invoked first, followed
by a run primed with lengthscales θ̂n ≡ out1$mle$d.

out1 <- aGP(X, Y, XX, d=list(max=20), omp.threads=nth, verb=0)
out2 <- aGP(X, Y, XX, d=list(start=out1$mle$d, max=20),
omp.threads=nth, verb=0)

Recall that we used pointwise proper scores to compare CSK methods. The table below
collects new timing and score results, combining with those obtained earlier for CSKs.

times <- c(times, aGP=as.numeric(out1$time), aGP2=as.numeric(out2$time))
scores <- c(scores, aGP=scorep(YY, out1$mean, out1$var),
aGP2=scorep(YY, out2$mean, out2$var))

rbind(times, scores)
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## sparse99 dense sparse999 aGP aGP2
## times 2945.376 3066.946 351.746 4.9170 4.7390
## scores -1.918 -6.966 -2.105 -0.6545 -0.6149

That aGP is faster than our earlier CSK calculations is an understatement; the factor of
improvement on time is a whopping 599. Local surrogates are also quite a bit more accurate.
Perhaps this is surprising because aGP, being based on many independent laGP fits, utilizes
far less data to make predictions. That can translate into over-estimates of variance which is
penalized by score. Since training and testing data are noise free, one might instead compare
using Mahalanobis distance, as explained in §5.2.1 nearby Eqs. (5.6)–(5.7). However, aGP only
provides point-wise variance, necessitating a Mahalanobis approximation like Nash–Sutcliffe
efficiency35 or out-of-sample R2. The curious reader may wish to update our comparison
with those values, or consult the original G&A paper.

Now back to that separable lengthscale “implementation detail”. We’re able to beat CSK
on two fronts, in time and score, with an isotropic correlation function. But CSK had the
benefit of learning decay of correlation (and sparsity) in a coordinate-wise fashion. A function
aGPsep, which is the separable analog of aGP, estimates separate lengthscales θk(x) for each
coordinate k = 1, . . . ,m.

outs <- aGPsep(X, Y, XX, d=list(max=20), omp.threads=nth, verb=0)

Using separable lengthscales represents a bigger implementation feat than at first it may
seem, requiring an additional four thousand lines of C and R code in laGP. Working with
a higher dimensional hyperparameter space, gradients, etc., demands extra scaffolding.
One particular challenge centers around R’s built-in BFGS solver which, due to an antique
implementation utilizing static variables36, is not thread safe37. Parallelization with OpenMP
requires an intricate blocking mechanism to ensure that threaded BFGS calculations for
θ̂n(x) and θ̂n(x′) don’t interfere with one another. In the simpler scalar θ setting laGP is
able to avoid BFGS via R’s optimize (rather than optim) back-end.

Augmenting our table, notice below that utilizing separable lengthscales results in a similarly
speedy execution, but yields substantially more accurate prediction.

times <- c(times, aGPs=as.numeric(outs$time))
scores <- c(scores, aGPs=scorep(YY, outs$mean, outs$var))
rbind(times, scores)

## sparse99 dense sparse999 aGP aGP2 aGPs
## times 2945.376 3066.946 351.746 4.9170 4.7390 4.92000
## scores -1.918 -6.966 -2.105 -0.6545 -0.6149 0.03639

A second pass, priming a new aGPsep run with θ̂n’s, offers slight improvements. Even better
results may be obtained by taking a step back for more global perspective.

35https://en.wikipedia.org/wiki/Nash-Sutcliffe_model_efficiency_coefficient
36https://stackoverflow.com/questions/572547/what-does-static-mean-in-c
37https://en.wikipedia.org/wiki/Thread_safety

https://en.wikipedia.org/wiki/Nash-Sutcliffe_model_efficiency_coefficient
https://stackoverflow.com/questions/572547/what-does-static-mean-in-c
https://en.wikipedia.org/wiki/Thread_safety
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9.3.4 Global/local multi-resolution effect

Surely something is lost on this local approach to GP approximation. Kaufman et al. astutely
observed that, especially when inducing sparsity in the covariance structure, it can be
important to “put something global back in”. Recall that they partition modeling between
trend (global/nonstationary) and residual (local/stationary), with the former being basis-
expanded linear and the latter being spatial. That’s not easily mapped to the LAGP setup,
which is the other way around: the local part is where the nonstationary effect comes in.

Towards an appropriate analog in the LAGP world, consider not a partition between trend
and residual, but rather between lengthscales: global and local. Liu (2014) showed that
a “consistent” estimator of global (separable) lengthscale can be estimated through more
manageably sized random data subsets if those subsets are generated with a block-bootstrap
Latin hypercube sampling (BLHS) scheme. Also see Zhao et al. (2018). Rather than dig much
under the surface of what Liu meant by “consistent”, instead let’s take it as “similar to what
you’d get by maximizing the full data log likelihood”, i.e., the MLE. Basically, you don’t
need to directly manipulate training data from a big design to estimate the lengthscale you
would get from the big design. Now lengthscale hyperparameter estimates aren’t particularly
useful on their own. A missing ingredient in that work is obtaining predictions, given those
lengthscales, comparable to ones that would’ve been obtained from the big design. Those
would still require big-matrix decomposition.

The idea is to convert global lengthscales into local subdesigns, subsequent local refinement
of lengthscale, and ultimately tractable and accurate prediction. Here we take Liu’s BLHS as
inspiration and use a simpler random subset analog. A random subset could not guarantee a
similar distribution of pairwise distances compared to the original. From that perspective,
BLHS accomplishes a feat akin to betadist designs introduced in §6.2.3, but for subdesign.
See Sun et al. (2019a) for more detail on BLHS, an implementation, and an empirical
illustration of why it’s better than simple random subsampling, which nevertheless works
very well as a quick-and-dirty alternative. A homework exercise in §9.4 invites readers to
entertain a blhs (from laGP) variation of the following.

Consider a random 1000-sized subset in our running borehole example.

tic <- proc.time()[3]
nsub <- 1000
d2 <- darg(list(mle=TRUE, max=100), X)
subs <- sample(1:nrow(X), nsub, replace=FALSE)
gpsi <- newGPsep(X[subs,], Y[subs], rep(d2$start, m), g=1/1000, dK=TRUE)
that <- mleGPsep(gpsi, tmin=d2$min, tmax=d2$max, ab=d2$ab, maxit=200)
psub <- predGPsep(gpsi, XX, lite=TRUE)
deleteGPsep(gpsi)
toc <- as.numeric(proc.time()[3] - tic)
that$d

## [1] 0.4489 34.5091 36.3133 5.9696 31.7979 5.7055 2.3457 11.5340

Values θ̂(g) ≡ that quoted above don’t matter in and of themselves, but there they are. We
can repeat that a bunch of times, in a bootstrap-like fashion, but that’s overkill. As a sanity
check, observe that global random subset GP prediction is pretty good on its own, because
the response is super smooth and pretty stationary.
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times <- c(times, sub=toc)
scores <- c(scores, sub=scorep(YY, psub$mean, psub$s2))
rbind(times, scores)

## sparse99 dense sparse999 aGP aGP2 aGPs sub
## times 2945.376 3066.946 351.746 4.9170 4.7390 4.92000 110.1060
## scores -1.918 -6.966 -2.105 -0.6545 -0.6149 0.03639 0.6384

In fact, that result almost makes you wonder what was going on with CSK. All that sparsity-
inducing structure and it’d have been sufficient (even better) to take a random subset and
run with that, in a fraction of the time. Subset-based GP surrogates even beat laGP, but at
the expense of greater computation. Keep in mind this is a small example, and in particular
that nsub = 1000 is a sizable portion of the total, N = 4000. It’s easy to engineer much
larger-N examples where laGP is the only viable option in terms of accuracy per unit flop.
The real power comes from combining global and local estimates.

A trick from Sun et al. (2019a) is to use estimated global lengthscales θ̂(g) to pre-scale inputs
XN , and any testing locations X , so that afterwards the effective global lengthscales are 1.
Careful, θ-values modulate squared distance, so a square root must be taken before applying
these back on the original scale of XN .

scale <- sqrt(that$d)
Xs <- X
XXs <- XX
for(j in 1:ncol(Xs)) {
Xs[,j] <- Xs[,j]/scale[j]
XXs[,j] <- XXs[,j]/scale[j]

}

Next fit LAGPs on these scaled inputs, stretching and compressing the input space, achieving
a “multi-resolution effect”. With scaled inputs, an initial setting of d=1makes sense. Otherwise
the call below is the same as our aGP above. Notice that Y-values are the same as before.
We’re not modeling a residual obtained from the “sub”-predictor, although we could. Local
structure is isotropic (via aGP), but we could similarly do separable (via aGPsep). Both
have been done before – even together – with success. The LAGP comparator included in a
competition summarized by Heaton et al. (2018) was set up in that way, using aGPsep on
residuals and pre-scaled inputs obtained from a random subset-trained GP predictor.

out3 <- aGP(Xs, Y, XXs, d=list(start=1, max=20), omp.threads=nth, verb=0)

Before making yet another table with one new column, how about we do one more thing
first (for two more columns instead)? The default nugget value in laGP/aGP is too large for
most deterministic computer experiment applications. It was chosen conservatively so new
users don’t get frustrated by inscrutable error messages. But we can safely dial it way down
for this borehole example.

out4 <- aGP(Xs, Y, XXs, d=list(start=1, max=20), g=1/10000000,
omp.threads=nth, verb=0)
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TABLE 9.2: Comparing CSK and LAGP.

times scores
sparse99 2945.376 -1.918
dense 3066.946 -6.966
sparse999 351.746 -2.105
aGP 4.917 -0.654
aGP2 4.739 -0.615
aGPs 4.920 0.036
sub 110.106 0.638
aGPsm 4.746 1.008
aGPsmg 4.718 5.288

Table 9.2 finishes off the comparison with a prettier presentation, including the two new
columns.

times <- c(times, aGPsm=as.numeric(out3$time),
aGPsmg=as.numeric(out4$time))

scores <- c(scores, aGPsm=scorep(YY, out3$mean, out3$var),
aGPsmg=scorep(YY, out4$mean, out4$var))

kable(t(rbind(times, scores)), digits=3,
caption="Comparing CSK and LAGP.")

Wow, that’s lots better without lots more time! Technically, some of the times in the table
above should incorporate time accrued by the earlier calculations they condition on. For
example, a full accounting of compute times for aGPsm and aGPsmg would be 5 seconds
longer. A caveat is that global random subset-based GP training of θ̂(g) represents a fixed
startup cost no matter how large the predictive set |X | is.

9.3.5 Details and variations

Before turning to more realistic examples, including our motivating satellite drag application
from §2.3 and CRASH calibration from §2.2, let’s codify LAGP algorithmically. Then I
shall introduce some of the rather newer variations developed in order to support those
challenging applications.

Algorithm

Pseudocode in Algorithm 9.1 details aGPsep, although its application with a singleton
X = {x}, skipping Steps 1 and 3 (focusing only on 2), provides the essence of laGPsep.
Local approximate GP regression at x is deployed as a subroutine applied identically over
elements of a vast predictive set X . Isotropic aGP/laGP arise as trivial simplifications. The
pseudocode is agnostic to a choice of active learning heuristic J(·, ·) and covariance kernel
K(·, ·) except that the latter be distance-based as NNs are used in several places, e.g., as
a means of priming and of short-cutting unnecessarily huge exhaustive searches through
pre-selection of nearby candidates.
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Algorithm 9.1 (Local) Approximate GP Regression

Assume criterion J(xj+1, x; θ), e.g., MSPE (9.2) or ALC, on distance-based covariance
through hyperparameters θ which are vectorized below; any priors/restrictions on
θ may be encoded through a log posterior/penalty addendum to GP log likelihood
`(θ;D).

Require large-N training data DN = (XN , YN ) and predictive/testing set X which
might be singleton X = {x}; local design size n� N with NN init size n0 < n and
NN search window size n ≤ N ′ � N .

Then
1. Optional multi-resolution modeling: additionally require subset size n < nsub �
N and solve for global MLE hyperparameters; otherwise require initial θ0 and
set θ ← θ0.
a. Draw n indices In ⊂ {1, . . . , N} without replacement and form global data

subset Dn = (Xn, Yn) where Xn = XN [In, :] and Yn = YN [In]
b. Calculate θ̂(g) = argminθ − `(θ).
c. Scale training and testing inputs. For each of k = 1, . . . ,m:

XN [:, k]← XN [:, k]
/√

θ̂
(g)
k and X [:, k]← X [:, k]

/√
θ̂

(g)
k .

d. Set θ ← 1.
2. (Parallel) For each predictive location x ∈ X calculate GP surrogate with data

subset Dn(x).
a. Build candidate set Xcand

N ′ (x) of N ′ NNs in XN to x.
b. Initialize Xn0(x) with n0 nearest Xcand

N ′ (x) to x and remove these from the
candidate set, yielding Xcand

N ′−n0
(x).

c. For j = n0, . . . , n− 1, acquire the next local design element.
i. Optimize criterion J to select

xj+1 = argminx′∈Xcand
N′−j

J(x′, x; θ) (exhaust., approx., or parallel).

ii. Update Xj+1(x)← Xn ∪ {xj+1} and Xcand
N ′−j−1(x)← Xcand

N ′−j(x) \ xj .
End For

d. Pair Xn(x) with Yn-values to form local data Dn(x).
e. Optionally update hyperparameters θ ← θ̂n(x) where

θ̂n(x) = argminθ − `(θ;Dn(x)).

f. Record predictions, e.g., pointwise means and variances (5.2) given θ and
Dn(x).

End For
3. Optionally repeat Step 2 with θ ← θ̂n(x)-values, separately for each x, potentially

after smoothing.

Return predictions on X , e.g., as |X | × 2 matrix of means and variances.



438 9 GP Fidelity and Scale

Several details, caveats and variations are worth explaining. Implementation in the laGP
package calculates Student-t predictive equations under a reference prior for local scale
parameter τ2. Consequently, an additional degrees-of-freedom parameter is returned. Option-
ally, when Xi.ret=TRUE an n×|X | matrix of indices into XN is returned to enable rebuilding
of local designs and GP surrogates. Local MLE calculations (Step 2e) can be turned off with
modifications to the d argument; incorporation of nuggets is facilitated by modifications to
the default g argument. Only ALC is fully implemented by all variations: separable, isotropic,
and otherwise. MSPE and Fisher information (FI) are provided as options for isotropic
implementations only. Fully NN local approximation, which is accommodated by specifying
n0 = n, could skip many of the lettered sub-steps of Step 2 in the algorithm. These are
superfluous as NN calculation is not influenced by hyperparameters θ.

Step 1, creating a multi-resolution effect through pre-estimation of global lengthscale, assumes
random subsampling; a BLHS alternative is similar, but would require an additional for
loop. See blhs in the package documentation for more detail on this variation. Working with
residuals from a global subset predictor (Heaton et al., 2018) is a potential variation that
may be worth exploring. Step 2 may be SMP parallelized (on a single multi-core compute
node) through the omp.threads argument to aGP/aGPsep. For distributed parallelization
over the nodes of a cluster, see aGP.parallel. At this time there’s no aGPsep.parallel
analog although a bespoke translation would be rather straightforward.

Step 2, implementing laGP/laGPsep local subdesign search as a subroutine, is initialized
with start ≡ n0 = 6 NNs by default. Smaller start is not recommended on numerical
stability grounds. Remaining local design selections, up to end ≡ n = 50, follow the greedy
search criterion optimized in Step 2c. Rather than search over all XN \Xj(x), which might
be an enormous set, Algorithm 9.1 utilizes local candidates Xcand

N ′ (x) of N ′ NNs to x. The
number close ≡ N ′ of such candidates offers a compromise between full enumeration and
an more limited approximate search. Package default close=1000 yields identical results
compared to more exhaustive alternatives on a wealth of benchmark problems. Choosing
N ′ = n would facilitate a clumsy reduction to fully NN local approximation.

Several alternative Step 2c implementations offer potential for further speedups from shortcuts
under ALC. Providing method="alcray" replaces iteration over candidates with a 1d line
search over rays emanating from x (Gramacy and Haaland, 2016), with solutions snapped
back to candidates. Derivatives offer another way to replace discrete with continuous search.
Sun et al. (2019a) provide details, with implementation as method="alcopt". In both cases
the number of candidates N ′, to which continuous solutions are snapped, can safely be
increased without taking a substantial computational hit. The laGP package automatically
uses close=10000 for such cases. Gramacy et al. (2014) describe an exhaustive GPU-
based search implemented in CUDA38. Arguments including num.gpus, parallel="gpu",
and alc.gpu support this interface, however special compilation of the original sources is
required to enable these features. Speedups up to a factor of seventy have been observed in
benchmarking exercises.

Finally, Step 3 provides the option of multiple passes through local design with refinements
of hyperparameterization θ̂n(x) learned in earlier stages. One re-pass can yield minor
improvements in terms of predictive accuracy; more re-passes are not usually beneficial.
When stretching and compressing inputs with globally estimated lengthscales θ̂(g) from Step
1, re-passes offer limited additional benefit. (That is, typically one would not engage both of
Steps 1 and 3 simultaneously.)

38https://www.geforce.com/hardware/technology/cuda

https://www.geforce.com/hardware/technology/cuda


9.3 Local approximate GPs 439

Joint path sampling

A downside of Algorithm 9.1 – equations furnished by aGP/aGPsep, or cluster analog
aGP.parallel – is that predictive summaries are point-wise. A consequence of statistical
independence, from which parallelization advantages stem, is a lack of predictive covariance
across X ≡ XX. Sun et al. (2019a) describe how to extend LAGP to sets of points, which
they call joint path sampling, motivated by a desire for joint predictive equations along a
trajectory of orbits in their/our motivating satellite drag application (§2.3).

Consider a fixed, discrete and finite set of input locations W ⊂ X . A natural extension of
the ALC criterion, the essence of which is reduction in variance vj(x)− vj+1(x), is

vj(W )− vj+1(W ) = 1
|W |

∑
w∈W

{vj(w)− vj+1(w)} ,

= 1
|W |

∑
w∈W

{
k>j (w)Gj(xj+1)vj(xj+1)kj(w)+2k>j (w)gj(xj+1)K(xj+1, w)+K(xj+1, w)2

vj(xj+1)

}
.

Notation here, including gj and Gj , etc., is borrowed from partitioned inverse-based updating
equations (6.8) from §6.3. Observe that vj(W ) − vj+1(W ) is a scalar, measuring average
reduction in predictive variance over W . We wish to maximize over this criterion to greedily
determine new xj+1 and augment local design Xn(W ). Otherwise the setup is the same as
Xn(x) with ALC, which arises as a special case under the degenerate path W = {x}.

To illustrate, consider again Herbie’s tooth in 2d. Whenever you provide a set of reference
locations to laGP/laGPsep, via Xref comprised of multiple rows, a joint path ALC criterion
is automatically engaged. Joint path sampling is not implemented in the package for other
criteria, J , like MSPE. Code below recreates training data from earlier and designs a path
W in 2d.

x <- seq(-2, 2, by=0.02)
X <- as.matrix(expand.grid(x, x))
Y <- herbtooth(X)
wx <- seq(-0.85, 0.45, length=100)
W <- cbind(wx - 0.75, wx^3 + 0.51)

Next, three variations on joint path sampling are entertained. The first is based on ALC.
When using candidates Xcand

N ′ (W ) to shortcut local search it makes sense to allow N ′ to grow
with the number of points (or length) of the path, |W |. The second is NN: ignoring J and
gathering samples based on nearest neighbors calculated in terms of aggregated Euclidean
distance for all elements of W . No candidates are required for this comparator. The third
one approximates the first using derivative-based/continuous search (Sun et al., 2019a), with
snaps back to Xcand

N ′ (W ).

p.alc <- laGPsep(W, 6, 100, X, Y, close=10000, lite=FALSE)
p.nn <- laGPsep(W, 6, 100, X, Y, method="nn", close=10000, lite=FALSE)
p.alcopt <- laGPsep(W, 6, 100, X, Y, method="alcopt", lite=FALSE)

Providing lite=FALSE causes full predictive covariance matrices (5.3) to be returned. Visuals
for these local joint path designs follow in Figure 9.29. Points selected by ALC are indicated
as red open circles and denoted as “ALC-ex”. Suffix “-ex” reminds us that they’re based
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on exhaustive, discrete search. Analogous ones from NN (green diamonds) and derivative-
based optimization (blue diamonds/“ALC-opt”) have been shifted down-right and up-left,
respectively, to ease visualization. Path W , in all three cases (shifted as appropriate), is
shown as a solid black line.

plot(W, type="l", xlab="x1", ylab="x2", xlim=c(-2.25,0),
ylim=c(-0.75,1.25), lwd=2)

points(X[p.alc$Xi,], col=2, cex=0.6)
lines(W[,1] + 0.25, W[,2] - 0.25, lwd=2)
points(X[p.nn$Xi,1] + 0.25, X[p.nn$Xi,2] - 0.25, pch=22, col=3, cex=0.6)
lines(W[,1] - 0.25, W[,2] + 0.25, lwd=2)
points(X[p.alcopt$Xi,1] - 0.25, X[p.alcopt$Xi,2] + 0.25, pch=23,
col=4, cex=0.6)

legend("bottomright", c("ALC-opt", "ALC-ex", "NN"),
pch=c(22, 21, 23), col=c(4, 2, 3))
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FIGURE 9.29: Joint local design along a path of predictive/reference locations under
three criteria. Two paths are shifted from the original (middle) to ease visualization.

Observe how “ALC-ex” sacrifices some NNs for satellite points, primarily selected along rays
emanating from the ends of the line W . Some are quite far out. Derivative-based search,
exemplified by “ALC-opt”, exhibits similar behavior but to a lesser extent. Instead it prefers
satellite points off the middle of W , which are likely inferior. Value in “ALC-opt” is primarily
computational.

c(alc=p.alc$time, alcopt=p.alcopt$time, nn=p.nn$time)

## alc.elapsed alcopt.elapsed nn.elapsed
## 10.836 0.221 0.044

Assessing these comparators out-of-sample would only be fair upon averaging over repre-
sentative, but random, such W . See randLine in the package. Sun et al. provide several
such comparisons, including pointwise benchmarks. To summarize the outcome of those
experiments: ALC-ex is the most accurate but also the slowest; NN is the fastest but least
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accurate. ALC-opt offers a nice compromise. As a testament to the value of joint path
sampling, Figure 9.30 shows samples from the joint predictive distribution (5.3) provided by
“ALC-ex”.

YY <- rmvnorm(100, p.alc$mean, p.alc$Sigma)
matplot(wx, t(YY), col="gray", type="l", lty=1,
xlab="Indices wx of W", ylab="Y(W)")
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FIGURE 9.30: Full-covariance-based draws from the posterior predictive distribution
along the local path from Figure 9.29.

Such samples would not be possible with an ordinary, pointwise (aGP/aGPsep) alternative.
Note that although this example featured a connected W , sampled discretely on a grid, the
joint path sampling methodology, and its implementation in laGP/laGPsep, is applicable to
any Xref ≡W characterized as a discrete set of points and stored in a matrix. Recall that
we looked at a similar setting in the context of reference-based IMSPE design in §6.1.2.

That concludes our methodological description and demonstration of LAGP surrogate
modeling. For further examples, consult package documentation or see Gramacy (2016), which
is also available as vignette("laGP") with the package. We turn now to two motivating
applications where LAGP methods excel: large-scale satellite drag emulation (§2.3) and
Kennedy and O’Hagan (KOH) style modularized calibration (§8.1.2) of radiative shock
hydrodynamics computer simulations and field measurements (§2.2).

9.3.6 Two applications

Satellite drag

Let’s revisit the Hubble Space Telescope (HST) atmospheric drag simulations introduced in
§2.3. Recall that the goal was to be able to predict drag coefficients (our response), globally
in low Earth orbit (LEO), to within 1% root mean-squared percentage error (RMSPE).
In Chapter 2 we restricted our analysis to a small training dataset with limited ranges
of yaw and pitch angles. Here data from a larger simulation campaign is entertained over
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the full range of those angles. There are eight inputs, including HST’s panel angle, and
supplementary material linked from the book web page39 contains files with 2 million runs
obtained on LHS designs, separately for each chemical species (O, O2, N, N2, He, H). Our
focus here will be on helium (He) runs, one of the harder species, whose design is built as
two separate 1 million-sized LHSs.

Consider the first 1-million run LHS only.

hstHe <- read.table("tpm-git/data/HST/hstHe.dat", header=TRUE)
nrow(hstHe)

## [1] 1000000

Inputs are in natural units, so begin by coding these to the unit cube.

m <- ncol(hstHe) - 1
X <- hstHe[,1:m]
Y <- hstHe[,m+1]
maxX <- apply(X, 2, max)
minX <- apply(X, 2, min)
for(j in 1:ncol(X)) {
X[,j] <- X[,j] - minX[j]
X[,j] <- X[,j]/(maxX[j] - minX[j])

}
range(Y)

## [1] 0.3961 9.1920

The range of output Y-values is relatively tame, so no need to re-scale these. It can help to
center them, so that the mean-zero assumption in our (local approximate) GPs is not too
egregiously violated, but that’s not required to get good results in this exercise. Sun et al.
(2019a) considered ten-fold CV on these data, and similarly for the other five species.

cv.folds <- function (n, folds=10)
split(sample(1:n), rep(1:folds, length=n))

f <- cv.folds(nrow(X))

Our illustration here repeats one such random fold. Completing with the other nine folds is
easily automated with a for(i in 1:length(f)) loop wrapped around the chunks of code
entertained below.

i <- 1 ## potentially replace with for(i in 1:length(f))) { ...
o <- f[[i]]
Xtest <- X[o,]
Xtrain <- X[-o,]
Ytest <- Y[o]
Ytrain <- Y[-o]
c(test=length(Ytest), train=length(Ytrain))

39http://bobby.gramacy.com/surrogates

http://bobby.gramacy.com/surrogates
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## test train
## 100000 900000

Using these data, the first inferential step is to fit a random subset GP. That simple
surrogate serves as a benchmark on its own, and as the basis of a multi-resolution global/local
lengthscale approach (§9.3.4). All together, the plan is to entertain three comparators: global
subset GP, local approximate GP, and multi-resolution local/global approximate GP. Recall
that drag simulations are not deterministic. They’re the outcome of a Monte Carlo (MC)
solver called tpm. A large MC size was used to generate these data, so noise on outputs is
quite low. To acknowledge that I’ve hard coded a small, but nontrivial nugget g = 10−3

below. The curious reader may wish to try a (e.g., 10×) smaller nugget here. It doesn’t help,
but it doesn’t hurt either. Out-of-sample mean accuracy results in this example are not
much effected by the nugget as long as g is chosen to be reasonably small on the scale of
range(Y).

da.orig <- darg(list(mle=TRUE), Xtrain, samp.size=10000)
sub <- sample(1:nrow(Xtrain), 1000, replace=FALSE)
gpsi <- newGPsep(Xtrain[sub,], Ytrain[sub], d=0.1, g=1/1000, dK=TRUE)
mle <- mleGPsep(gpsi, tmin=da.orig$min, tmax=10*da.orig$max, ab=da.orig$ab)
psub <- predGPsep(gpsi, Xtest, lite=TRUE)
deleteGPsep(gpsi)
rmspe <- c(sub=sqrt(mean((100*(psub$mean - Ytest)/Ytest)^2)))
rmspe

## sub
## 11.4

These results are similar to ones we obtained with a pilot exercise in §2.3: not even close to
the 1% target. How about a separable local GP?

alcsep <- aGPsep(Xtrain, Ytrain, Xtest, d=da.orig, omp.threads=nth, verb=0)
rmspe <- c(rmspe, alc=sqrt(mean((100*(alcsep$mean - Ytest)/Ytest)^2)))
rmspe

## sub alc
## 11.398 5.829

Much better, but not quite to 1%. Our final comparator is the global/local multi-resolution
approximation based on local GPs applied to inputs stretched and compressed by the mle
calculated on the subset above.

for(j in 1:ncol(Xtrain)) {
Xtrain[,j] <- Xtrain[,j]/sqrt(mle$d[j])
Xtest[,j] <- Xtest[,j]/sqrt(mle$d[j])

}

Before setting things running it helps to re-construct a default prior appropriate for scaled
inputs.
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da.s <- darg(list(mle=TRUE), Xtrain, samp.size=10000)
da.s$start <- 1

Finally, fit locally on globally scaled inputs.

alcsep.s <- aGPsep(Xtrain, Ytrain, Xtest, d=da.s, omp.threads=nth, verb=0)
rmspe <- c(rmspe, alcs=sqrt(mean((100*(alcsep.s$mean - Ytest)/Ytest)^2)))
rmspe

## sub alc alcs
## 11.398 5.829 0.779

Although results here are somewhat sensitive to the random CV fold, more often than not
this local–global surrogate beats 1%. In addition to being more accurate, the multi-resolution
fit is actually faster than its pure-local alternative.

round(c(alc=alcsep$time/60, alcs=alcsep.s$time/60))

## alc.elapsed alcs.elapsed
## 51 40

This speedup, of about 22%, stems from two factors. One is that local MLE calculations for
θ̂(x) require fewer iterations after scaling inputs and initializing search from d=1.

itrat <- alcsep$mle$dits/alcsep.s$mle$dits
c(better=mean(itrat > 1), x2=mean(itrat > 2))

## better x2
## 0.7947 0.2486

As you can see above, 79% of testing locations x ∈ X ≡ Xtest required fewer BFGS
iterations for the latter comparator, corresponding to the multi-resolution case, than for the
former. About 25% of the time the latter was two times better. Fewer iterations means faster
execution. It also means less OpenMP blocking to circumvent static variable shortcomings in
R’s internal BFGS implementation, and thus higher engagement of running threads on idle
cores. The first, alcsep run had 400% engagement (of a total 800%) on my 8-core machine;
alcsep.s had about 500% thanks to lower latency in OpenMP blocking from faster lbfgsb
calculations. Finally, a similar aGPsep run from an laGP package linked to Intel MKL R
(and executed off-line of this Rmarkdown build) gets consistently above 700% because that
latency is further reduced by fast matrix decompositions in local MLE calculations. Total
runtime for alcsep.s is reduced from 40 down to about 21 minutes with MKL. That’s
pretty amazing for 100 thousand predictions on 900 thousand training points.

How may even better results be obtained? Several ways: use more data (augmenting with the
other 1 million LHS); use BLHS rather than random subsampling for estimating θ̂(g); perform
a second stage of local analysis, conditioned upon θ̂n(x). Keen readers are encouraged to
pursue these alternatives in a homework exercise combining all six pure-species predictors
(i.e., H, N, N2, O, and O2 in addition to He, above) in order to obtain accurate ensemble
predictors (§2.3.2) out-of-sample.
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Large-scale calibration

Modularized KOH calibration from §8.1.2 relied on computer surrogate model predictions at
a small number nF of field data sites XnF paired with “promising” values of the calibration
parameter u. In other words, surrogate GP prediction is only required at a relatively small
set of locations, determined on-line as optimization over u proceeds in search of û, regardless
of the (potentially massive) size of the computer experiment NM � nF . Local GPs couldn’t
be more ideal for this situation, furnishing quick approximations to yM (x, ·) nearby testing
sites, e.g., for x ∈ XnF paired with u-values along a trajectory toward û. Algorithm 9.2
makes that explicit by re-defining Steps 1–2 of our earlier (full GP/agnostic surrogate)
version in Algorithm 8.2 from §8.1.3.

Algorithm 9.2 LAGP-based Modifications to Modularized KOH Calibration via Optimiza-
tion (Algorithm 8.2)

Assume and Require are unchanged except that laGP-based methods are used for
surrogate modeling yM (·, ·).

Then
1. Let [XnF , u

>] denote calibration-parameter augmented field data locations obtained
by concatenating u> identically to each of nF rows of field data inputs XnF .

2. Form the objective obj(u) as follows:
a. Obtain surrogate predictive mean values ŶM |unF = µ(XnF , u) from local sur-

rogate ŷM (·, u), e.g., via aGP/aGPsep evaluations with XX ≡ [XnF , u
>] and

training data X ≡ (XNM , UNM ) and Y ≡ YNM .
b. – d. unchanged

3. Solve û = argminu obj(u) with a derivative-free solver,
• e.g., snomadr in the crs package for R.

4. unchanged

Return unchanged.

Several variations may be worth entertaining. LAGP surrogate fits, via aGP/aGPsep, could
be enhanced with multi-resolution global/local or multi-pass local refinement of lengthscale.
Steps 2b–d, which detail fitting discrepancy between computer model predictions and field
data responses can utilize GP regression with a nugget, as favored in §8.1.3. Alternatively,
something entirely different could be entertained, including a “nobias” alternative (§8.1.4).
Local GPs only substitute for computer model surrogate. While they could equally be
deployed for discrepancy, which might be helpful if nF is also large, I’m not aware of any
successful such applications in the literature.

It’s easy to overlook Step 3 in Algorithm 9.2 as an insignificant modification. It calls for
derivative-free optimization (Larson et al., 2019) over u, whereas in Algorithm 8.2 optim was
recommended. The trouble here is the discrete nature of independent local design searches for
ŷM (xFj , u), for each index j = 1, . . . , nF into XnF . These ensure an objective (8.4), quoted
here as

p(u)
[
max
θb

pb(θb | Db
nF (u))

]
,

that’s not continuous in u. Discontinuous objectives thwart derivative (BFGS) or continuity-
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based (Nelder-Mead) solvers, although some are more robust to such nuances than others.
Gramacy et al. (2015) suggest mesh adaptive direct search (MADS; Audet and Dennis Jr,
2006) as implemented in NOMAD40. An interface for R is furnished by subroutines in crs
(Racine and Nie, 2018) on CRAN.

As MADS is a local solver, NOMAD requires initialization. Gramacy et al. suggest choosing
starting u(0)-values from the best value(s) of the objective found on a small space-filling
design. The laGP package contains several functions that automate the objective explained
in Algorithm 9.2: fcalib is like calib from Chapter 8, returning - obj(u) evaluations
(in log space) for minimization; discrep.est is like bhat.fit; special cases for nobias
calibration are also implemented. For more details see Section 4.2 of Gramacy (2016), or as
vignette("laGP").

To illustrate, revisit the setup from exercise #2 in §8.3 with synthetic computer model

yM (x, u) =
(

1− e−
1

2x2

) 1000u1x
3
1 + 1900x2

1 + 2092x1 + 60
100u2x3

1 + 500x2
1 + 4x1 + 20 ,

borrowed from Goh et al. (2013), but originally due to Bastos and O’Hagan (2009). De-
sign inputs x and calibration parameters u are both unit two-dimensional, which eases
visualization. An implementation in R is provided below.

M <- function(x, u)
{
x <- as.matrix(x)
u <- as.matrix(u)
out <- (1 - exp(-1/(2*x[,2])))
out <- out*(1000*u[,1]*x[,1]^3 + 1900*x[,1]^2 + 2092*x[,1] + 60)
out <- out/(100*u[,2]*x[,1]^3 + 500*x[,1]^2 + 4*x[,1] + 20)
return(out)
}

Again slightly simplifying from Goh et al. (2013), the field data are generated as

yF (x) = yM (x, u?) + b(x) + ε, where b(x) = 10x2
1 + 4x2

2
50x1x2 + 10

and ε
iid∼ N (0, 0.52),

using u? = (0.2, 0.1). In R b(·) may be implemented as follows.

bias <- function(x)
{
x <- as.matrix(x)
out <- (10*x[,1]^2 + 4*x[,2]^2)/(50*x[,1]*x[,2] + 10)
return(out)
}

Compared to the homework, our example here will follow Gramacy et al. (2015) for a slightly
bigger field experiment with nF = 100 runs formed of two replicates of 50-sized 2d LHS of

40https://www.gerad.ca/nomad/Project/Home.html

https://www.gerad.ca/nomad/Project/Home.html
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x-values; and a much bigger simulation experiment with NM = 10500 runs comprised of a
4d LHS of size 10000 of (x, u)-values, augmented with runs at the 50 unique field data sites
x randomly paired with a 500-sized 2d LHS of u-values. Code immediately below generates
the field experiment component of these data, where Zu holds intermediate computer model
evaluations at u?.

ny <- 50
X <- randomLHS(ny, 2)
u <- c(0.2, 0.1)
Zu <- M(X, matrix(u, nrow=1))
sd <- 0.5
reps <- 2
Y <- rep(Zu, reps) + rep(bias(X), reps) + rnorm(reps*length(Zu), sd=sd)
length(Y)

## [1] 100

Next, the computer experiment component is designed and simulations are run with a Z
object storing output YNM -values.

nz <- 10000
XU <- randomLHS(nz, 4)
XU2 <- matrix(NA, nrow=10*ny, ncol=4)
for(i in 1:10) {
I <- ((i-1)*ny + 1):(ny*i)
XU2[I, 1:2] <- X

}
XU2[,3:4] <- randomLHS(10*ny, 2)
XU <- rbind(XU, XU2)
Z <- M(XU[,1:2], XU[,3:4])
length(Z)

## [1] 10500

The following code chunk sets default priors and specifies details of the laGP-based surrogate
and (full) GP bias.

bias.est <- TRUE
methods <- rep("alc", 2)
da <- d <- darg(NULL, XU)
g <- garg(list(mle=TRUE), Y)

Changing bias.est <- FALSE causes estimation of b̂(·) to be skipped. Instead only the
level of noise between computer model and field data is estimated, setting up a nobias
calibrator. The methods vector specifies the nature of search and number of passes through
simulation data for local design and inference. We’ll be doing two passes of isotropic ALC
local design search where the second pass is primed with θ̂n(x)’s from the first one. The
model is completed with a (log) prior density on calibration parameter u, chosen to be
independent Beta with mode in the middle of the space. This choice is made primarily to
avoid boundary-focused û as discussed in §8.1.5 and revisited in homework exercises.
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lprior <- function(u, shape1=2, shape2=2)
sum(dbeta(u, shape1, shape2, log=TRUE))

Now evaluate the objective on a space-filling grid to search for good starting values for
subsequent NOMAD optimization. Our “grid” is actually a maximin LHS (§4.3) focused away
from the edges of the input space.

initsize <- 10*ncol(X)
uinit <- maximinLHS(initsize, 2)
uinit <- 0.9*uinit + 0.05

The for loop below collects objective evaluations on that “grid” through fcalib calls.

llinit <- rep(NA, nrow(uinit))
for(i in 1:nrow(uinit)) {
llinit[i] <- fcalib(uinit[i,], XU, Z, X, Y, da, d, g, lprior,
methods, NULL, bias.est, nth, verb=0)

}

Finally we’re ready to optimize. The snomadr interface allows a number of options to be
passed to NOMAD. Those provided below have been found to work well in a number of laGP-
based calibration examples. The NOMAD user guide41 can be consulted for more detail and
information on further options.

library(crs)
imesh <- 0.1
opts <- list("MAX_BB_EVAL"=1000, "INITIAL_MESH_SIZE"=imesh,
"MIN_POLL_SIZE"="r0.001", "DISPLAY_DEGREE"=0)

Unfortunately snomadr doesn’t provide any mechanism for saving progress information,
which will be handy later for visualization. So fcalib has an optional save.global argument
for specifying in which R environment (e.g., .GlobalEnv) to save such relevant information.
R code below invokes snomadr on the best input(s) found on the starting grid, looping
over them until a minimum number of NOMAD iterations has been reached. Usually just one
pass through this outer loop is sufficient, i.e., using only the very best starting location. In
situations where NOMAD may prematurely converge, having a backup starting location (or
two) can be handy.

its <- 0
i <- 1
out <- NULL
o <- order(llinit)
while(its < 10) {
outi <- snomadr(fcalib, 2, c(0,0), 0, x0=uinit[o[i],], lb=c(0,0),
ub=c(1,1), opts=opts, XU=XU, Z=Z, X=X, Y=Y, da=da, d=d, g=g,
methods=methods, M=NULL, verb=0, bias=bias.est, omp.threads=nth,

41https://www.gerad.ca/nomad/Downloads/user_guide.pdf

https://www.gerad.ca/nomad/Downloads/user_guide.pdf
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uprior=lprior, save.global=.GlobalEnv)
its <- its + outi$iterations
if(is.null(out) || outi$objective < out$objective) out <- outi
i <- i + 1

}

##
## iterations: 16
## time: 59

What came out? Here’s some code that reads the fcalib.save object stored in .GlobalEnv
to prepare a plot for the forthcoming figure. Objective (fcalib) evaluations from both grid
and NOMAD optimization are combined and used as the basis of a reconstruction of a 2d
surface in u-space.

Xp <- rbind(uinit, as.matrix(fcalib.save[,1:2]))
Zp <- c(-llinit, fcalib.save[,3])
wi <- which(!is.finite(Zp))
if(length(wi) > 0) {
Xp <- Xp[-wi, ]
Zp <- Zp[-wi]

}
library(akima)
surf <- interp(Xp[,1], Xp[,2], Zp, duplicate="mean")
u.hat <- out$solution

The interp command above, from akima (Akima et al., 2016) on CRAN, projects these
“z” coordinates onto an “x–y” mesh used by image in Figure 9.31. Lighter/whiter colors
correspond to higher (log) objective evaluations. The grid of initial runs is indicated by
open circles; NOMAD evaluations are shown as green diamonds, and the best of those (û) as a
solitary blue diamond. The true data-generating value of the calibration parameter u? is
indicated by an intersecting pair of horizontal and vertical dashed lines.

image(surf, xlab="u1", ylab="u2", col=heat.colors(128),
xlim=c(0,1), ylim=c(0,1))

points(uinit)
points(fcalib.save[,1:2], col=3, pch=18)
points(u.hat[1], u.hat[2], col=4, pch=18)
abline(v=u[1], lty = 2)
abline(h=u[2], lty = 2)

So true u? is far from the û that we found. Indeed, the surface is fairly peaked around û, giving
very little support to regions nearby the true value. Admittedly, very few u-evaluations were
tried nearby u?. It may be worth checking if our scheme missed an area of high likelihood.

obju <- fcalib(u, XU, Z, X, Y, da, d, g, lprior, methods, NULL, bias.est,
nth, verb=0)

c(u.hat=out$objective, u.star=obju)
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FIGURE 9.31: Log posterior surface for u built by linearly interpolating evaluations
under an initial maximin LHS (open circles) and NOMAD evaluations (green diamonds). MAP
estimate û is indicated by a blue diamond. Cross-hairs show true u?.

## u.hat u.star
## 127.6 130.7

Nope: our û is better than the true u?. (Recall that fcalib is designed for minimization, so
smaller is better.) Perhaps a better question is: which (û or u?) leads to better prediction
out-of-sample? Obtaining a predictor that can be used at new testing locations, the following
code goes step-by-step through calls automated by fcalib.

Xu <- cbind(X, matrix(rep(u, ny), ncol=2, byrow=TRUE))
Mhat.u <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2,
omp.threads=nth, verb=0)

cmle.u <- discrep.est(X, Y, Mhat.u$mean, d, g, bias.est, FALSE)
cmle.u$ll <- cmle.u$ll + lprior(u)
-cmle.u$ll

## [1] 130.7

The final line above serves as a sanity check that indeed that code duplicates the process
behind fcalib: same as obju above. Entry cmle.u$gp holds the bias-correcting GP reference,
which we shall use momentarily to make predictions. First, build up a testing set with
computer model evaluations on 1000 new space-filling sites x, all paired with true data-
generating value u?, followed by true discrepancy. No noise is added to these out-of-sample
validation responses.

nny <- 1000
XX <- randomLHS(nny, 2)
ZZu <- M(XX, matrix(u, nrow=1))
YYtrue <- ZZu + bias(XX)

Now consider prediction and subsequent RMSE calculation with true u?.
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XXu <- cbind(XX, matrix(rep(u, nny), ncol=2, byrow=TRUE))
Mhat.oos.u <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2,
omp.threads=nth, verb=0)

YYm.pred.u <- predGP(cmle.u$gp, XX)
YY.pred.u <- YYm.pred.u$mean + Mhat.oos.u$mean
rmse.u <- sqrt(mean((YY.pred.u - YYtrue)^2))
deleteGP(cmle.u$gp)

For estimated û we must first backtrack through what fcalib automated earlier and save
surrogate predictions and estimated bias-corrections.

Xu <- cbind(X, matrix(rep(u.hat, ny), ncol=2, byrow=TRUE))
Mhat <- aGP.seq(XU, Z, Xu, da, methods, ncalib=2, omp.threads=nth, verb=0)
cmle <- discrep.est(X, Y, Mhat$mean, d, g, bias.est, FALSE)
cmle$ll <- cmle$ll + lprior(u.hat)

Here’s a sanity check that this gives the same objective evaluation as what came out of
snomadr.

c(-cmle$ll, out$objective)

## [1] 127.6 127.6

Finally, repeat what we did above with the true u? value, but with estimated û instead.

XXu <- cbind(XX, matrix(rep(u.hat, nny), ncol=2, byrow=TRUE))
Mhat.oos <- aGP.seq(XU, Z, XXu, da, methods, ncalib=2,
omp.threads=nth, verb=0)

YYm.pred <- predGP(cmle$gp, XX)
YY.pred <- YYm.pred$mean + Mhat.oos$mean
rmse <- sqrt(mean((YY.pred - YYtrue)^2))
deleteGP(cmle$gp)

How do these RMSEs compare?

c(u.hat=rmse, u=rmse.u)

## u.hat u
## 0.1126 0.1189

Indeed, our estimated û version leads to better predictions too. Clearly there’s an identifia-
bility issue – something other than the true data-generating parameter works better – in this
supremely flexible calibration apparatus; but it does a good job of predicting. Other merits
include that the framework is computationally thrifty. Although no timing results are quoted
by the code above, this entire segment on large-scale laGP-based calibration takes but a few
minutes to run. Our illustrative example was synthetic, but served to highlight many of the
pertinent features of the methodology and its implementation. Porting that setup to the
motivating CRASH data from §2.2 is rather straightforward. A homework exercise in §9.4
takes the reader through the details.
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The core idea of tailoring GP prediction to the application goal, in a transductive fashion,
is catching on as a means of gaining computational tractability and modeling fidelity. For
example, Gul (2016) developed a so-called in situ emulator where the surrogate is tailored
to a UQ task focused around a nominal input setting. Huang et al. (2020) develop a similar
framework of on-site surrogates (OSSs) for a large-run (big N), large input dimension (m),
computer model calibration problem. This is similar in spirit to laGP-based KOH calibration
except that design of new computer model runs is incorporated directly into surrogate
construction in lieu of sub-selecting points from an existing design.

To close out this chapter, it’s worth acknowledging that the methods described herein are
at best representative and at worst barely scratch the surface of the state-of-the-art of
thrifty surrogate modeling. Pace of development of new methodology for large-scale GP
approximation is feverish. My goal was to provide some depth, but at the expense of clear
bias toward methodology I know well. Nevertheless we covered all of the important pillars:
sparsity, divide-and-conquer, parallel computing and hybridization (e.g., global and local).
A downside to all of these approaches, but especially those leveraging divide-and-conquer, is
that they sacrifice smoothness and force compromise to be struck between local/dynamic
behavior and global/long range features. For situations where, for example, mean and
variance evolve smoothly throughout the input space – a feature common to many modern
stochastic computer model simulations – a different perspective is warranted.

9.4 Homework exercises

Exercises focusing primarily on tgp and laGP follow, in several cases circling back to
motivating examples from Chapter 2 with a proper treatment.

#1: Sequential design with tgp

Revisit exercise #5 from §6.4, on sequential design for a nonstationary process, but this time
using treed Gaussian processes. In particular, consider #5b with ALM and ALC heuristics
under btgp, using any approximations or options you deem necessary for the method to
be fast enough on your machine in order to complete the full exercise. Repeat multiple
times (say thirty), report average RMSE-based progress and the distribution of final RMSEs
measured on the full dataset. As in the original description of the problem, restrict yourself
to the side output, and two-dimensional input spaces in the beta=2 slice. Make an explicit
comparison between your new TGP-based results and those you previously obtained for the
stationary GP (1) and manual 2-partition GP (2) in your solution to #5 from §6.4. For
brownie points, extend the comparison to the full 3d input space.

#2: SARCOS robotics data

The SARCOS data42 features as a prime example in Rasmussen and Williams (2006). These
data come pre-partitioned as a set of about 44 thousand training runs, and 4.4 thousand
testing runs, both having twenty-one inputs and seven outputs. Consider here just the first

42http://www.gaussianprocess.org/gpml/data/

http://www.gaussianprocess.org/gpml/data/
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of the seven outputs. For more details, see the link(s) above. MATLAB files storing these
data have been converted to plain text and are linked here: train43 and test44. Entertain the
following comparators in terms of compute time (combining learning and prediction) and
out-of-sample RMSE.

i. NN-based local approximate GP (LAGP) with isotropic and separable alternatives
(aGP/aGPsep with method=nn"), local design size n ≡ end=50 (default) and n ≡ end=200;

ii. ALC-based LAGP, both isotropic and separable (aGP/aGPsep with default
method="alc");

iii. ALC-based LAGP with approximate ray search, both isotropic and separable
(aGP/aGPsep with method="alcray");

iv. Separable GP trained on a random subsample of 1000 input–output pairs;
v. Revisit #i–iii with inputs stretched and compressed by the MLE lengthscales from #iv

for a multi-resolution effect (§9.3.4).

You should have a total of seventeen comparators. Code inputs for #i–iv into [0, 1]21, fix
the nugget at g = 1/1000000 and use priors on the lengthscale built with darg using
samp.size=10000. Base predictors for #v variations on scaled versions of coded inputs and
appropriately modified priors. Provide visuals capturing time-versus-accuracy trade-offs,
possibly on log scales.

#3: Ensemble satellite drag benchmarking

Revisit exercise #3 from §2.6 combining surrogates for pure-species simulations under a
realistic mixture of chemical species in LEO, but this time use the big simulation sets over
the entire range of pitch and yaw angles. Specifically, choose one of the following:

• HST via 2-million run (8d) LHS pure-species training sets, which may be found in
tpm-git/data/HST/hst[H,He,He2,N,N2,O,O2].dat, and ensemble testing set residing
in tpm-git/data/HST/hstEns.dat. Note that you’ll need to combine He and He2 to
obtain the full 2-million training runs for pure helium;

• or GRACE via 1-million run (7d) LHS pure-species training sets residing in
tpm-git/data/GRACE/grace[H,He,He2,N,N2,O,O2].dat and ensemble testing set
which can be found in tpm-git/data/GRACE/graceEns.dat.

Work with inputs coded to [0, 1]m. Subsequently stretch and compress those coded inputs
using MLE lengthscales obtained from a surrogate fit to a 1000-sized random subset to
achieve a multi-resolution effect (§9.3.4). Hint: When fitting a global subset GP to GRACE
simulations, you might find it helpful to initialize MLE calculation for lengthscales with
c(rep(1,5), 0.01, 0.1). Obtain predictions at coded and scaled ensemble inputs under
the six multi-resolution global–local (§9.3.4) surrogates, and combine them by the appropriate
weighted average (§2.3.2). Confirm that your out-of-sample RMSPE is below LANL’s 1%
target. You may wish to compare your results to BLHS-based pre-scaling instead (§9.3.4),
using the blhs function in laGP.

#4: CRASH calibration

Consider the radiative shock hydrodynamics (CRASH) example from §2.2, which is described
as a calibration problem. There are nine design variables (x), two calibration parameters

43http://bobby.gramacy.com/surrogates/sarcos_inv_train.csv
44http://bobby.gramacy.com/surrogates/sarcos_inv_test.csv

http://bobby.gramacy.com/surrogates/sarcos_inv_train.csv
http://bobby.gramacy.com/surrogates/sarcos_inv_test.csv
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(u), two computer experiments with a combined five thousand or so runs, and a field data
experiment with twenty observations. Combining the two computer experiments necessitates
an expansion of the dataset vis-à-vis one of the calibration parameters, so that there are
more like twenty thousand runs. That data setup is given in the code below.

## read in computer model runs
rs12 <- read.csv("crash/RS12_SLwithUnnormalizedInputs.csv")
rs13 <- read.csv("crash/RS13Minor_SLwithUnnormalizedInputs.csv")
## a correction
rs13$ElectronFluxLimiter <- 0.06

## read in the physical data
crash <- read.csv("crash/CRASHExpt_clean.csv")
## a correction
crash$BeThickness <- 21

## create expanded computer model data
sfmin <- rs13$EffectiveLaserEnergy/5000
sflen <- 10
rs13.sf <- matrix(NA, nrow=sflen*nrow(rs13), ncol=ncol(rs13)+2)
for(i in 1:sflen) {
sfi <- sfmin + (1 - sfmin)*(i/sflen)
rs13.sf[(i-1)*nrow(rs13) + (1:nrow(rs13)),] <-

cbind(as.matrix(rs13), sfi, rs13$EffectiveLaserEnergy/sfi)
}
rs13.sf <- as.data.frame(rs13.sf)
names(rs13.sf) <- c(names(rs13), "EnergyScaleFactor", "LaserEnergy")

## merge the data.frames
rsboth <- rbind(rs12, rs13.sf[,names(rs12)])

## extract out Xs and Ys
XU.orig <- rsboth[,-which(names(rsboth) %in%

c("FileNumber", "ShockLocation"))]
Z.orig <- rsboth$ShockLocation
X.orig <- crash[,names(XU.orig)[1:(ncol(XU.orig) - 2)]]
Y.orig <- crash$ShockLocation

## scale to coded outputs
minZ <- min(Z.orig)
maxZ <- max(Z.orig)
Z <- Z.orig - minZ
Z <- Z/(maxZ - minZ)
Y <- Y.orig - minZ
Y <- Y/(maxZ - minZ)

## scale to coded inputs
maxX <- apply(XU.orig, 2, max)
minX <- apply(XU.orig, 2, min)
XU <- XU.orig



9.4 Homework exercises 455

X <- X.orig
for(j in 1:ncol(XU)) {
XU[,j] <- XU[,j] - minX[j]
XU[,j] <- XU[,j]/(maxX[j] - minX[j])
if(j <= ncol(X)) {
X[,j] <- X[,j] - minX[j]
X[,j] <- X[,j]/(maxX[j] - minX[j])

}
}

Your task is to use laGP to perform a computer model calibration on these data. Report
on the estimate of û that you obtained from a modularized KOH setup (estimate a bias
correction; no need to entertain a nobias alternative). Finally, gather predictions at the
following x-values: Be thick 21, laser energy 3800, Xe fill 1.15, tube diam 1150, taper length
500, nozzle length 500, aspect ratio 2, time 26. Note that this example is entertained in
Gramacy et al. (2015), which you may use as guidance/inspiration. Although inputs and
outputs are coded, report predictions, etc., back on the natural scale.





10
Heteroskedasticity

Historically, design and analysis of computer experiments focused on deterministic solvers
from the physical sciences via Gaussian process (GP) interpolation (Sacks et al., 1989).
But nowadays computer modeling is common in the social (Cioffi-Revilla, 2014, Chapter
8), management (Law, 2015) and biological (Johnson, 2008) sciences, where stochastic
simulations abound. Queueing systems1 and agent-based models2 replace finite elements and
simple Monte Carlo (MC) with geometric convergence (Picheny and Ginsbourger, 2013). Data
in geostatistics (Banerjee et al., 2004) and machine learning (ML; Rasmussen and Williams,
2006) aren’t only noisy but frequently involve signal-to-noise ratios that are low or changing
over the input space. Noisier simulations/observations demand bigger experiments/studies
to isolate signal from noise, and more sophisticated GP models – not just adding nuggets to
smooth over noise, but variance processes to track changes in noise throughout the input
space in the face of that heteroskedasticity.

Modeling methodology for large simulation efforts with intrinsic stochastic dynamics has
lagged until recently. Partitioning is one option (§9.2.2), but leaves something to be desired
when underlying processes are smooth and signal-to-noise ratios are low. A theme in this
chapter is that replication, a tried and true design strategy for separating signal from noise,
can play a crucial role in computationally efficient heteroskedastic modeling, especially with
GPs. To be concrete, replication here means repeated y-observations at the same input
x setting. In operations research3, stochastic kriging (SK; Ankenman et al., 2010) offers
approximate methods that exploit large degrees of replication. Its independent method
of moments4-based inferential framework can yield an efficient heteroskedastic modeling
capability. However the setup exploited by SK is highly specialized; moment-based estimation
can strain coherency in a likelihood dominated surrogate landscape. Here focus is on a
heteroskedastic GP technology (Binois et al., 2018) that offers a modern blend of SK
and ideas from ML (largely predating SK: Goldberg et al., 1998; Quadrianto et al., 2009;
Boukouvalas and Cornford, 2009; Lazaro-Gredilla and Titsias, 2011).

Besides leveraging replication in design, the idea is: what’s good for the mean is good for the
variance. If it’s sensible to model the latent (mean) field with GPs (§5.3.2), why not extend
that to variance too? Unfortunately, latent variance fields aren’t as easy to integrate out.
(Variances must also be positive, whereas means are less constrained.) Numerical schemes
are required for variance latent learning, and there are myriad strategies – hence the plethora
of ML citations above. Binois et al. (2018)’s scheme remains within our familiar class of
library-based (e.g., BFGS) likelihood-optimizing methodology, and is paired with tractable
strategies for sequential design (Binois et al., 2019) and Bayesian optimization (BO; Chapter
8). Other approaches achieving a degree of input-dependent variance include quantile kriging
(QK; Plumlee and Tuo, 2014); use of pseudoinputs (Snelson and Ghahramani, 2006) or

1https://en.wikipedia.org/wiki/Queueing_theory
2https://en.wikipedia.org/wiki/Agent-based_model
3https://en.wikipedia.org/wiki/Operations_research
4https://en.wikipedia.org/wiki/Method_of_moments_(statistics)
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predictive processes (Banerjee et al., 2008); and (non-GP-based) tree methods (Pratola
et al., 2017a). Unfortunately, none of those important methodological contributions, to my
knowledge, pair with design, BO or open source software.

library(hetGP)

Illustrations here leverage hetGP (Binois and Gramacy, 2019) on CRAN, supporting a wide
class of alternatives in the space of coupled-GP heteroskedastic (and ordinary homoskedastic)
modeling, design and optimization.

10.1 Replication and stochastic kriging

Replication can be a powerful device for separating signal from noise, offering a pure look
at noise not obfuscated by signal. When modeling with GPs, replication in design can
yield substantial computational savings as well. Continuing with N -notation from Chapter
9, consider training data pairs (x1, y1), . . . , (xN , yN ). These make up the “full-N” dataset
(XN , YN ). Now suppose that the number n of unique xi-values in XN is far smaller than
N , i.e., n� N . Let Ȳn = (ȳ1, . . . , ȳn)> collect averages of ai replicates at unique locations
x̄i, and similarly let σ̂2

i collect normalized residual sums of squares for those replicate
measurements:

ȳi = 1
ai

ai∑
j=1

y
(j)
i and σ̂2

i = 1
ai − 1

ai∑
j=1

(y(j)
i − ȳi)

2.

Unfortunately, Ȳn = (ȳ1, . . . , ȳn)> and σ̂2
1:n don’t comprise of a set of sufficient statistics

for GP prediction under the full-N training data. But these are nearly sufficient: only one
quantity is missing and will be provided momentarily in §10.1.1. Nevertheless “unique-n”
predictive equations based on (X̄n, Ȳn) are a best linear unbiased predictor (BLUP):

µSK
n (x) = νk>n (x)(νCn + Sn)−1Ȳn

σSK
n (x)2 = νKθ(x, x)− ν2k>n (x)(νCn + Sn)−1kn(x), (10.1)

where kn(x) = (Kθ(x, x̄1), . . . ,Kθ(x, x̄n))> as in Chapter 5,

Sn = [σ̂2
1:n]A−1

n = Diag(σ̂2
1/a1, . . . , σ̂

2
n/an),

Cn = {Kθ(x̄i, x̄j)}1≤i,j≤n, and ai � 1. This is the basis of stochastic kriging (SK; Ankenman
et al., 2010), implemented as an option in DiceKriging (Roustant et al., 2018) and mlegp
(Dancik, 2018) packages on CRAN. SK’s simplicity is a virtue. Notice that when n = N ,
all ai = 1 and σ̂2

i = νg, a standard GP predictor (§5) is recovered when mapping ν = τ2.5
Eq. (10.1) has intuitive appeal as an application of ordinary kriging equations (5.2) on
(almost) sufficient statistics. An independent moments-based estimate of variance is used
in lieu of the more traditional, likelihood-based (hyperparametric) alternative. This could

5Letter ν is preferred here to the familiar τ2 from Chapter 5 to avoid double squaring: ν2 ≡ (τ2)2.
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be advantageous if variance is changing in the input space, as discussed further in §10.2.
Computational expedience is readily apparent even in the usual homoskedastic setting:
Sn = Diag( 1

n

∑
σ̂2
i ). Only O(n3) matrix decompositions are required, which could represent

a huge savings compared with O(N3) if the degree of replication is high.

Yet independent calculations have their drawbacks. Thinking heteroskedastically, this setup
lacks a mechanism for specifying a belief that variance evolves smoothly over the input
space. Lack of smoothness thwarts a pooling of variance that’s essential for predicting
uncertainties out-of-sample at novel x′ ∈ X . Basically we don’t know Kθ(x, x) in Eq. (10.1),
whereas homoskedastic settings use 1+g for all x. Ankenman et al. (2010) suggest smoothing
σ̂2
i -values with a second GP, but that two-stage approach will feel ad hoc compared to

what’s presented momentarily in §10.2. More fundamentally, numbers of replicates ai must
be relatively large in order for the σ̂2

i -values to be reliable. Ankenman et al. recommend
ai ≥ 10 for all i, which can be prohibitive. Thinking homoskedastically, the problem with
this setup is that it doesn’t emit a likelihood for inference for other hyperparameters, such
as lengthscale(s) θ and scale ν. Again, this is because (Ȳn, Sn) don’t quite constitute a set
of sufficient statistics for hyperparameter inference.

10.1.1 Woodbury trick

The fix, ultimately revealing the full set of sufficient statistics for prediction and likelihood-
based inference, involves Woodbury linear algebra identities6. These are not unfamiliar to the
spatial modeling community (e.g., Opsomer et al., 1999; Banerjee et al., 2008; Ng and Yin,
2012). However, their application toward efficient GP inference under replicated design is
relatively recent (Binois et al., 2018). Let D and B be invertible matrices of size N ×N and
n× n, respectively, and let U and V > be matrices of size N × n. The Woodbury identities
are

(D + UBV )−1 = D−1 −D−1U(B−1 + V D−1U)−1V D−1 (10.2)
|D + UBV | = |B−1 + V D−1U | × |B| × |D|. (10.3)

Eq. (10.3) is also known as the matrix determinant lemma7, although it’s clearly based on
the same underlying principles as its inversion cousin (10.2). I refer to both as “Woodbury
identities”, in part because GP likelihood and prediction application requires both inverse
and determinant calculations. To build KN = UCnV

> +D for GPs under replication, take
U = V > = Diag(1a1 , . . . , 1an), where 1k is a k-vector of ones, D = gIN with nugget g, and
B = Cn. Later in §10.2, we’ll take D = Λn where Λn is a diagonal matrix of latent variances.

Before detailing how the “Woodbury trick” maps to prediction (kriging) and likelihood
identities for O(n3) rather than O(N3) calculations in §10.1.2, consider how it helps operate
on a full covariance structure KN through its unique counterpart Kn = Cn + gA−1

n . The
example below creates a matrix Xn with n = 50 unique rows and then builds XN identical
to Xn except that four of its rows have been replicated a number of times, leading to a much
bigger N = 150-sized matrix.

n <- 50
Xn <- matrix(runif(2*n), ncol=2)

6https://en.wikipedia.org/wiki/Woodbury_matrix_identity
7https://en.wikipedia.org/wiki/Matrix_determinant_lemma

https://en.wikipedia.org/wiki/Woodbury_matrix_identity
https://en.wikipedia.org/wiki/Matrix_determinant_lemma
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Xn <- Xn[order(Xn[,1]),]
ai <- c(8, 27, 38, 45)
mult <- rep(1, n)
mult[ai] <- c(25, 30, 9, 40)
XN <- Xn[rep(1:n, times=mult),]
N <- sum(mult)

Code below calculates covariance matrices Kn and KN corresponding to Xn and XN ,
respectively. Rather than use our usual distance or covar.sep from plgp (Gramacy, 2014),
covariance matrix generation subroutines from hetGP are introduced here as an alternative.
An arbitrary lengthscale of θ = 0.2 and (default) nugget of g = ε is used with an isotropic
Gaussian kernel. Separable Gaussian, and isotropic and separable Matèrn ν ∈ {3/2, 5/2} are
also supported.

KN <- cov_gen(XN, theta=0.2)
Kn <- cov_gen(Xn, theta=0.2)

Next, build U for use in the Woodbury identity (10.2)–(10.3).

U <- c(1, rep(0, n - 1))
for(i in 2:n){
tmp <- rep(0, n)
tmp[i] <- 1
U <- rbind(U, matrix(rep(tmp, mult[i]), nrow=mult[i], byrow=TRUE))

}
U <- U[,n:1]

Figure 10.1 shows these three matrices side-by-side, illustrating the mapping Kn → U → KN

with choices of B and U = V > described after Eq. (10.3), above. Note that in this case
Cn = Kn since nugget g is essentially zero.

cols <- heat.colors(128)
layout(matrix(c(1, 2, 3), 1, 3, byrow=TRUE), widths=c(2, 1, 2))
image(Kn, x=1:n, y=1:n, main="uniq-n: Kn", xlab="1:n", ylab="1:n", col=cols)
image(t(U), x=1:n, y=1:N, asp=1, main="U", xlab="1:n", ylab="1:N", col=cols)
image(KN, x=1:N, y=1:N, main="full-N: KN", xlab="1:N", ylab="1:N", col=cols)

Storage of Kn and U , which may be represented sparsely, or even implicitly, is not only
more compact than KN , but the Woodbury formulas show how to calculate requisite inverse
and determinants by acting on O(n2) quantities rather than O(N2) ones.

10.1.2 Efficient inference and prediction under replication

Here my aim is to make SK simultaneously more general, exact, and prescriptive, facilitating
full likelihood-based inference and conditionally (on hyperparameters) exact predictive
equations with the Woodbury trick. Pushing the matrix inverse identity (10.2) through to
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FIGURE 10.1: Example mapping Kn → U → KN through Woodbury identities (10.2)–
(10.3).

predictive equations, mapping νCN + SN = ν(CN + ΛN ) ≡ ν(CN + gIN ) between SK and
more conventional Chapter 5 notation, yields the following predictive identities:

νk>N (x)(νCN + SN )−1YN = k>n (x)(Cn + ΛnA−1
n )Ȳn (10.4)

vk − ν2k>N (x)(νCN + SN )−1kN (x) = vk − νk>n (x)(Cn + ΛnA−1
n )−1kn(x),

where vk ≡ νKθ(x, x) is used as a shorthand to save horizontal space.

In words, typical full-N predictive quantities may be calculated identically through unique-n
counterparts, potentially yielding dramatic savings in computational time and space. The
unique-n predictor (10.4), implicitly defining µn(x) and σ2

n(x) on the right-hand side(s)
and updating SK (10.1), is unbiased and minimizes mean-squared prediction error (MSPE)
by virtue of the fact that those properties hold for the full-N predictor on the left-hand
side(s). No asymptotic or frequentist arguments are required. Crucially, no minimum data
or numbers of replicates (e.g., ai ≥ 10 for SK) are required to push asymptotic arguments
through, although replication can still be helpful from a statistical efficiency perspective.
See §10.3.1.

The same trick can be played with the concentrated log likelihood (5.8). Recall that Un =
Cn+A−1

n Λn, where for now Λn = gIn encoding homoskedasticity. Later I shall generalize Λn
for the heteroskedastic setting. Using these quantities and Eqs. (10.2)–(10.3) simultaneously,

` = c+ N

2 log ν̂N −
1
2

n∑
i=1

[(ai − 1) log λi + log ai]−
1
2 log |Kn|, (10.5)

where ν̂N = 1
N

(Y >N Λ−1
N YN − Ȳ >n AnΛ−1

n Ȳn + Ȳ >n K
−1
n Ȳn).

Notice additional terms in ν̂N compared with ν̂n = n−1Ȳ >n K
−1
n Yn. Thus N−1Y >N Λ−1

N YN
is our missing statistic for sufficiency. Since ΛN is diagonal, evaluation of ` requires just
O(n3) operations beyond the O(N) required for Ȳn. Closed form derivative evaluations are
available in O(n3) time too, facilitating library-based optimization, e.g., with BFGS.
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∂`

∂·
= N

2
∂(Y >N Λ−1

N YN − ȲnAnΛ−1
n Ȳn + nν̂n)

∂·
× (Nν̂N )−1

− 1
2

n∑
i=1

[
(ai − 1)∂ log λi

∂·

]
− 1

2tr
(
K−1
n

∂Kn

∂·

)
(10.6)

Above, “·” is a place-holder for hyperparameter(s) of interest. Fast likelihood and derivative
evaluation when N � n can be computationally much more efficient, compared to schemes
introduced in Chapter 5, yet still reside under an otherwise identical numerical umbrella.

Example: computational advantage of replication

To demonstrate the potential benefit of this Woodbury mapping, consider the following
modestly-sized example based on our favorite 2d test function (§5.1.2). You may recall we
leveraged replication in an extension of this example (§5.2.4) in order to control signal-to-
noise behavior in repeated Rmarkdown builds. Here the response is observed at n = 100
unique input locations, each having a random number of replicates ai ∼ Unif{1, 2, . . . , 50}.
Otherwise the setup is identical to previous (noisy) uses of this data-generating mechanism.

library(lhs)
Xbar <- randomLHS(100, 2)
Xbar[,1] <- (Xbar[,1] - 0.5)*6 + 1
Xbar[,2] <- (Xbar[,2] - 0.5)*6 + 1
ytrue <- Xbar[,1]*exp(-Xbar[,1]^2 - Xbar[,2]^2)
a <- sample(1:50, 100, replace=TRUE)
N <- sum(a)
X <- matrix(NA, ncol=2, nrow=N)
y <- rep(NA, N)
nf <- 0
for(i in 1:100) {
X[(nf+1):(nf+a[i]),] <- matrix(rep(Xbar[i,], a[i]), ncol=2, byrow=TRUE)
y[(nf+1):(nf+a[i])] <- ytrue[i] + rnorm(a[i], sd=0.01)
nf <- nf + a[i]

}

The code below invokes mleHomGP from the hetGP package in two ways. One cripples
automatic pre-processing subroutines that would otherwise calculate sufficient statistics for
unique-n modeling, forcing a more cumbersome full-N calculation. Another does things the
default, more thrifty unique-n way. In both cases, mleHomGP serves as a wrapper automating
calls to optim with method="L-BFGS-B", furnishing implementations of log concentrated
likelihood (10.5) and derivative (10.6).

Lwr <- rep(sqrt(.Machine$double.eps), 2)
Upr <- rep(10, 2)
fN <- mleHomGP(list(X0=X, Z0=y, mult=rep(1, N)), y, Lwr, Upr)
un <- mleHomGP(X, y, Lwr, Upr)

Repeating search bounds Lwr and Upr to match input dimension invokes a separable kernel,
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which is Gaussian by default. Execution times saved by the mleHomGP calls above show a
dramatic difference.

c(fN=fN$time, un=un$time)

## fN.elapsed un.elapsed
## 168.90 0.03

Calculations on unique-n quantities using Woodbury identities results in execution that’s 5630
times faster than an otherwise equivalent full-N analog. The outcome of those calculations,
exemplified below through a reporting of estimated lengthscales, is nearly identical in both
versions.

rbind(fN=fN$theta, un=un$theta)

## [,1] [,2]
## fN 1.092 1.941
## un 1.092 1.942

Excepting a user-triggered SK feature offered by mlegp and DiceKriging packages on CRAN,
I’m not aware of any other software package, for R or otherwise, that automatically pre-
process data into a format leveraging Woodbury identities to speed up GP calculations under
heavy replication. Repeated sampling is a common design tactic in the face of noisy processes,
and the example above demonstrates potential for substantial computational benefit when
modeling with GPs. Replication is essential when signal-to-noise features may exhibit
heterogeneity across the input space. Whenever two things are changing simultaneously, a
means of pinning down one – in this case variance, if only locally – can be a game-changer.

10.2 Coupled mean and variance GPs

GP kernels based on Euclidean distance (e.g., Chapter 5 or above) emit stationary processes
where input–output behavior exhibits highly regular dynamics throughout the input space.
Yet we saw in §9.2.2–9.3 that many data-generating mechanisms are at odds with stationarity.
A process can diverge from stationary in various ways, but few are well accommodated by
computationally viable modeling methodology – exceptions in Chapter 9 notwithstanding.
Input-dependent variance, or heteroskedasticity, is a particular form of nonstationarity
that’s increasingly encountered in stochastic simulation. A fine example is the motorcycle
accident data introduced in §9.2.1. Our TGP fit to these data, shown in Figure 9.11, nicely
captures noise regime changes from low, to high, to medium as inputs track from left to right.
Accommodating those shifts required partitioning/hard breaks in the predictive surface which
(we hoped) could be smoothed over by Markov chain Monte Carlo (MCMC) sampling from
the Bayesian posterior on trees. Entertaining a smoother alternative might be worthwhile.

To lay the groundwork for a heteroskedastic GP-based alternative, and remind the reader of
the setting and challenges involved, consider the following ordinary homoskedastic GP fit to
these data, followed by prediction on a testing grid.
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library(MASS)
hom <- mleHomGP(mcycle$times, mcycle$accel)
Xgrid <- matrix(seq(0, 60, length=301), ncol=1)
p <- predict(x=Xgrid, object=hom)
df <- data.frame(table(hom$mult))
colnames(df) <- c("reps", "howmany")
rownames(df) <- NULL
df

## reps howmany
## 1 1 66
## 2 2 22
## 3 3 3
## 4 4 2
## 5 6 1

Considering the importance of separating signal from noise in this simulation experiment,
perhaps it’s not surprising that the design includes moderate replication. Figure 10.2 shows
the resulting predictive surface overlaid on a scatterplot of the data. The solid-black line
is the predictive mean, and dashed-red lines trace out a 90% predictive interval. Output
from predict.homGP separates variance in terms of epistemic/mean (p$sd2) and residual
(p$nugs) estimates, which are combined in the figure to show full predictive uncertainty.

plot(mcycle)
lines(Xgrid, p$mean)
lines(Xgrid, qnorm(0.05, p$mean, sqrt(p$sd2 + p$nugs)), col=2, lty=2)
lines(Xgrid, qnorm(0.95, p$mean, sqrt(p$sd2 + p$nugs)), col=2, lty=2)
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FIGURE 10.2: Homoskedastic GP fit to the motorcycle data via mean (solid-black) and
90% error-bars (dashed-red).

As in Figure 9.10, showing a (Bayesian) stationary GP, this fit is undesirable on several
fronts. Not only is the variance off, but the mean is off too: it’s way too wiggly in the
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left-hand, pre-impact regime. Perhaps this is due to noise in the right-hand regime being
incorrectly interpreted as signal, which then bleeds into the rest of the fit because the
covariance structure is stationary. Learning how variance is changing is key to learning about
mean dynamics. Replication is key to learning about variance.

10.2.1 Latent variance process

Heteroskedastic GP modeling targets learning the diagonal matrix ΛN , or its unique-n
counterpart Λn; see Eq. (10.4). Allowing λi-values to exhibit heterogeneity, i.e., not all
λi = g/ν as in the homoskedastic case, is easier said than done. Care is required when
performing inference for such a high-dimensional parameter. SK (10.1) suggests taking
ΛnA−1

n = Sn = Diag(σ̂2
1 , . . . , σ̂

2
n), but that requires large numbers of replicates ai and is

anyways useless out of sample. By fitting each σ̂2
i separately there’s no pooling effect for

interpolation/smoothing. Ankenman et al. (2010) suggest the quick fix of fitting a second
GP to the variance observations with “data”:

(x̄1, σ̂
2
1), (x̄2, σ̂

2
2), . . . , (x̄n, σ̂2

n),

to obtain a smoothed variance for use out of sample.

A more satisfying approach that’s similar in spirit, coming from ML (Goldberg et al., 1998)
and actually predating SK by more than a decade, applies regularization that encourages a
smooth evolution of variance. Goldberg et al. introduce latent (log) variance variables under
a GP prior and develop an MCMC scheme performing joint inference for all unknowns,
including hyperparameters for both mean and noise GPs. The overall method, which is
effectively on the order of O(TN4) for T MCMC samples, is totally impractical but works well
on small problems. Several authors have economized on aspects of this framework (Kersting
et al., 2007; Lazaro-Gredilla and Titsias, 2011) with approximations and simplifications
of various sorts, but none to my knowledge have resulted in public R software.8 The key
ingredient in these works, of latent variance quantities smoothed by a GP, has merits and
can be effective when handled gingerly. Binois et al. (2018) introduced the methodology
described below.

Let δ1, δ2, . . . , δn denote latent variance variables (or equivalently latent nuggets), each
corresponding to one of the n unique design sites x̄i under study. It’s important to introduce
latents only for the unique-n locations. A similar approach in the full-N setting, i.e.,
without exploiting Woodbury identities, is fraught with identifiability and numerical stability
challenges. Store these latents diagonally in a matrix ∆n and place them under a GP prior:

∆n ∼ Nn(0, ν(δ)(C(δ) + g(δ)A
−1
n )).

Inverse exponentiated squared Euclidean distance-based correlations in n× n matrix C(δ)
are hyperparameterized by novel lengthscales θ(δ) and nugget g(δ). Smoothed λi-values can
be calculated by plugging ∆n into GP mean predictive equations:

Λn = C(δ)K
−1
(δ) ∆n, where K(δ) = (C(δ) + g(δ)A

−1
n ). (10.7)

Smoothly varying Λn generalize both Λn = gIn from a homoskedastic setup, and moment-
estimated Sn from SK. Hyperparameter g(δ) is a nugget of nuggets, controlling the smoothness

8A partial implementation is available for Python in GPy9.
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of λi’s relative to δi’s; when g(δ) = 0 the λi’s interpolate δi’s. Although the formulation above
uses a zero-mean GP, a positive nonzero mean µ(δ) may be preferable for variances. The
hetGP package automates a classical plugin estimator µ̂(δ) = ∆>nK−1

(δ) ∆n(1>nK−1
(δ) 1n)−1. See

exercise #2 from §5.5 and take intercept-only β. This seemingly simple twist unnecessarily
complicates the remainder of the exposition, so I shall continue to assume zero mean
throughout.

Variances must be positive, and the equations above give nonzero probability to negative δi
and λi-values. One solution is to threshold latent variances at zero. Another is to model log ∆n

in this way instead. The latter option, guaranteeing positive variance after exponentiating,
is the default in hetGP but both variations are implemented. Differences in empirical
performance and mathematical development are slight. Modeling log ∆n makes derivative
expressions a little more complicated after applying the chain rule, so our exposition here
shall continue with the simpler un-logged variation. Logged analogs are left to an exercise in
§10.4.

So far the configuration isn’t much different than what Goldberg et al. (1998) described
more than twenty years ago, except for an emphasis here on unique-n latents. Rather
than cumbersome MCMC, Binois et al. describe how to stay within a (Woodbury) MLE
framework, by defining a joint log likelihood over both mean and variance GPs:

˜̀= c− N

2 log ν̂2
N −

1
2

n∑
i=1

[(ai − 1) log λi + log ai]−
1
2 log |Kn| (10.8)

− n

2 log ν̂(δ) −
1
2 log |K(δ)|.

Maximization is assisted by closed-form derivatives which may be evaluated with respect to
all unknown quantities in O(n3) time. For example, the derivative with respect to latent ∆n

may be derived as follows.

∂ ˜̀
∂∆n

= ∂Λn
∂∆n

∂ ˜̀
∂Λn

= C(δ)K
−1
(δ)

∂ ˜̀
∂Λn

−
K−1

(δ) ∆n

ν̂(δ)

where ∂ ˜̀
∂λi

= N

2 ×
aiσ̂

2
i

λ2
i

+ (K−1
n Ȳn)2

i

ai

ν̂N
− ai − 1

2λi
− 1

2ai
(Kn)−1

i,i

Recall that σ̂2
i = 1

ai

∑ai
j=1(y(j)

i − ȳj)2. So an interpretation of Eq. (10.8) is as an extension
of SK estimates σ̂2

i at x̄i. In contrast with SK, GP smoothing provides regularization needed
in order to accommodate small numbers of replicates, even ai = 1 in spite of σ̂2

i = 0. In
this single replicate case, yi still contributes to local variance estimates through the rest
of Eq. (10.8). Note that Eq. (10.8) is not constant in δi; in fact it depends (10.7) on all of
∆n. Smoothing may be entertained on other quantities, e.g., Λnν̂N = C(δ)K

−1
(δ)S

2
n presuming

ai > 1, resulting in smoothed moment-based variance estimates in the style of SK (Kamiński,
2015; Wang and Chen, 2016). There may similarly be scope for bypassing a latent GP noise
process with a SiNK predictor (Lee and Owen, 2015) by taking

Λn = ρ(X̄n)−1C(δ)K
−1
(δ) ∆n with ρ(x) =

√
ν̂(δ)c(δ)(x)>K−1

(δ) c(δ)(x),

or alternatively through log Λn.

Binois et al. (2018) show that ˜̀ in Eq. (10.8) is maximized when ∆n = Λn and g(δ) = 0.
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In other words, smoothing latent nuggets (10.7) is unnecessary at the MLE. However,
intermediate smoothing is useful as a device in three ways: 1) connecting SK to Goldberg’s
latent representation; 2) annealing10 to avoid local minima; and 3) yielding a smooth solution
when the numerical optimizer is stopped prematurely, which may be essential in big data
(large unique-n) contexts.

It’s amazing that a simple optim call can be brought to bear in such a high dimensional
setting. Thoughtful initialization helps. Residuals from an initial homoskedastic fit can
prime ∆n-values. For more implementation details and options, see Section 3.3 of Binois
and Gramacy (2018). O(n) latent variables can get big, especially as higher dimensional
examples demand training datasets with more unique inputs. This is where replication really
shines, inducing a likelihood that locks in high-replicate latents early on in the optimization.
The Woodbury trick (§10.1.1) is essential here. Beyond simply being inefficient, having
multiple latent δ(j)

i at unique x̄i corrupts optimization by inserting numerical weaknesses
into the log likelihood.

Goldberg et al. (1998)’s MCMC is more forgiving in this regard. MC is a robust, if (very)
slowly converging, numerical procedure. Besides that nuance favoring a Woodbury unique-
n formulation, the likelihood surface is exceedingly well behaved. Critics have suggested
expectation maximization (EM)11 to integrate out latent variances. But this simply doesn’t
work except on small problems; EM represents nearly as much work as MCMC. Kersting
et al. (2007) and Quadrianto et al. (2009) keyed into this fact a decade ago, but without the
connection to SK, replication, and the Woodbury trick.

10.2.2 Illustrations with hetGP

Passages below take the reader through a cascade of examples illustrating hetGP: starting sim-
ply by returning to the motorcycle accident data, and progressing up though real-simulation
examples from epidemiology to Bayesian model selection and inventory management.

Motorcycle accident data

The code below shows how to fit a heteroskedastic, coupled mean and variance GP, with
smoothed initialization and Matèrn covariance structure. This is but one of several potential
ways to obtain a good fit to these data using the methods provided by hetGP.

het <- mleHetGP(mcycle$times, mcycle$accel, covtype="Matern5_2",
settings=list(initStrategy="smoothed"))

het$time

## elapsed
## 0.354

Time required to perform the requisite calculations is trivial, although admittedly this isn’t
a big problem. Built-in predict.hetGP works the same as its .homGP cousin, illustrated
earlier.

10https://en.wikipedia.org/wiki/Simulated_annealing
11https://en.wikipedia.org/wiki/Expectation-maximization_algorithm

https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
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p2 <- predict(het, Xgrid)
ql <- qnorm(0.05, p2$mean, sqrt(p2$sd2 + p2$nugs))
qu <- qnorm(0.95, p2$mean, sqrt(p2$sd2 + p2$nugs))

Figure 10.3, shows the resulting predictive surface in two views. The first view, in the left
panel, complements Figure 10.2. Observe how the surface is heteroskedastic, learning the
low-variance region in the first third of inputs and higher variance for the latter two-thirds.
As a consequence of being able to better track signal-to-noise over the input space, extraction
of signal (particularly for the first third of times) is better than in the homoskedastic case.

par(mfrow=c(1,2))
plot(mcycle, ylim=c(-160, 90), ylab="acc", xlab="time",
main="predictive surface")

lines(Xgrid, p2$mean)
lines(Xgrid, ql, col=2, lty=2)
lines(Xgrid, qu, col=2, lty=2)
plot(Xgrid, p2$nugs, type="l", ylab="s2", xlab="times",
main="variance surface", ylim=c(0, 2e3))

points(het$X0, sapply(find_reps(mcycle[,1], mcycle[,2])$Zlist, var),
col=3, pch=20)

10 20 30 40 50

-1
50

-1
00

-5
0

0
50

10
0

predictive surface

time

ac
c

0 10 20 30 40 50 60

0
50

0
10

00
15

00
20

00

variance surface

times

s2

FIGURE 10.3: Heteroskedastic GP fit to the motorcycle data. Left panel shows the
predictive distribution via mean (solid-black) and 90% error-bars (dashed-red); compare to
Figure 10.2. Right panel shows the estimated variance surface and moment-based estimates
of variance (green dots).

The second view, in the right panel of the figure, provides more detail on latent variances.
Predictive uncertainty is highest for the middle third of times, which makes sense because
this is where the whiplash effect is most prominent. Green dots in that panel indicate
moment-based estimates of variance obtained from a limited number of replicates ai > 1
available for some inputs. (There are nowhere near enough for an SK-like approach.) Observe



10.2 Coupled mean and variance GPs 469

how the black curve, smoothing latent variance values ∆n, extracts the essence of the pattern
of those values. This variance fit uses the full dataset, leveraging smoothness of the GP prior
to incorporate responses at inputs with only one replicate, which in this case represents
most of the data.

Susceptible, infected, recovered

Hu and Ludkovski (2017) describe a 2d simulation arising from the spread of an epidemic in
a susceptible, infected, recovered (SIR) setting, a common stochastic compartmental model.
Inputs are (S0, I0), the numbers of initial susceptible and infected individuals. Output is the
total number of newly infected individuals which may be calculated by approximating

f(x) := E
{
S0 − lim

T→∞
ST | (S0, I0, R0) = x

}
= γE

{∫ ∞
0

It dt | x
}

under continuous time Markov dynamics with transitions S + I → 2I and I → R. The
resulting surface is heteroskedastic and has some high noise regions. Parts of the input
space represent volatile regimes wherein random chance intimately affects whether or not
epidemics spread quickly or die out.

A function generating the data for standardized inputs in the unit square (corresponding to
coded S0 and I0) is provided by sirEval in the hetGP package. Output is also standardized.
Consider a space-filling design of n = 200 unique runs under random replication ai ∼
Unif{1, . . . , 100}. Coordinate x1 represents the initial number of infecteds I0, and x2 the
initial number of susceptibles S0.

Xbar <- randomLHS(200, 2)
a <- sample(1:100, nrow(Xbar), replace=TRUE)
X <- matrix(NA, ncol=2, nrow=sum(a))
nf <- 0
for(i in 1:nrow(Xbar)) {
X[(nf+1):(nf+a[i]),] <- matrix(rep(Xbar[i,], a[i]), ncol=2, byrow=TRUE)
nf <- nf + a[i]

}
nf

## [1] 10407

The result is a full dataset with about ten thousand runs. Code below gathers responses –
expected total number of infecteds at the end of the simulation – at each input location in
the design, including replicates.

Y <- apply(X, 1, sirEval)

Code below fits our hetGP model. By default, lengthscales for the variance GP (θ(δ)) are
linked to those from the mean GP (θ), requiring that the former be a scalar multiple k > 1
of the latter. That feature can be switched off, however, as illustrated below. Specifying
scalar lower and upper signals an isotropic kernel.
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fit <- mleHetGP(X, Y, settings=list(linkThetas="none"),
covtype="Matern5_2", maxit=1e4)

fit$time

## elapsed
## 3.274

Around 3.3 seconds are needed to train the model. To visualize the resulting predictive
surface, code below creates a dense grid in 2d and calls predict.hetGP on the fit object.

xx <- seq(0, 1, length=100)
XX <- as.matrix(expand.grid(xx, xx))
psir <- predict(fit, XX)
vsir <- psir$sd2 + psir$nugs

The left panel of Figure 10.4 captures predictive means; the right panel shows predictive
standard deviation. Text overlaid on the panels indicates the location of the training data
inputs and the number of replicates observed thereupon.

par(mfrow=c(1,2))
image(xx, xx, matrix(psir$mean, ncol=100), xlab="S0", ylab="I0",
col=cols, main="mean infected")

text(Xbar, labels=a, cex=0.5)
image(xx, xx, matrix(sqrt(vsir), ncol=100), xlab="S0", ylab="I0",
col=cols, main="sd infected")

text(Xbar, labels=a, cex=0.5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mean infected

S0

I0

24

1

45

26

83

46

50

54

21

11

85

92

4

52

88

99

43

4

96

6

44

4

66

96

97

91

51

23

15

59

41

23

9

27

98

80

75

96

9
51

63

98

4

92

52

47

30

83

10

83

97

80

86

5

89

73

18

65

62

11

80

28

85

68

73

752

66

60

57

36

41

96

85

100

80

39

51

71

27

50

97

99

15

52

24

82

3

36

71

19

44

87

35

6 3

83

55

88

69

69

59

67

40

41

2

80

72

100

76

79

71

27

46

29

11

53 40

91

85

59

48

10

85
56

94

82

2234

78

88

99

34

50

12

2

54

38

78

25

34

91
47

13

3

66
51

40
98

69

43

23

44

39

60

97

28

59

21

79

77

2

27

49

33

46

27

4

55

45

21

54

69

74

61

64

53

25

3649

48

46
7

10

23

21

100

27

56
52

61

87

13

94

89

62

7346

64

13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sd infected

S0

I0

24

1

45

26

83

46

50

54

21

11

85

92

4

52

88

99

43

4

96

6

44

4

66

96

97

91

51

23

15

59

41

23

9

27

98

80

75

96

9
51

63

98

4

92

52

47

30

83

10

83

97

80

86

5

89

73

18

65

62

11

80

28

85

68

73

752

66

60

57

36

41

96

85

100

80

39

51

71

27

50

97

99

15

52

24

82

3

36

71

19

44

87

35

6 3

83

55

88

69

69

59

67

40

41

2

80

72

100

76

79

71

27

46

29

11

53 40

91

85

59

48

10

85
56

94

82

2234

78

88

99

34

50

12

2

54

38

78

25

34

91
47

13

3

66
51

40
98

69

43

23

44

39

60

97

28

59

21

79

77

2

27

49

33

46

27

4

55

45

21

54

69

74

61

64

53

25

3649

48

46
7

10

23

21

100

27

56
52

61

87

13

94

89

62

7346

64

13

FIGURE 10.4: Heteroskedastic GP fit to the SIR data showing predictive mean surface
(left) and estimated standard deviation (right). Text in both panels shows numbers of
replicates in training.

Notice in the figure how means are changing more slowly than variances. Un-linking their
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lengthscales was probably the right move. Interpreting the mean surface, the number of
infecteds is maximized when initial S0 and/or I0 is high. That makes sense. Predictive
uncertainty in total number of infecteds is greatest when there’s a large number of initial
susceptible individuals, but a moderate number of initial infecteds. That too makes sense. A
moderate injection of disease into a large, vulnerable population could swell to spell disaster.

Bayesian model selection

Model selection by Bayes factor (BF) is known to be sensitive to hyperparameter choice in
hierarchical models, which is further complicated and obscured by MC evaluation injecting a
substantial source of noise. To study BF surfaces in such settings, Franck and Gramacy (2020)
propose treating expensive BF evaluations, with MCMC say, as a (stochastic) computer
simulation experiment. BF calculations at a space-filling design in the input/hyperparameter
space can be used to map and thus better understand sensitivity of model selection to those
settings.

As a simple warm-up example, consider an experiment described in Sections 3.3–3.4 of
Gramacy and Pantaleo (2010) where BF calculations determine whether data is leptokurtic
(Student-t errors) or not (simply Gaussian). Here we study BF approximation as a function
of prior parameterization on the Student-t degrees of freedom parameter ν, which Gramacy
and Pantaleo took as ν ∼ Exp(θ = 0.1). Their intention was to be diffuse, but ultimately
they lacked an appropriate framework for studying sensitivity to this choice. Franck and
Gramacy (2020) designed a grid of θ-values, evenly spaced in log10 space from 10−3 to 106

spanning “solidly Student-t” (even Cauchy) to “essentially Gaussian” prior specifications
for E{ν}. Each θi gets its own reversible jump MCMC simulation (Richardson and Green,
1997), as automated by blasso in the monomvn package (Gramacy, 2018a) on CRAN, taking
about 36 minutes on a 3.20GHz Intel Core i7 processor. Converting those posterior draws
into BF(i)

StN evaluations follows a post-processing scheme described by Jacquier et al. (2004).
To better understand MC variability in those calculations, ten replicates of BFs under each
hyperparameter setting θi were simulated. Collecting 200 BFs in this way takes about 120
hours. These data are saved in the hetGP package for later analysis.

data(bfs)
thetas <- matrix(bfs.exp$theta, ncol=1)
bfs <- as.matrix(t(bfs.exp[,-1]))

BF evaluation by MCMC is notoriously unstable. We shall see that even in log-log space,
the BFStN process is not only heteroskedastic but also has heavy tails. Consequently Franck
and Gramacy (2020) fit a heteroskedastic Student-t process. Details are provided in Section
3.2 of Binois and Gramacy (2018) and Chung et al. (2019) who describe several other
extensions including an additional layer of latent variables to handle missing data, and a
scheme to enforce a monotonicity property. Both are motivated by a challenging class of
inverse problems involved in characterizing spread of influenza.

bfs1 <- mleHetTP(X=list(X0=log10(thetas), Z0=colMeans(log(bfs)),
mult=rep(nrow(bfs), ncol(bfs))), Z=log(as.numeric(bfs)), lower=1e-4,
upper=5, covtype="Matern5_2")

Predictive evaluations may be extracted on a grid in the input space . . .
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dx <- seq(0, 1, length=100)
dx <- 10^(dx*4 - 3)
p <- predict(bfs1, matrix(log10(dx), ncol=1))

. . . and visualized in Figure 10.5. Each open circle is a BFStN evaluation, plotted in log10–loge
space.

matplot(log10(thetas), t(log(bfs)), col=1, pch=21, ylab="log(bf)")
lines(log10(dx), p$mean)
lines(log10(dx), p$mean + 2*sqrt(p$sd2 + p$nugs), col=2, lty=2)
lines(log10(dx), p$mean - 2*sqrt(p$sd2 + p$nugs), col=2, lty=2)
legend("topleft", c("hetTP mean", "hetTP interval"), col=1:2, lty=1:2)
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FIGURE 10.5: Heteroskedastic TP fit to Bayes factor data under exponential hyperprior.

It bears repeating that the BFStN surface is heteroskedastic, even after log transform,
and has heavy tails. A take-home message from these plots is that BF surfaces can be
extremely sensitive to hierarchical modeling hyperparameterization. When θ is small, the
Student-t (BFStN < 1) is essentially a foregone conclusion, whereas if θ is large the Gaussian
(BFStN > 1) is. This is a discouraging result for model selection with BFs in this setting: a
seemingly innocuous hyperparameter is essentially determining the outcome of selection.

Although the computational burden involved in this experiment – 120 hours – is tolerable,
extending the idea to higher dimensions is problematic. Suppose one wished to entertain
ν ∼ Gamma(α, β), where the α = 1 case reduces to ν ∼ Exp(β ≡ θ) above. Over a similarly
dense hyperparameter grid, runtime would balloon to more than one hundred days which
is clearly unreasonable. Instead it makes sense to build a surrogate model from a more
limited space-filling design and use the resulting posterior predictive surface to understand
variability in BFs in the hyperparameter space. Five replicate responses on a size n = 80
LHS in α × β-space were obtained for a total of N = 400 MCMC runs. These data are
provided as bfs.gamma in the bfs data object in hetGP.
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D <- as.matrix(bfs.gamma[,1:2])
bfs <- as.matrix(t(bfs.gamma[,-(1:2)]))

A similar hetTP fit may be obtained with . . .

bfs2 <- mleHetTP(X=list(X0=log10(D), Z0=colMeans(log(bfs)),
mult=rep(nrow(bfs), ncol(bfs))), Z=log(as.numeric(bfs)),
lower=rep(1e-4, 2), upper=rep(5, 2), covtype="Matern5_2")

. . . followed by predictions on a dense grid in the 2d input space.

dx <- seq(0, 1, length=100)
dx <- 10^(dx*4 - 3)
DD <- as.matrix(expand.grid(dx, dx))
p <- predict(bfs2, log10(DD))

Figure 10.6 shows the outcome of that experiment: mean surface in the left panel and
standard deviation in the right. Numbers overlaid indicate average BFStN obtained for the
five replicates at each input location. Contours in the left panel correspond to levels in the
so-called Jeffrey’s scale12.

par(mfrow=c(1,2))
mbfs <- colMeans(bfs)
image(log10(dx), log10(dx), t(matrix(p$mean, ncol=length(dx))), col=cols,
xlab="log10 alpha", ylab="log10 beta", main="mean log BF")

text(log10(D[,2]), log10(D[,1]), signif(log(mbfs), 2), cex=0.5)
contour(log10(dx), log10(dx), t(matrix(p$mean, ncol=length(dx))),
levels=c(-5,-3,-1,0,1,3,5), add=TRUE, col=4)

image(log10(dx), log10(dx), t(matrix(sqrt(p$sd2 + p$nugs),
ncol=length(dx))), co =cols, xlab="log10 alpha",
ylab="log10 beta", main="sd log BF")

text(log10(D[,2]), log10(D[,1]), signif(apply(log(bfs),2,sd), 2), cex=0.5)

The story here is much the same as before in terms of β, which maps to θ in the earlier
experiment, especially near α = 1, or log10 α = 0 where equivalence is exact. The left panel
shows that along that slice one can get just about any model selection conclusion one wants.
Smaller α-values tell a somewhat more nuanced story, however. A rather large range of
smaller α-values leads to somewhat less sensitivity in the outcome, except when β is quite
large. Apparently, having a small α setting is essential if data are going to have any influence
on model selection with BFs. The right panel shows that variances are indeed changing over
the input space, justifying the heteroskedastic surrogate.

Inventory management

The assemble-to-order (ATO) problem (Hong and Nelson, 2006) involves a queuing simulation
targeting inventory management scenarios. At its heart it’s an optimization or reinforcement

12https://en.wikipedia.org/wiki/Bayes_factor#Interpretation

https://en.wikipedia.org/wiki/Bayes_factor#Interpretation
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FIGURE 10.6: Heteroskedastic TP fit to the Bayes factor data under Gamma hyperprior.

learning problem, however here I simply treat it as a response surface to be learned. Although
the signal-to-noise ratio is relatively high, ATO simulations are known to be heteroskedastic,
e.g., as illustrated by documentation for the MATLAB® library utilized for simulations (Xie
et al., 2012).

The setting is as follows. A company manufactures m products. Products are built from
base parts called items, some of which are “key” in that the product can’t be built without
them. If a random request comes in for a product that’s missing a key item, a replenishment
order is executed and filled after random delay. Holding items in inventory is expensive, so
balance must be struck between inventory costs and revenue. Binois et al. (2018) describe
an experiment under target stock vector inputs b ∈ {0, 1, . . . , 20}8 for eight items.

Code below replicates results from that experiment, which entail a uniform design of size
ntot = 2000 in 8d with ten replicates for a total design size of Ntot = 20000. A training–
testing partition was constructed by randomly selecting n = 1000 unique locations and
replicates ai ∼ Unif{1, . . . , 10} thereupon. The ato data object in hetGP contains one such
random partition, which is subsequently coded into the unit cube [0, 1]8. Further detail is
provided in package documentation for the ato data object.

Actually that object provides two testing sets. One is a genuine out-of-sample set, where
testing sites are exclusive of training locations. The other is replicate based, involving those
10− ai runs not selected for training. The training set is large, making MLE calculations
slow, so the ato object additionally provides a fitted model for comparison. Examples in the
ato documentation file provide code which may be used to reproduce that fit or to create a
new one based on novel training–testing partitions.

data(ato)
c(n=nrow(Xtrain), N=length(unlist(Ztrain)), time=out$time)

## n N time.elapsed
## 1000 5594 8584
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Storing these objects facilitates fast illustration of prediction and out-of-sample comparison.
It also provides a benchmark against which a more thoughtful sequential design scheme,
introduced momentarily in §10.3.1, can be judged. Code below performs predictions at the
held-out testing sites and then calculates a pointwise proper score (Eq. (27) from Gneiting
and Raftery, 2007) with ten replicates observed at each of those locations. Higher scores are
better.

phet <- predict(out, Xtest)
phets2 <- phet$sd2 + phet$nugs
mhet <- as.numeric(t(matrix(rep(phet$mean, 10), ncol=10)))
s2het <- as.numeric(t(matrix(rep(phets2, 10), ncol=10)))
sehet <- (unlist(t(Ztest)) - mhet)^2
sc <- - sehet/s2het - log(s2het)
mean(sc)

## [1] 3.396

A similar calculation may be made for held-out training replicates, shown below. These are
technically out-of-sample, but accuracy is higher since training data were provided at these
sites.

phet.out <- predict(out, Xtrain.out)
phets2.out <- phet.out$sd2 + phet.out$nugs
s2het.out <- mhet.out <- Ztrain.out
for(i in 1:length(mhet.out)) {
mhet.out[[i]] <- rep(phet.out$mean[i], length(mhet.out[[i]]))
s2het.out[[i]] <- rep(phets2.out[i], length(s2het.out[[i]]))

}
mhet.out <- unlist(t(mhet.out))
s2het.out <- unlist(t(s2het.out))
sehet.out <- (unlist(t(Ztrain.out)) - mhet.out)^2
sc.out <- - sehet.out/s2het.out - log(s2het.out)
mean(sc.out)

## [1] 5.085

Those two testing sets may be combined to provide a single score calculated on the entire
corpus of held-out data. The result is a compromise between the two score statistics calculated
earlier.

mean(c(sc, sc.out))

## [1] 3.926

Binois et al. (2018) repeated that training–testing partition one hundred times to provide
score boxplots which may be compared to simpler (e.g., homoskedastic) GP-based approaches.
I shall refer the curious reader to Figure 2 in that paper for more details. To make a long
story short, fits accommodating heteroskedasticity in the proper way – via coupled GPs and
fully likelihood-based inference – are superior to all other (computationally tractable) ways
entertained.
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10.3 Sequential design

A theme from Chapter 6 is that design for GPs has a chicken-or-egg problem. Model-
based designs are hyperparameter dependent, and data are required to estimate parameters.
Space-filling designs may be sensible but are often sub-optimal. It makes sense to proceed
sequentially (§6.2). That was for the ordinary, homoskedastic/stationary GPs of Chapter
5. Now noise is high and possibly varying regionally. Latent variables must be optimized.
Replication helps, but how much and where?

The following characterizes the state of affairs as regards replication in experiment design
for GP surrogates. In low/no-noise settings and under the assumption of stationarity
(i.e., constant stochasticity), replication is of little value. Yet no technical result precludes
replication except in deterministic settings. Conditions under which replicating is an optimal
design choice are, until recently, unknown. When replicating, as motivated perhaps by an
abundance of caution, one spot is sufficient because under stationarity the variance is the
same everywhere.

Even less is known about heteroskedastic settings. Perhaps more replicates may be needed
in high-variance regions? Ankenman et al. (2010) show that once you have a design, under a
degree of replication “large enough” to trust its moment-based estimates of spatial variance,
new replicates can be allocated optimally. But what use are they if you already have “enough”,
and what about the quagmire when you learn that you need fewer than you already have?
(More on that in §10.3.2.) On the other hand, if means are changing quickly – but otherwise
exhibit stationary dynamics – might it help to concentrate design acquisitions where noise is
lower so that signal-learning is relatively cheap in replication terms? One thing’s for sure:
we’d better proceed sequentially. Before data are collected, regions of high or low variance
are unknown.

Details driving such trade-offs, requisite calculations and what can be learned from them,
depend upon design criteria. Choosing an appropriate criterion depends upon the goal
of modeling and/or prediction. §10.3.1–10.3.3 concentrate on predictive accuracy under
heteroskedastic models, extending §6.2.2. §10.3.4 concludes with pointers to recent work in
Bayesian optimization (extending §7.2), level set finding, and inverse problems/calibration
(§8.1).

10.3.1 Integrated mean-squared prediction error

Integrated mean-squared prediction error (IMSPE) is a common model-based design criterion,
whether for batch design (§6.1.2) or in sequential application as embodied by ALC (§6.2.2).
Here our focus is sequential, however many calculations, and their implementation in hetGP,
naturally extend to the batch setting as already illustrated in §6.1.2. IMSPE is predictive
variance averaged over the input space, which must be minimized.

In+1(xn+1) ≡ IMSPE(x̄1, . . . , x̄n, xn+1) =
∫
x∈X

σ̆2
n+1(x) dx (10.9)

Recall that σ̆2(x) is nugget-free predictive variance (7.5), capturing only epistemic uncertainty
about the latent random field (§5.3.2). IMSPE above is expressed in terms of unique-n
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inputs for reasons that shall be clarified shortly. Following the right-hand side of Eq. (10.4),
we have

σ̆2
n+1(x) = ν(1− k>n+1(x)(Cn+1 + Λn+1A

−1
n+1)−1kn+1(x)). (10.10)

Re-expression for full-N is straightforward. The next design location, xN+1, may be a new
unique location (x̄n+1) or a repeat of an existing one (i.e., one of x̄1, . . . , x̄n).

Generally speaking, integral (10.9) requires numerical evaluation (Seo et al., 2000; Gramacy
and Lee, 2009; Gauthier and Pronzato, 2014; Gorodetsky and Marzouk, 2016; Pratola et al.,
2017b). §6.2.2 offers several examples; or Ds2x=TRUE in the tgp package (Gramacy and
Taddy, 2016) – see §9.2.2. Both offer approximations based on sums over a reference set,
with the latter providing additional averaging over MCMC samples from the posterior
of hyperparameters and trees. Conditional on GP hyperparameters, and when the study
region X is an easily integrable domain such as a hyperrectangle, requisite integration may
be calculated in closed form. Although examples exist elsewhere in the literature (e.g.,
Ankenman et al., 2010; Anagnostopoulos and Gramacy, 2013; Burnaev and Panov, 2015;
Leatherman et al., 2017) for particular cases, hetGP provides the only implementation on
CRAN that I’m aware of. Binois et al. (2019) extend many of those calculations to the
Woodbury trick, showing for the first time how choosing a replicate can be optimal in active
learning/sequential design.

The closed form solution leverages that IMSPE is similar to an expectation over covariance
functions.

In+1(xn+1) = E{σ̆2
n+1(X)} = E{Kθ(X,X)− k>n+1(X)K−1

n+1kn+1(X)} (10.11)
= E{Kθ(X,X)} − tr(K−1

n+1Wn+1),

whereWij =
∫
x∈X k(xi, x)k(xj , x) dx. Closed forms forWij exist with X being a hyperrectan-

gle. Notice that Kn+1 depends on the number of replicates per unique design element, so this
representation includes a tacit dependence on noise level and replication counts a1, . . . , an.
Binois et al. (2019) provide forms for several popular covariance functions, including the
Matèrn. In the case of the separable Gaussian:

Wij =
m∏
k=1

√
2πθk
4 exp

{
− (xik − xjk)2

2θk

}[
erf
{

2− (xik + xjk)√
2θk

}
+ erf

{
xik + xjk√

2θk

}]
.

Gradients are also available in closed form, which is convenient for fast library-based
optimization as a means of solving for acquisitions. Partitioned inverse equations (6.8) make
evaluation of In+1(xn+1) and its derivative quadratic in n. See Binois et al. for details.

To investigate how replication can be favored by IMSPE, consider the following scenario(s).
Let r(x) denote a belief about extrinsic variance. Choice of r(x) is arbitrary. In practice we
shall use estimated r(x) = σ̆n(x), as above. However this illustration contrives two simpler
r(x), primarily for pedagogical purposes, based on splines that agree at five knots. Knot
locations could represent design sites x̄i where potentially many replicate responses have
been observed.

rn <- c(6, 4, 5, 6.5, 5)
X0 <- matrix(seq(0.2, 0.8, length.out=length(rn)))
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X1 <- matrix(c(X0, 0.3, 0.4, 0.9, 1))
Y1 <- c(rn, 4.7, 4.6, 6.3, 4.5)
r1 <- splinefun(x=X1, y=Y1, method="natural")
X2 <- matrix(c(X0, 0.0, 0.3))
Y2 <- c(rn, 7, 2)
r2 <- splinefun(x=X2, y=Y2, method="natural")

Figure 10.7 provides a visual of these two hypotheses evaluated on a testing grid. Below I
shall refer to these surfaces as “green” and “blue”, respectively, referencing the colors from
the figure. Knots are shown as red open circles.

xx <- matrix(seq(0, 1, by=0.005))
plot(X0, rn, xlab="x", ylab="r(x)", xlim=c(0,1), ylim=c(2,8), col=2)
lines(xx, r1(xx), col=3)
lines(xx, r2(xx), col=4)
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FIGURE 10.7: Two example r(x) variance surfaces based on splines with knots as open
red circles.

The code below implements Eq. (10.11) for generic variance function r, like one of our
splines from above. It uses internal hetGP functions such as Wij and cov_gen. (We shall
illustrate the intended hooks momentarily; these low-level functions are of value here in this
toy example.)

IMSPE.r <- function(x, X0, theta, r) {
x <- matrix(x, nrow = 1)
Wijs <- Wij(mu1=rbind(X0, x), theta=theta, type="Gaussian")
K <- cov_gen(X1=rbind(X0, x), theta=theta)
K <- K + diag(apply(rbind(X0, x), 1, r))
return(1 - sum(solve(K)*Wijs))

}



10.3 Sequential design 479

Next, apply this function on a grid for each r(x), green and blue . . .

imspe1 <- apply(xx, 1, IMSPE.r, X0=X0, theta=0.25, r=r1)
imspe2 <- apply(xx, 1, IMSPE.r, X0=X0, theta=0.25, r=r2)
xstar1 <- which.min(imspe1)
xstar2 <- which.min(imspe2)

. . . and visualize in Figure 10.8. The x-locations of the knots – our hypothetical unique
design sites x̄1, . . . , x̄n – are indicated as dashed red vertical bars.

plot(xx, imspe1, type="l", col=3, ylab="IMSPE", xlab="x", ylim=c(0.6, 0.7))
lines(xx, imspe2, col=4)
abline(v=X0, lty=3, col='red')
points(xx[xstar1], imspe1[xstar1], pch=23, bg=3)
points(xx[xstar2], imspe2[xstar2], pch=23, bg=4)
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FIGURE 10.8: IMSPE surfaces from the two r(x) in Figure 10.7; knots indicated as red
vertical dashed lines.

In the figure, the blue variance hypothesis is minimized at a novel x̄n+1 location, not
coinciding with any of the previous design sites. But the green hypothesis is minimized at
x̄2, counting vertical red-dashed lines from left to right. IMSPE calculated on the green r(x)
prefers replication. That’s not a coincidence or fabrication. Binois et al. (2019) showed that
the next point xN+1 will be a replicate, i.e., one of the existing unique locations x̄1, . . . , x̄n
rather than a new x̄n+1, when

r(xN+1) ≥
k>n (xN+1)K−1

n WnK
−1
n kn(xN+1)− 2w>n+1K

−1
n kn(xN+1) + wn+1,n+1

tr(Bk∗Wn)
− σ2

n(xN+1), (10.12)

where k∗ = argmink∈{1,...,n}IMSPE(x̄k) and
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Bk = (K−1
n ).,k(K−1

n )k,.
νλk

ak(ak+1) − (Kn)−1
k,k

.

To describe that result from thirty thousand feet: IMSPE will prefer replication when
predictive variance is “everywhere large enough.” To illustrate, code below utilizes hetGP
internals to enable evaluation of the right-hand side of inequality (10.12) above.

rx <- function(x, X0, rn, theta, Ki, kstar, Wijs) {
x <- matrix(x, nrow=1)
kn1 <- cov_gen(x, X0, theta=theta)
wn <- Wij(mu1=x, mu2=X0, theta=theta, type="Gaussian")
a <- kn1 %*% Ki %*% Wijs %*% Ki %*% t(kn1) - 2*wn %*% Ki %*% t(kn1)
a <- a + Wij(mu1=x, theta=theta, type="Gaussian")
Bk <- tcrossprod(Ki[,kstar], Ki[kstar,])/(2/rn[kstar] - Ki[kstar, kstar])
b <- sum(Bk*Wijs)
sn <- 1 - kn1 %*% Ki %*% t(kn1)
return(a/b - sn)

}

Evaluating on XX commences as follows . . .

bestk <- which.min(apply(X0, 1, IMSPE.r, X0=X0, theta=0.25, r=r1))
Wijs <- Wij(X0, theta=0.25, type="Gaussian")
Ki <- solve(cov_gen(X0, theta=0.25, type="Gaussian") + diag(rn))
rx.thresh <- apply(xx, 1, rx, X0=X0, rn=rn, theta=0.25, Ki=Ki,
kstar=bestk, Wijs=Wijs)

. . . which may be used to augment Figure 10.7 with a gray-dashed line in Figure 10.9.
Since the green hypothesis is everywhere above that threshold in this instance, replication is
recommended by the criterion. Observe that the point of equality coincides with the selection
minimizing IMSPE.

plot(X0, rn, xlab="x", ylab="r(x)", xlim=c(0,1), ylim=c(2,8), lty=2, col=2)
lines(xx, r1(xx), col=3)
lines(xx, r2(xx), col=4)
lines(xx, rx.thresh, lty=2, col="darkgrey")

That green hypothesis is, of course, just one instance of a variance function above the
replication threshold. Although those hypotheses were not derived from GP predictive
equations, the example illustrates potential. So here’s what we know: replication is 1) good
for GP calculations (n3 � N3); 2) preferred by IMSPE under certain (changing) variance
regimes; and 3) intuitively helps separate signal from noise. But how often is IMSPE going
to ask for replications in practice? The short answer: not often enough.

One challenge is numerical precision in optimization when mixing discrete and continuous
search. Given a continuum of potential new locations, up to floating-point precision, a
particular setting corresponding to a finite number of replicate sites is not likely to be
preferred over all other settings, such as ones infinitesimally nearby. Another issue, which is
more fundamental, is that IMSPE is myopic. Value realized by the current selection, be it
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FIGURE 10.9: Variance hypotheses from Figure 10.7 with replicating threshold added in
gray.

a replicate or new unique location, is not assessed through its impact on a future decision
landscape.

10.3.2 Lookahead over replication

Entertaining acquisition decision spaces that are forward looking is hard. Several examples
may be found in the literature, primarily emphasizing BO applications (Chapter 7). (See, e.g.,
Ginsbourger and Le Riche, 2010; Gonzalez et al., 2016; Lam et al., 2016; Huan and Marzouk,
2016.) To my knowledge, closed form solutions only exist for the one-step-ahead case. Many
approaches, like IECI from §7.2.3, leverage numerics to a degree. More on optimization is
provided, in brief, in §10.3.4. In the context of IMSPE, Binois et al. (2019) found that a
replication-biased lookahead, correcting myopia in the context of separating signal from
noise, is manageable.

Consider a horizon h into the future, over which the goal is to plan for up to one new, unique
site x̄n+1, and h or h+ 1 replicates, each at n or n+ 1 existing unique locations. The first
can be a new, unique site, and the remaining h replicates. Or replicates can come first, with
h ways to assign a new unique site later. Figure 10.10 provides a flow diagram corresponding
to horizon h = 3 case. Each node in the graph represents a lookahead state. Red arrows
denote potential timings for a new unique site graphically, as a transition between states.
Replicates are indicated by black arrows.

Finding each new unique location involves a continuous, potentially derivative-based IMSPE
search. Entertaining replicates is discrete. In total, looking ahead over horizon h requires
h+ 1 continuous searches, and (h+ 1)(h+ 2)/2− 1 discrete ones. Searching over discrete
alternatives, involving replicates at one of the existing x̄k locations, k = 1, . . . , n, n+ 1, may
utilize a simplified IMSPE (10.9) calculation:
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FIGURE 10.10: Flow chart of lookahead over replication. A similar chart may be found
in Binois et al. (2019).

In+1(x̄k) = ν(1− tr(B′kWn)), with (10.13)

B′k =

((
Cn +A−1

n Λn
)−1
)
.,k

((
Cn +A−1

n Λn
)−1
)
k,.

ak(ak + 1)/λk −
(
Cn +A−1

n Λn
)−1
k,k

.

Implementation in hetGP considers h ∈ {0, 1, 2, . . .} with h = 0 representing ordinary myopic
IMSPE search. Although larger values of h entertain future sequential design decisions,
the goal (for any h) is to determine what to do now as N → N + 1. Toward that end,
h + 1 decision paths are entertained spanning alternatives between exploring sooner and
replicating later, or vice versa. During each iteration along a given path through Figure
10.10, either Eq. (10.9) or (10.13), but not simultaneously, is taken up as the hypothetical
action. In the first iteration, if a new x̄n+1 is chosen by optimizing Eq. (10.9), that location
is combined with existing (x̄1, . . . , x̄n) and considered as candidates for future replication
over the remaining h lookahead iterations (when h ≥ 1). If instead a replicate is chosen
in the first iteration, the lookahead scheme recursively searches over choices of which of
the remaining h iterations will pick a new x̄n+1, with others optimizing over replicates.
Recursion is resolved by moving to the second iteration and again splitting the decision path
into a choice between replicate-explore-replicate-. . . and replicate-replicate-. . . , etc. After
fully unrolling the recursion in this way, optimizing up to horizon h along h+ 1 paths, the
ultimate IMSPE for the respective hypothetical design with size N + 1 + h is computed, and
the decision path yielding the smallest IMSPE is stored. Selection xN+1 is a new location if
the explore-first path was optimal, and is a replicate otherwise.

Horizon is a tuning parameter. It determines the extent to which replicates are entertained
in lookahead, and therefore larger h somewhat inflates chances for replication. As h grows
there are more decision paths that delay exploration to a later iteration; if any of them yield
smaller IMSPE than the explore-first path, the immediate action is to replicate. Although
larger h allows more replication before committing to a new, unique x̄n+1, it also magnifies
the value of an x̄n+1 chosen in the first iteration, as that location could potentially accrue
its own replicates in subsequent lookahead or real design iterations. Therefore, although in
practice larger h leads to more replication in the final design, this association is weak.

Before considering criteria for how to set horizon, consider the following illustration with
fixed h = 5. Take f(x) = (6x− 2)2 sin(12x− 4) from Forrester et al. (2008), implemented
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as f1d in hetGP, and observe Y (x) ∼ N (f(x), r(x)), where the noise variance function is
r(x) = (1.1 + sin(2πx))2.

fr <- function(x) { (1.1 + sin(2*pi*x)) }
fY <- function(x) { f1d(x) + rnorm(length(x), sd=fr(x)) }

This example was engineered to be similar to the motorcycle accident data (§10.2), but
allow for bespoke evaluation. Begin with an initial uniform design of size N = n = 10, i.e.,
without replicates, and associated hetGP fit based on a Gaussian kernel.

X <- seq(0, 1, length=10)
Y <- fY(X)
mod <- mleHetGP(X=X, Z=Y, lower=0.0001, upper=10)

Using that fit, calculate IMSPE with horizon h = 5 lookahead over replication. The
IMSPE_optim call below leverages closed form IMSPE (10.11) and derivatives using an
optim call with method="L-BFGS-B", mixed with discrete evaluations (10.13).

opt <- IMSPE_optim(mod, h=5)
X <- c(X, opt$par)
X

## [1] 0.0000 0.1111 0.2222 0.3333 0.4444 0.5556 0.6667 0.7778 0.8889
## [10] 1.0000 0.8889

Whether or not the chosen location, in position eleven above (0.889), is a replicate depends
on the random Rmarkdown build, challenging precise narrative here. The hetGP package
provides an efficient partitioned inverse-based updating method (6.8), utilizing O(n2) or
O(n) updating calculations for new data points depending on whether that point is unique
or a replicate, respectively. Details are provided by Binois et al. (2019), extending those
from §6.3 to the heteroskedastic case.

ynew <- fY(opt$par)
Y <- c(Y, ynew)
mod <- update(mod, Xnew=opt$par, Znew=ynew, ginit=mod$g*1.01)

That’s the basic idea. Let’s continue and gather a total of 500 samples in this way, in order
to explore the aggregate nature of sequential design. Periodically, every 25 iterations in the
code below, it can help to restart MLE calculations to “unstick” any solutions found in local
modes of the likelihood surface. Gathering 500 points is overkill for this simple 1d problem,
but it helps create a nice visualization.

for(i in 1:489) {

## find the next point and update
opt <- IMSPE_optim(mod, h=5)
X <- c(X, opt$par)
ynew <- fY(opt$par)
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Y <- c(Y, ynew)
mod <- update(mod, Xnew=opt$par, Znew=ynew, ginit=mod$g*1.01)

## periodically attempt a restart to try to escape local modes
if(i %% 25 == 0){
mod2 <- mleHetGP(X=list(X0=mod$X0, Z0=mod$Z0, mult=mod$mult), Z=mod$Z,

lower=0.0001, upper=1)
if(mod2$ll > mod$ll) mod <- mod2

}
}
nrow(mod$X0)

## [1] 67

Of the N = 500 total acquisitions, the final design contains n = 67 unique locations. To help
visualize and assess the quality of the final surface with that design, the code below gathers
predictive quantities on a dense grid in the input space.

xgrid <- seq(0, 1, length=1000)
p <- predict(mod, matrix(xgrid, ncol=1))
pvar <- p$sd2 + p$nugs

Figure 10.11 shows the resulting predictive surface in red, with true analog in black. Gray
vertical bars help visualize relative degrees of replication at each unique input location.

plot(xgrid, f1d(xgrid), type="l", xlab="x", ylab="y", ylim=c(-8,18))
lines(xgrid, qnorm(0.05, f1d(xgrid), fr(xgrid)), col=1, lty=2)
lines(xgrid, qnorm(0.95, f1d(xgrid), fr(xgrid)), col=1, lty=2)
points(X, Y)
segments(mod$X0, rep(0, nrow(mod$X0)) - 8, mod$X0,
(mod$mult - 8)*0.5, col="gray")

lines(xgrid, p$mean, col=2)
lines(xgrid, qnorm(0.05, p$mean, sqrt(pvar)), col=2, lty=2)
lines(xgrid, qnorm(0.95, p$mean, sqrt(pvar)), col=2, lty=2)
legend("top", c("truth", "estimate"), col=1:2, lty=1)

Both degree of replication and density of unique elements is higher in the high-noise region
than where noise is lower. In a batch design setting and in the unique situation where relative
noise levels are somehow known, a rule of thumb of more samples or replicates in higher
noise regimes is sensible. Such knowledge is unrealistic, and even so the optimal density
differentials and degrees of replication aren’t immediate. Proceeding sequentially allows
learning to adapt to design and vice versa.

A one-dimensional input case is highly specialized. In higher dimension, where volumes are
harder to fill, a more delicate balance may need to be struck between the value of information
in high- versus low-noise regions. Given the choice between high- and low-noise locations,
which are otherwise equivalent, a low-noise acquisition is clearly preferred. Determining an
appropriate lookahead horizon can be crucial to making such trade-offs.
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FIGURE 10.11: Sequential design with horizon h = 5: truth in black; predictive in red;
vertical gray line segments indicate relative degrees of replication.

Tuning the horizon

Horizon h = 5 is rather arbitrary. Although it’s difficult to speculate on details regarding
the quality of the surface presented in Figure 10.11, due to the random nature of the
Rmarkdown build, scope for improvement may be apparent. Chances are that uncertainty is
overestimated in some regions and underestimated in others. In the version I’m looking at,
the right-hand/low-noise region is over-sampled. A solution lies in tuning lookahead horizon
h online. Binois et al. (2019) proposed two simple schemes. The first adjusts h in order to
target a desired ratio ρ = n/N and thus manage surrogate modeling computational cost
through the Woodbury trick (§10.1.1):

Target: hN+1 ←

 hN + 1 if n/N > ρ and a new x̄n+1 is chosen
max{hN − 1,−1} if n/N < ρ and a replicate is chosen
hN otherwise.

Horizon h is nudged downward when the empirical degree of replication is lower than the
desired ratio; or vice versa.13 The second scheme attempts to adapt and minimize IMSPE
regardless of computational cost:

Adapt: hN+1 ∼ Unif{a′1, . . . , a′n} with a′i := max(0, a∗i − ai).

Ideal replicate values

a∗i ∝
√
r(x̄i)(K−1

n WnK
−1
n )i,i (10.14)

come from a criterion in the SK literature (Ankenman et al., 2010). See allocate_mult in

13Horizon h = −1 corresponds a software implementation detail eliminating (setting to zero) thresholds
applied to identify as replicates the results of continuous derivative-based searches residing nearby existing
x̄k. Setting these to zero reduces selection of replicates, but doesn’t entirely preclude them since Eq. (10.13)
outcomes are still entertained.
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hetGP and homework exercises in §10.4 for more details. Here the idea is to stochastically
nudge empirical replication toward an optimal setting derived by fixing unique-n locations
x̄1, . . . , x̄n, and allocating any remaining design budget entirely to replication. An alternative,
deterministic analog, could be hN+1 = maxi a′i.

Code below duplicates the example above with the adapt heuristic. Alternatively, horizon
calls can be provided target and previous_ratio arguments in order to implement the
target heuristic instead. Begin by reinitializing the design.

X <- X[1:10]
Y <- Y[1:10]
mod.a <- mleHetGP(X=X, Z=Y, lower=0.0001, upper=10)
h <- rep(NA, 500)

Next, loop to obtain N = 500 observations under an adaptive horizon scheme.

for(i in 1:490) {

## adaptively adjust the lookahead horizon
h[i] <- horizon(mod.a)

## find the next point and update
opt <- IMSPE_optim(mod.a, h=h[i])
X <- c(X, opt$par)
ynew <- fY(opt$par)
Y <- c(Y, ynew)
mod.a <- update(mod.a, Xnew=opt$par, Znew=ynew, ginit=mod.a$g*1.01)

## periodically attempt a restart to try to escape local modes
if(i %% 25 == 0){
mod2 <- mleHetGP(X=list(X0=mod.a$X0, Z0=mod.a$Z0, mult=mod.a$mult),

Z=mod.a$Z, lower=0.0001, upper=1)
if(mod2$ll > mod.a$ll) mod.a <- mod2

}
}

Once that’s done, predict on the grid.

p.a <- predict(mod.a, matrix(xgrid, ncol=1))
pvar.a <- p.a$sd2 + p.a$nugs

The left panel of Figure 10.12 shows adaptively selected horizon over iterations of sequential
design. Observe that a horizon of h = 5 is not totally uncommon, but is also higher than
typically preferred by the adaptive scheme. In total, n = 104 unique sites were chosen – more
than in the fixed h = 5 case, but in the same ballpark compared to the full size of N = 500
acquisitions. The right panel of the figure shows the final design and predictions versus the
truth, matching closely that of Figure 10.11 corresponding to the fixed horizon (h = 5) case.
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par(mfrow = c(1,2))
plot(h, main="horizon", xlab="iteration")
plot(xgrid, f1d(xgrid), type="l", xlab="x", ylab="y",
main="adaptive horizon design", ylim=c(-8,18))

lines(xgrid, qnorm(0.05, f1d(xgrid), fr(xgrid)), col=1, lty=2)
lines(xgrid, qnorm(0.95, f1d(xgrid), fr(xgrid)), col=1, lty=2)
points(X, Y)
segments(mod$X0, rep(0,nrow(mod$X0)) - 8, mod$X0,
(mod$mult - 8)*0.5, col="gray")

lines(xgrid, p$mean, col=2)
lines(xgrid, qnorm(0.05, p$mean, sqrt(pvar.a)), col=2, lty=2)
lines(xgrid, qnorm(0.95, p$mean, sqrt(pvar.a)), col=2, lty=2)
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FIGURE 10.12: Horizons chosen per iteration (left); final design and predictions versus
the truth (right) as in Figure 10.11.

The code below offers an out-of-sample comparison with RMSE (lower is better).

ytrue <- f1d(xgrid)
rmse <- c(h5=mean((ytrue - p$mean)^2), ha=mean((ytrue - p.a$mean)^2))
rmse

## h5 ha
## 0.01781 0.01351

Although it varies somewhat from one Rmarkdown build to the next, a typical outcome is
that the adaptive scheme yields slightly lower RMSE. Being able to adjust lookahead horizon
enables the adaptive scheme to better balance exploration versus replication in order to
efficiently learn a smoothly changing signal-to-noise ratio exhibited by the data-generating
mechanism.
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10.3.3 Examples

Here we revisit SIR and ATO examples from §10.2.2 from a sequential design perspective.

Susceptible, infected, recovered

Begin with a limited seed design of just twenty unique locations n and five replicates upon
each for N = 100 total runs.

X <- randomLHS(20, 2)
X <- rbind(X, matrix(rep(t(X), 4), ncol=2, byrow=TRUE))
Y <- apply(X, 1, sirEval)

A fit to that initial data uses options similar to the batch fit from §10.2.2, augmenting with
a fixed mean and limits on θ(δ). Neither is essential in this illustration, but help to limit
sensitivity to a small seed design in this random Rmarkdown build.

fit <- mleHetGP(X, Y, covtype="Matern5_2", settings=list(linkThetas="none"),
known=list(beta0=0), noiseControl=list(upperTheta_g=c(1,1)))

To visualize predictive surfaces and progress over acquisitions out-of-sample, R code below
completes the 2d testing input grid XX from the batch example in §10.2.2 with output
evaluations for benchmarking via RMSE and score.

YY <- apply(XX, 1, sirEval)

Code below then allocates storage for RMSEs, scores and horizons, for a total of 900
acquisitions.

N <- 1000
score <- rmse <- h <- rep(NA, N)

The acquisition sequence here, under an adaptive horizon scheme, looks very similar to our
previous examples, modulo a few subtle changes. When reinitializing MLE calculations,
for example, notice that fit$used_args is used below to maintain consistency in search
parameters and modeling choices.

for(i in 101:N) {

## find the next point and update
h[i] <- horizon(fit)
opt <- IMSPE_optim(fit, h=h[i])
ynew <- sirEval(opt$par)
fit <- update(fit, Xnew=opt$par, Znew=ynew, ginit=fit$g*1.01)

## periodically attempt a restart to try to escape local modes
if(i %% 25 == 0){



10.3 Sequential design 489

fit2 <- mleHetGP(X=list(X0=fit$X0, Z0=fit$Z0, mult=fit$mult), Z=fit$Z,
maxit=1e4, upper=fit$used_args$upper, lower=fit$used_args$lower,
covtype=fit$covtype, settings=fit$used_args$settings,
noiseControl=fit$used_args$noiseControl)

if(fit2$ll > fit$ll) fit <- fit2
}

## track progress
p <- predict(fit, XX)
var <- p$sd2 + p$nugs
rmse[i] <- sqrt(mean((YY - p$mean)^2))
score[i] <- mean(-(YY - p$mean)^2/var - log(var))

}

Figure 10.13 shows the resulting predictive surfaces and design selections. Compare to Figure
10.4 for a batch version. Similarity in these surfaces is high, especially for the mean (left
panel), despite an order of magnitude smaller sequential design compared to the batch analog,
which was based on more than ten thousand runs. Depending on the random Rmarkdown
build, the standard deviation (right) may mis-locate the area of high noise in the I0 direction,
over-sampling in the upper-right corner. This is eventually resolved with more active learning.

par(mfrow=c(1,2))
xx <- seq(0, 1, length=100)
image(xx, xx, matrix(p$mean, ncol=100), xlab="S0", ylab="I0",
col=cols, main="mean infected")

text(fit$X0, labels=fit$mult, cex=0.5)
image(xx, xx, matrix(sqrt(var), ncol=100), xlab="S0", ylab="I0",
col=cols, main="sd infected")

text(fit$X0, labels=fit$mult, cex=0.5)

Density of unique locations, indicated by the coordinates of the numbers plotted in both
panels, appears uniform to the naked eye. However, degree of replication is greater in the
right-half of inputs corresponding to S0 > 0.5 under the adaptive horizon IMSPE scheme.
All double-digit multiplicities are in this right-hand half-plane. As a summary of progress
over sequential design iterations, Figure 10.14 shows a progression of RMSEs (left), proper
scores (middle) and horizon (right). The first two panels have the batch analog overlayed in
dashed-red.

par(mfrow=c(1,3))
plot(rmse, type="l", xlab="n: sequential iterate", ylim=c(0.06, 0.07))
abline(h=sqrt(mean((YY - psir$mean)^2)), col=2, lty=2)
legend("topright", c("sequential", "batch"), col=1:2, lty=1:2)
plot(score, type="l", xlab="n: sequential iterate", ylim=c(4, 5))
abline(h=mean(-(YY - psir$mean)^2/vsir - log(vsir)), col=2, lty=2)
plot(h, xlab="n: sequential iterate", ylab="lookahead horizon")

In spite of the much larger batch training set, our sequential design performs very similarly
out-of-sample. Note that both solid and dashed lines depend on random initializations/designs
and responses through sirEval. Thus they have a distribution that could be averaged-over
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FIGURE 10.13: Heteroskedastic GP fit to sequentially designed SIR data showing predic-
tive mean surface (left) and estimated standard deviation (right). Compare to batch analog
in Figure 10.4.
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FIGURE 10.14: Summary of sequential design progress via RMSE (left), proper score
(middle) and selected lookahead horizon (right) under the adapt scheme.

in a MC fashion. That exercise is left to the curious reader. To wrap up, observe in the
right-hand panel that horizon favors low numbers, emphasizing h = 0 and h = 1, but more
than twenty percent of selections are larger than that.

mean(h > 1, na.rm=TRUE)

## [1] 0.2822

Limited lookahead horizon is deemed to be beneficial for separating signal from noise in
this example. It’s worth reiterating that the IMSPE criterion (10.9) and lookahead horizon
(10.14) emphasize mean-accuracy not variance accuracy or minimization. Nevertheless they
perform well on score which combines measurements of both. This is because they – especially
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longer horizons – encourage replication which offers a pure look at noise in order to pin
down local variance.

Inventory management

ATO is a much larger example. §10.2.2 leveraged a fit stored in the ato data object. Fitting
live in Rmarkdown would’ve represented a prohibitive undertaking. That same data object
contains an "hetGP"-class model out.a that was trained under an adaptive horizon IMSPE-
based sequential design scheme. The size of that design and the time it took to train are
quoted by the output of the code below.

c(n=nrow(out.a$X0), N=length(out.a$Z), time=out.a$time)

## n N time.elapsed
## 1194 2000 38738

Recall that the earlier experiment used n = 1000 unique sites with an average of five
replicates upon each, for a total of about N ≈ 5000 training data points. The actively
selected training set here is much smaller, having N = 2000 at n = 1194 unique locations.
So the sequential design has more unique locations but still a nontrivial degree of replication,
resulting in many fewer overall runs of the ATO simulator. Utilizing the same out-of-sample
testing set from the previous score-based comparison, code below calculates predictions and
pointwise scores with this new sequential design.

phet.a <- predict(out.a, Xtest)
phets2.a <- phet.a$sd2 + phet.a$nugs
mhet.a <- as.numeric(t(matrix(rep(phet.a$mean, 10), ncol=10)))
s2het.a <- as.numeric(t(matrix(rep(phets2.a, 10), ncol=10)))
sehet.a <- (unlist(t(Ztest)) - mhet.a)^2
sc.a <- - sehet.a/s2het.a - log(s2het.a)
c(batch=mean(sc), adaptive=mean(sc.a))

## batch adaptive
## 3.396 3.615

So active learning leads to a more accurate predictor than the earlier batch alternative, despite
the former having been trained on about 60% fewer runs. Illustrating those acquisitions
requires “rebuilding” the out.a object. To keep hetGP compact for CRAN, O(n2) covariance
matrices and inverses have been deleted by providing return.matrices=FALSE to the
mleHetGP command used to build out.a.

out.a <- rebuild(out.a)

The calculation sequence for acquisitions involved in this sequential design begins by deter-
mining the horizon, and then searching with IMSPE while looking ahead over that horizon.
In code, that amounts to the following:

Wijs <- Wij(out.a$X0, theta=out.a$theta, type=out.a$covtype)
h <- horizon(out.a, Wijs=Wijs)
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control <- list(tol_dist=1e-4, tol_diff=1e-4, multi.start=30)
opt <- IMSPE_optim(out.a, h, Wijs=Wijs, control=control)

Pre-calculating Wijs (W ) economizes a little on execution time since these are needed
by both horizon and IMSPE_optim. A control argument to IMSPE_optim allows users to
fine-tune fidelity of search over the criterion. Above, the number of restarts and tolerances
on distance to existing sites (i.e., replicates) in search is adjusted upwards of their default
settings. For restarts, our adjustments to the default are intended to make search more global.
Regarding tolerances, higher values make selection of replicates more likely, determining
that optim outputs within 1e-4 of input x or output IN+1(x) should snap to existing sites.

opt$par

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 0.202 0.8664 0.8689 0.2666 0.4139 0.4508 0.8075 0.892

Acquisition is completed by feeding that 8d location into the ATO simulator. Subsequently,
the chosen input–output pair would be used to update the model fit. An indication of
whether or not the new location is unique (i.e., actually new) or a replicate is provided by
the path field in IMSPE_optim output. The path list contains the best sequence of points via
elements par, value, and new of the acquisition followed by h others computed as lookahead
selections.

opt$path[[1]]$new

## [1] TRUE

ATO inputs are actually on a grid, so evaluation would require “snapping” this continuous
solution to that grid after undoing any coding of inputs. Further replication could be induced
as part of that discretization process.

10.3.4 Optimization, level sets, calibration and more

Throughout this chapter we’ve focused on reducing mean-squared prediction error, a global
criterion. Targeting specific regions of interest, such as global minima (BO; Chapter 7) or
level sets is also of interest. Bogunovic et al. (2016) provide a treatment unifying criteria for
these settings. Consider BO first, having already treated the noisy case in §7.2.4. Picheny
et al. (2012) provide an important set of benchmarks specifically for this setting. Although
there are many suitable criteria for BO with GPs, expected improvement (EI) emerges as
perhaps the most appealing because it organically balances exploitation and exploration
without any tuning parameters, doesn’t require numerical approximation, and has a closed-
form derivative. In the face of noise, and particularly heteroskedasticity, simplicity and
computational tractability are important features when adapting a method originally designed
for noiseless/deterministic settings.

As mentioned in the lead-in to §10.3.2, lookahead versions of EI have been studied (see,
e.g., Ginsbourger and Le Riche, 2010; Gonzalez et al., 2016; Lam et al., 2016; Huan and
Marzouk, 2016), but closed-form expressions exist only for one-step-ahead versions. Unlike
IMPSE, future values of the criterion depend on future function evaluations. Inspired by
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Lam et al. (2016) and IMSPE-based lookahead presented in §10.3.2, Binois and Gramacy
(2018) introduce a replication-biased lookahead for EI which circumvents unknown future
function values through simple imputation: yN+1 ← µN (xN+1), which is also known as a
kriging “believer” approach (Ginsbourger et al., 2010). Examples are left to Section 4.1 in
that paper, which is also available as a vignette in the hetGP package.

Active learning for the related problem of contour finding, or level set estimation, proceeds
similarly. The objective is to identify a region of inputs defined by a threshold on outputs

Γ = {x ∈ Rm : Y (x) > T} ,

where T can be zero without loss of generality. As with EI, the canonical development is for
deterministic settings. In the presence of noise, take Y (x) ≡ F (x), the latent random field
(§5.3.2) with nugget-free epistemic uncertainty σ̆(x) from Eq. (10.10). Criteria defined by
Lyu et al. (2018) are implemented for homoskedastic and heteroskedastic GPs and TPs in
hetGP. Several other criteria can be found in the literature (Chevalier et al., 2013; Bogunovic
et al., 2016; Azzimonti et al., 2016) with a selection of implementations provided by the
KrigInv package (Chevalier et al., 2018, 2014a,b) on CRAN.

The simplest criterion for active learning in this context is maximum contour uncertainty
(MCU), implemented as crit_MCU in hetGP. MCU is based on local probability of mis-
classification, namely that the function is incorrectly predicted to be below or above T
(Bichon et al., 2008; Ranjan et al., 2008). A second criterion, contour stepwise uncertainty
reduction (cSUR), implemented by crit_cSUR in hetGP, amounts to calculating a one-step-
ahead reduction of MCU. A more computationally intensive, but more global alternative
entails integrating cSUR over the domain in a manner similar to IMSPE (10.9) for variance
reduction or IECI (Gramacy and Lee, 2011) for BO (§7.2.3). In practice, the integral is
approximated by a finite sum, which is the approach taken by crit_ICU in hetGP. Finally,
targeted mean-squared error (tMSE; Picheny et al., 2010), is provided by crit_tMSE and
designed to reduce variance close to the target contour. Again, examples are provided in
Section 4.2 of Binois and Gramacy (2018).

As a final topic, consider computer model calibration (§8.1) and inverse problems with a
noisy, possibly heteroskedastic simulator. I’m not aware of SK or hetGP-like methodology
yet being deployed in this setting, but Fadikar et al. (2018) consider quantile kriging (QK;
Plumlee and Tuo, 2014) to good effect. Pairing a massive agent-based epidemiological
simulation campaign leveraging social networks and data on an Ebola outbreak in Liberia,
Fadikar et al. built a QK surrogate for functional output (counts of infecteds over time) via
principal components (Higdon et al., 2008) in order to back out a distribution on simulator
tuning parameters most likely to have generated an observed (real) sequence of infecteds.
Entertaining alternatives to QK, like hetGP, in Rmarkdown on this specific example are
complicated by access to a supercomputer scale simulation capability and MATLAB (rather
than R) libraries for working with functional output (Gattiker et al., 2016).

In lieu of that, consider the following setup involving similar features without the compli-
cations of functional output, and ready access to simulations. Herbei and Berliner (2014)
describe a Feynman-Kac simulator14, whose source may be downloaded from GitHub15,
that models the concentration of a tracer within a given spatial domain. One application is
modeling oxygen concentration in a thin water layer deep in the ocean (McKeague et al.,
2005). The simulator is stochastic, approximating the solution of an advection–diffusion

14https://en.wikipedia.org/wiki/Feynman-Kac_formula
15https://github.com/herbei/FK_Simulator

https://en.wikipedia.org/wiki/Feynman-Kac_formula
https://github.com/herbei/FK_Simulator
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with MC, and is highly heteroskedastic. There are four real-valued inputs: two spatial
coordinates (longitude and latitude) and two diffusion coefficients. Interest is in learning, i.e.,
inverting, the diffusion coefficients. In the notation of Chapter 8, the spatial coordinates are
x and diffusion coefficients are calibration parameters u. So the goal is to use the simulator
YM (x, u) to learn û from measurements Y F (x) of oxygen concentration in the field, e.g., at
x’s in the Southern Ocean.

In some regions of the input space the simulator response is multimodal, i.e., non-Gaussian,
but this can be resolved through minimal (and automatic) replication and averaging. While
simulation code is available for C/CUDA, R and MATLAB on the GitHub page, code
linked from the book web page provides the essentials; see fksim.R16 and configuration
files fkset.RData17 read therein, with several enhancements. Coded inputs and sensible
defaults for the diffusion coefficients (calibration parameters u) promote plug-and-playability;
automatic degree-6 replication multiplicity with averaging eliminates multimodality.

With those codes, consider simulations along a longitudinal slice in the input space . . .

source("fksim.R")
x2 <- seq(0, 1, length=100)
y <- sapply(x2, function(x2) { fksim(c(0.8, x2)) })

. . . with visual following in Figure 10.15.

plot(x2, y, xlab="coded longitude", ylab="oxygen concentration")
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FIGURE 10.15: Simulated oxygen concentration along a slice in longitude, with the other
three parameters fixed.

Clear signal is evident in the figure, but also clear input-dependent variance. It seems that a
much higher degree of replication would be required to effectively separate signal and noise,
at least in some parts of the input space, in addition to more exploration to fill out the

16http://bobby.gramacy.com/surrogates/fksim.R
17http://bobby.gramacy.com/surrogates/fkset.RData

http://bobby.gramacy.com/surrogates/fksim.R
http://bobby.gramacy.com/surrogates/fkset.RData
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4d study area. Two homework exercises in §10.4 take the curious reader through surrogate
modeling, design, and inversion with this simulator. For inversion, calibration methods from
§8.1 can be applied. Alternatively the log posterior coded below, provided in order to keep
our development here somewhat more self-contained, can be used instead.

library(mvtnorm)
lpost.invert <- function(theta, XF, yF, GP)
{
## input processing and checking
if(length(theta) != ncol(GP$X0) - ncol(XF) + 1)

stop("length(theta), ncol(XF), ncol(GP$X0) mismatch")
u <- theta[-length(theta)]
s2 <- theta[length(theta)]

## prior checking
if(any(u < 0 | u > 1)) return (-Inf)
if(s2 < 0) return(-Inf)

## derive predictive distribution for XF paired with u
XFU <- cbind(XF, matrix(rep(u, nrow(XF)), ncol=length(u), byrow=TRUE))
p <- predict(GP, XFU, xprime=XFU)
C <- s2*diag(nrow(p$cov)) + (p$cov + t(p$cov))/2

## gaussian log density evaluation for yF under that predictive
return(dmvnorm(yF, p$mean, C, log=TRUE) - log(s2))
}

Notice that lpost.invert, above, is coded to work with a (possibly homoskedastic) "hetGP"-
class object GP. Parameter theta combines diffusion coefficients u, in its first several coordi-
nates, with iid noise variance parameter σ2 in its last coordinate. Implicit in lpost.invert
is a uniform prior u ∼ Unif(0, 1)mu and scale-invariant Jeffrey’s prior σ2 ∼ 1/σ2. Arguments
XF and YF are field data pairs (XnF , YnF ), observed under the correct but unknown u?.
That likelihood could be optimized, or used in a Bayesian analysis after placing priors on
u. It measures the surrogate predictive probability density of YnF -values when paired with
XnF and candidate u-settings. This is more or less equivalent to Kennedy and O’Hagan’s
likelihood (8.3) in the “nobias” case.

10.4 Homework exercises

Prompts below explore hetGP variations, sequential design and replication, and application
in a calibration (§8.1) setting.

#1: Latent log variances

In §10.2.1 inferential expressions are developed for Λn as a diagonal storing smoothed
variances for GP modeling with covariance structure ν(CN + ΛN ). Unfortunately, such
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Λn | ∆n given latent ∆n in Eq. (10.7) can be negative, which is bad for a variance. Describe
how the scheme can be adapted to work with log variances instead. Hint: the answer to this
question is relatively short, but getting it right requires a careful inspection of likelihood and
derivatives.

#2: Compensating for mean nonstationarity

§5.3.3 discussed an equivalence between mean and kernel/covariance characterization for
GPs. What happens when you fit hetGP, designed for variance nonstationarity, to data
which is homoskedastic but exhibits mean nonstationarity? Consider two examples.

a. Begin with our favorite 2d data: x1 exp(−x2
1−x2

2)+ε ∼ N (0, 0.12), where x ∈ [−2, 4]2. In
§9.2.2 we used trees to partition up the input space and focus on the interesting lower-left
quadrant. We also used it above in §10.1.2. Train homoskedastic and heteroskedastic
separable Gaussian kernel GPs to outputs collected on a design composed of a uniform
21× 21 grid in the input space, with three replicates on each site. Plot the predictive
mean and standard deviation surfaces using a 101× 101 grid and comment. Compare
pointwise proper scores [Gneiting and Raftery (2007), Eq. (27); also see §9.1.3] with
testing data simulated on that uniform grid.

b. Now investigate a 1d response with a regime shift: f(x) = sin(π(10x + 0.5)) +
10(−1)I(x<0.5), for x ∈ [0, 1] and observed under standard normal noise. Train ho-
moskedastic and heteroskedastic separable Gaussian kernel GPs to data observed on a
uniform length n = 30 grid. Visualize the predictive surfaces on a uniform 100-length
testing grid and comment. Compare RMSEs and pointwise proper scores using testing
evaluations on that grid.

#3: Optimal replication?

Here the goal is to compare SK’s ideal replication (10.14) numbers ai at existing training
inputs x̄i, i = 1, . . . , n, with lookahead based IMSPE analogs limited to those same sites.

a. Create a uniform design in [0, 1] of length n = 21 and evaluate five replicates of each
under fY from §10.3.2 and fit a hetGP surface using a Matèrn ν = 5/2 kernel. (Otherwise
the fit <- mleHetGP(...) defaults are fine.) Obtain predictions on a fine grid in the
input space and compare your predicted nuggets predict(...)$nugs to the truth fr.

b. Suppose the plan was to gather a total of N = 201 simulations from fY. You’ve gathered
n = 21 already, so there are Nrest = 180 more to go. Use allocate_mult with Ntot = N
to calculate the optimal ai, for i = 1, . . . , n.

c. Similarly use opt <- IMSPE_optim(...) with argument h = Nrest candidates
Xcand=fit$X0 from existing unique sites. Record all opt$path[[j]]$par as selected
x locations and extract from those a multiplicity count, i.e., number of replicates,
corresponding to each unique setting.

d. Plot your results from #a–c on common axes and comment.

#4: Ocean sequential design

Consider the ocean/oxygen simulator introduced in §10.3.4. Here we shall treat only the
spatial inputs x, leaving diffusion coefficients u at their default values.

a. Build a design in 2d comprised of n = 25 unique LHS (§4.1) locations with twenty
replicates on each. Obtain simulation responses at theseN = 500 sites. Fit heteroskedastic
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and homoskedastic GPs to these data and provide a visual comparison between the two
on a 100× 100 predictive grid, and on a slice of that grid fixing the latitude input near
80% in coded units. Overlay runs from §10.3.4 on that slice and comment. You might
find it helpful, but not essential, to use the following settings in your fit(s).

lower <- rep(0.01, 2)
upper <- rep(30, 2)
covtype <- "Matern5_2"
noiseControl <- list(g_min=1e-6, g_bounds=c(1e-6, 1),
lowerDelta=log(1e-6))

settings <- list(linkThetas="none", initStrategy="smoothed",
return.hom=TRUE)

b. Now consider sequential design under the heteroskedastic GP only. Begin with ninit = 25
locations, ideally the same ones from #a, but only four replicates on each so that
Ninit = 100. Acquire 400 more simulations under an adaptive lookahead IMSPE scheme.
At the end, augment your visuals from #a, including horizon over the iterations, and
comment. You might find it helpful, but not essential, to utilize the following in your
IMSPE searches.

control <- list(tol_dist=1e-4, tol_diff=1e-4, multi.start=30)

c. Finally, repeat #a–b at least ten times and save RMSEs and pointwise proper scores
calculated on out-of-sample testing data observed on the predictive grid. (No need to
repeat the visuals, just the designs and fits.) Provide boxplots of RMSEs and scores and
comment.

#5: Ocean calibration

Data in ocean_field.txt18 contains nF = NF = 150 observations of oxygen concentration
at sites in the Southern Ocean matching baseline diffusion coefficients u? encoded in the
default fksim formals. See §10.3.4 and #4 for details. Separately, build homoskedastic
and heteroskedastic GP surrogates from fksim simulation campaign output provided by
ocean_runs.txt19 combining a 4d LHS of size 500, over latitude and longitude x-sites
and two diffusion coefficients u, with a 2d maximin LHS of u-values paired with XnF

from the field data. Ten replicate runs at each location are gathered for a grand total of
NM = 6000 simulations. Use lpost.invert from §10.3.4 in order to sample from a Bayesian
posterior distribution of u and σ2, separately for both surrogates. Compare your posterior
distribution(s) for u with true u?-values.

18http://bobby.gramacy.com/surrogates/ocean_field.txt
19http://bobby.gramacy.com/surrogates/ocean_runs.txt

http://bobby.gramacy.com/surrogates/ocean_field.txt
http://bobby.gramacy.com/surrogates/ocean_runs.txt




A
Numerical Linear Algebra for Fast GPs

This appendix is in two parts. §A.1 illustrates the value of linking against fast linear algebra
libraries, yielding 10× speedups and sometimes better, without any coding changes. §A.2
provides pointers to recent developments in MVN likelihood evaluation and prediction via
stochastic approximations to log determinants and solves of linear systems.

A.1 Intel MKL and OSX Accelerate

Throughout this text, Rmarkdown builds leveraged an ordinary R installation – one down-
loaded from CRAN and run without modification. R ships with a rather vanilla, but highly
portable, numerical linear algebra library (i.e., implementation of BLAS1 and LAPACK2).3
This section is an exception. Here an R linked against Intel’s Math Kernel Library (MKL)4 is
used,5 following instructions here for Linux/Unix6. Another good resource tied specifically to
.deb based systems such as Ubuntu7 can be found here8. A set of instructions from Berkeley’s
Statistics Department9, similar to Intel’s for MKL, explains how to link against Apple OSX’s
Accelerate Framework10 instead. Microsoft R Open11 provides binary installs for Linux
and Windows linked against MKL, and for OSX linked against the Accelerate framework.
These are nice options for out-of-the-box speedups, as will be demonstrated momentarily.
One reason MATLAB® often outperforms R on linear algebra-intensive benchmarks is that
MATLAB ships with Intel MKL linear algebra. R does not. Microsoft R Open fills that gap,
although it’s not hard to do-it-yourself.

Illustration on borehole

Recall the borehole function12 introduced in §9.1.3 and revisited throughout Chapter 9.
The borehole is a classic synthetic computer simulation example (Morris et al., 1993). It’s

1https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
2https://en.wikipedia.org/wiki/LAPACK
3Even when compiling R from source, or pulling binaries from standard repositories, R links against a

vanilla reference BLAS and LAPCK by default.
4https://software.intel.com/en-us/mkl
5Actually, results from an MKL linked R were performed off-line and read in after-the-fact because

RStudio doesn’t make it easy for two separate Rs to build a single document.
6https://software.intel.com/en-us/articles/quick-linking-intel-mkl-blas-lapack-to-r
7https://ubuntu.com/
8https://github.com/eddelbuettel/mkl4deb
9http://statistics.berkeley.edu/computing/blas

10https://developer.apple.com/documentation/accelerate
11https://mran.microsoft.com/open
12https://www.sfu.ca/~ssurjano/borehole.html
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well-fit by a GP, but obtaining accurate predictions requires a relatively large sampling.
First pasting . . .

borehole <- function(x)
{
rw <- x[1]*(0.15 - 0.05) + 0.05
r <- x[2]*(50000 - 100) + 100
Tu <- x[3]*(115600 - 63070) + 63070
Hu <- x[4]*(1110 - 990) + 990
Tl <- x[5]*(116 - 63.1) + 63.1
Hl <- x[6]*(820 - 700) + 700
L <- x[7]*(1680 - 1120) + 1120
Kw <- x[8]*(12045 - 9855) + 9855
m1 <- 2*pi*Tu*(Hu - Hl)
m2 <- log(r/rw)
m3 <- 1 + 2*L*Tu / (m2*rw^2*Kw) + Tu/Tl
return(m1/m2/m3)
}

. . . then code below generates random training and testing sets in a manner identical to
§9.1.3 with two exceptions. Both sets are much bigger: ten thousand elements each from a
combined Latin hypercube sample (LHS, §4.1); and these are observed with noise so that
nuggets must be estimated alongside lengthscales.

library(lhs)
Npred <- N <- 10000
x <- randomLHS(N + Npred, 8)
y <- apply(x, 1, borehole)
y <- y + rnorm(length(y), sd=1)
X <- x[1:N,]
Y <- y[1:N]
XX <- x[-(1:N),]
YY <- y[-(1:N)]

Consider the full, non-approximate GP capability offered in laGP (Gramacy and Sun, 2018).
Code below generates appropriate priors, insuring stable search for MAP estimates of
hyperparameters θ1, . . . , θ8 and g.

library(laGP)
ga <- garg(list(mle=TRUE), Y)
da <- darg(list(mle=TRUE, max=100), X)

Such a setup, and code below solving for (θ̂, ĝ) through the concentrated log likelihood (5.8)
and furnishing predictions (5.2), is identical to previous uses in this text. The laGP library
is identical too. The only difference is that R’s BLAS and LAPACK are linked against Intel
MKL, a testament to modularity in this presentation.

tic <- proc.time()[3]
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## GP initialization and MAP calculation
gpsepi <- newGPsep(X, Y, da$start, g=ga$start, dK=TRUE)
that <- mleGPsep(gpsepi, param="both", tmin=c(da$min, ga$min),
tmax=c(da$max, ga$max), ab=c(da$ab, ga$ab), maxit=1000)

## predict out of sample
p <- predGPsep(gpsepi, XX, lite=TRUE)
deleteGPsep(gpsepi)

## timing end
toc <- proc.time()[3]

Here are the timing results. For the record, my workstation has an eight-core hyperthreaded
Intel i7-6900K CPU running at 3.20GHz with 128GB of RAM. It was purchased in 2016 – a
mid-range desktop workstation from that era, optimized to be as quiet as possible, not for
speed.

toc - tic

## elapsed
## 667

So it takes about 0.2 hours which, while not instantaneous, is still well within the realm of
tolerable. Running the same example on a two-core laptop, such as my 2015 hyperthreaded
Intel i7-5600U running at 2.60GHz with 8GB of RAM, takes about 25% longer. A problem
of this size is all but out of reach without optimized linear algebra. I tried, letting it run
overnight in ordinary R on the same workstation, and still it had not yet finished. Very
conservatively, Intel MKL gives a 10× speedup on this example.

How does it work?

Intel MKL and OSX Accelerate offer a three-pronged approach to faster basic linear algebra
(matrix–vector multiplications, etc.), matrix decompositions (determinants, LU, Cholesky),
and solves of linear systems. Prong one leverages highly specialized machine instructions
supported by modern processor hardware. Intel MKL has a huge advantage here. Experts
designing processor pipelines, instructions, and compilers/options work closely together for
the specific purpose of optimizing linear algebra and other benchmarks in order to show-up
competitors and market to industrial clients.

Prong two involves tuning myriad alternatives to problem sizes and representative spans
of use cases. Over the years, beginning in the 1960s, many numerical linear algebra codes
have been developed, extended and refined. Some codes and combinations thereof are better
than others depending on how big the problem is, and on other features describing common
situations. For example, algorithms requiring time in O(n3) are sometimes faster than
O(n5/2) methods for small n. Determining which n goes to which algorithm depends upon
architecture details and can only be determined by extensive experimentation. This tuning
enterprise is itself a computer experiment and Bayesian optimization (BO) of sorts. For more



502 A Numerical Linear Algebra for Fast GPs

details and an open source scripting of such experimentation and search, see the ATLAS
project13.

Prong three is symmetric multiprocessor (SMP) parallelization, which is intimately linked
to the first two prongs. Divide-and-conquer multi-threaded calculation features in many
modern linear algebra libraries, and the optimal way to divvy up tasks for parallel evaluation
depends upon problem size n, numbers of processor cores, cache size, high-speed memory
(RAM) capacity and performance, etc.

Swapping in fast linear algebra benefits more than just GP regression. Speedups can be
expected in any linear algebra-intensive implementation of statistical methodology, or
otherwise. Not every application will see substantial gains. For example, building the entirety
of Chapter 9 takes 57 minutes with MKL and 98 minutes without. That may not seem
impressive, but keep in mind that a large portion of the R code in that chapter doesn’t
involve linear algebra (e.g., plotting), uses non-BLAS/LAPACK solvers (e.g., sparse matrix
CSK examples using spam), or is already heavily parallelized (tgp and laGP examples). There
are even examples where Intel MKL is slower than R’s default BLAS and LAPACK. Those
are few and far between in my experience. Typical speedups for linear algebra-intensive tasks
are between 2× and 10×, and the bigger the problem the bigger the time savings. I run both
an MKL-linked and ordinary R on my machine. Development is more straightforward on
that latter, because that gives me a good sense of what most users experience. Big problems
get run with MKL.

Most university/lab-level supercomputing services offer an R linked against MKL. Virginia
Tech’s Advanced Research Computing (ARC) service14 goes one step further by compiling
all of R with Intel’s C and Fortran compilers15, in addition to linking with MKL. Differences
compared to ordinary (GCC16) compiling are slight, as you can see on that page. The big
winner is MKL. It’s not hard to get similar capabilities on your own laptop or workstation.
VT ARC doesn’t offer an R linked against the default BLAS/LAPACK as provided by
CRAN.

A caution on OpenBLAS

The Berkeley page17 explains how to link to OpenBLAS18 on Linux, and VT ARC also
provides an OpenBLAS option. But I strongly caution against OpenBLAS when Intel MKL
and OSX Accelerate alternatives are available. OpenBLAS is fast, but has thread safety
issues which means it doesn’t play well with some of the methods in this text, particularly
those from Chapter 9 providing additional, bespoke divide-and-conquer parallelization. The
tgp package (Gramacy and Taddy, 2016) uses pthreads19 to parallelize prediction across
leaves; see Appendix C.2 of Gramacy (2007). The laGP package uses OpenMP to parallelize
over elements of the testing set. These are incompatible with OpenBLAS. Related messages
on discussion boards can be found by googling “OpenBLAS is not thread safe” and adding
“with pthreads” or “with OpenMP”.

Thread safety20 means that two independent calculations can run in parallel without

13http://math-atlas.sourceforge.net/
14https://www.arc.vt.edu/userguide/r/#blas
15https://software.intel.com/en-us/compilers
16https://gcc.gnu.org/
17http://statistics.berkeley.edu/computing/blas
18https://www.openblas.net/
19https://en.wikipedia.org/wiki/POSIX_Threads
20https://en.wikipedia.org/wiki/Thread_safety
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interfering with one another. Unfortunately, two GP predictive or MLE subroutines (e.g.,
via aGP in §9.3) could not occur in parallel, without error, when the underlying linear
algebra is off-loaded to OpenBLAS. When thread safety cannot be guaranteed, calculations
which should transpire independently under the two processor threads carrying out their
instructions will instead corrupt one another, without any indication that something is
wrong. Results output are garbage.

There are ways to cripple OpenBLAS, making it slower but ensuring thread safety by limiting
to a single thread. That defeats the purpose, especially on large problems where fast modern
divide-and-conquer methods shine most. Intel MKL and OSX Accelerate are both thread
safe and their compatibility spans more than 99% of architectures in modern use. There’s
almost no reason to entertain OpenBLAS, in my opinion, as long as thread safety remains
an issue. That said, I’ve had little traction getting OpenBLAS removed as a default option
at VT ARC. OpenBLAS is common in spite of thread safety issues, so beware.

A.2 Stochastic approximation

Many exciting inroads are being made in the realm of stochastic approximation of the sorts
of matrix solves and decompositions required for GP inference and prediction. Specifically,
the important calculations are K−1

n Yn and log |Kn|. Both are prohibitive for larger n. These
passages are not intended to review the breadth of related methodology, but instead to
showcase one modern approach as a representative. In contrast to Appendix A.1, which
emphasizes a modular and generic fast linear algebra capability, pairing existing high-level
GP code with fast low-level computations provided by libraries, the methods here are more
tailored to GPs. They involve re-implementing calculations core to GP likelihood (and
derivative) evaluation, and to predictive equations.

Gardner et al. (2018) proposed combining linear conjugate gradients21 for matrix solves
(K−1

n Yn) with stochastic Lanczos quadrature (Ubaru et al., 2017) to approximate log determi-
nant evaluations (log |Kn|). They carefully describe many engineering details that make this
work, including preconditioning, pivoted Cholesky decomposition, and considerations specific
to GP inference and prediction. The methods are approximate and stochastic, which may
seem like downsides, but they make the method highly parallelizable, enabling trivial SMP
distribution. Another advantage is that they don’t require storage of large Kn, but rather
only access kernel evaluations k(·, ·). This dramatically reduces communication overheads in
offloading data and calculations to customized hardware, such as to graphical processing
units (GPUs). Other attempts to leverage GPU linear algebra in GP inference have, by
contrast, yielded lukewarm results (Franey et al., 2012).

Gardner et al. describe a Python implementation, GPyTorch22 based on the PyTorch23

toolkit for distributed computing. They report tractable inference on large-scale GP re-
gression problems, including up to n = 106 (Wang et al., 2019). I’m not aware of any R
implementations at this time, but would anticipate similar developments coming online soon.
Such techniques will be key to applying GP regression at scale, especially when assumptions

21https://en.wikipedia.org/wiki/Conjugate_gradient_method
22https://gpytorch.ai/
23https://pytorch.org/
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of smoothness and stationarity are key to effective application, i.e., meaning that many of
the Chapter 9 divide-and-conquer alternatives are less than ideal.



B
An Experiment Game

In-class games are a fun way to engage students in difficult and seemingly esoteric material
(Lee, 2007). Out-of-class games, played over an entire semester say, are less common but
can effectively synthesize real-life settings such as those encountered in response surface
methodology (RSM; Chapter 3) and Bayesian optimization (BO; Chapter 7). One such game
was proposed, and first played over forty years ago (Mead and Freeman, 1973). Today, few
are aware of that contribution in spite of a citation featuring prominently in a canonical
RSM text (Box and Draper, 2007). Perhaps this is because Mead and Freeman were ahead
of their time. Their setup required a computing environment with student access, and so on,
decades before ubiquitous desktop and laptop computing. Today with R, Rmarkdown and
shiny (Chang et al., 2017) web interfaces, barriers have come way down.

B.1 A shiny update to an old game

Mead and Freeman’s original game centered around blackbox evaluation of agricultural yield
as a function of six nutrient levels, following a form borrowed from Nelder (1966):

yield <- function(N, P, K, Na, Ca, Mg)
{
l1 <- 0.015 + 0.0005*N + 0.001*P + 1/((N+5)*(P+2)) + 0.001*K + 0.1/(K+2)
l2 <- 0.001*((2 + K + 0.5*Na)/(Ca+1)) + 0.004*((Ca+1)/(2 + K + 0.5*Na))
l3 <- 0.02/(Mg+1)
return(1/(l1 + l2 + l3))
}

Players were asked to supply settings for inputs across five campaigns, simulating crop
years. In each campaign, after observing yield under a Gaussian noise regime determined by
additive block and plot-within-block effects, players could use data to update fits and revise
strategies for future campaigns. The ultimate goal was to maximize yield, primarily with
Chapter 3-like tools such as steepest ascent and ridge analysis. In a modern landscape of
computer experiments, the Mead and Freeman (1973) game seems somewhat antiquated,
harking back to Fisher’s 1920s work at Rothamsted Experimental Station1.

Gramacy (2018b, hereafter “I”) described a revised variation motivated by modern technol-
ogy/application, and a more sophisticated methodological toolkit, such as for BO in Chapter
7. Other enhancements target friendly competition through leaderboards and benchmarks,

1https://en.wikipedia.org/wiki/Ronald_Fisher#Rothamsted_Experimental_Station,_1919-1933
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carrots to encourage regular engagement, and partial solutions to catch-up straggling stu-
dents. Perhaps the biggest innovation in this reboot is the use of modern web interfaces.
Game play is facilitated by an R shiny app, shown in Figure B.1, which serves as both a
multi-player portal and an interface to the back-end database of player(s) records. Code
supporting the app is linked from the book web page.

FIGURE B.1: Interactive yield simulation session. Duplicated from Gramacy (2018b).

Once logged in, the player is presented with three blocks of game content. Players are
identified by their initials, as in the leaderboard discussed in §B.2, and a secret four-digit
pin. The view in the figure is for my personal session; my initials are “rbg” and I chose
my office number “403G” as a pin. A greeting block at the top of the page in the figure
provides details on my spent and total budget for experimental runs. Details on how budget
replenishes weekly, and how a schedule of run costs encourages including replication in the
design of runs (§10.3.2), are left to Section 2.2 of Gramacy (2018b). As long as the player
has not over-spent their budget, new runs may be performed by entering coordinates and a
number of replicates into the second block on the page shown in the figure. Once all entries
are valid, a “Run” button appears alongside a warning that there are no do-overs.

Performing a run causes the table in the final block of the page to be updated. All together,
the table has 18 columns, recording run week, 7 input coordinates, and up to ten outputs.
It’s primary purpose is visual confirmation that new runs have been successfully incorporated
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into the player’s database file. It’s not intended as the main data-access vehicle. A “Download”
button at the bottom saves a text-formatted table to the player’s ~/Downloads directory.

One modern twist in the game’s construction encourages players to think about signal-
to-noise trade-offs, and nudges them to spend units regularly rather than save them all
until the final week of game play. I was worried that students would procrastinate, and
wanted to devise a scheme that encouraged rather than mandated engagement. So variance
of the additive noise on yield simulations changes weekly, following a smooth process in time.
Starting in week ws, noise in week w follows

σ2(w) = 0.1 + 0.05(cos(2π(w − ws)/10) + 1).

Noise peaks in this setup during the first and tenth weeks, although players are warned that
variance may be monotonically increasing, substantially devaluing late semester binges. A
second modern innovation involves the introduction of a seventh input, Nx, that is deliberately
unrelated to the response.

Game setup is optimized for play during a fifteen-week semester. I played the game with
the class during the Fall semester of 2016. Although the main goal is to optimize yield, a
final project assignment prompted students to think about ancillary goals such as main
effects (§8.2.2) and sensitivity indices (§8.2.3), and asked them to report on how variance
evolves over time (§10.2). Homework exercises encouraged students to try certain specific
methods, and were timed with lecture material: beginning with steepest ascent and ridge
analysis (Chapter 3) and culminating in BO (Chapter 8). Details and more specific pointers
are provided in Gramacy (2018b); all materials are linked from the book web page2.

B.2 Benchmarking play in real-time

Among those materials is an Rmarkdown script compiling four “leaderboard” style views
into student performance over the weeks of game play. Students could visit the leaderboard
any time. It was hosted along with the game interface (Figure B.1) on shinyapps.io3. I hoped
that friendly competition would spur interest. As a peek into one of the four views provided,
code below recreates (de-noised) maximum yield progress over thirteen weeks of game play.

Text files storing each player’s database of runs may be read in as follows.

files <- list.files(path="yield/leaderboard", pattern="txt")
files

## [1] "ame4794.txt" "fs0930.txt" "hm1113.txt" "ic2997.txt"
## [5] "jbl1003.txt" "jh0702.txt" "jtf1020.txt" "mds6266.txt"
## [9] "rbg4036.txt" "ss0720.txt" "wt4512.txt" "ww2222.txt"

Names of the files concatenate player initials and pins. Each records a table of inputs
and noisy outputs, so these inputs must be run back through yield for a de-noised view.
De-noising helps identify the true ranking of players, rather than ones corrupted by spurious

2http://bobby.gramacy.com/surrogates
3https://www.shinyapps.io
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noise. The function below vectorizes yield in order to streamline that de-noising process.
Notice that the seventh, Nx input isn’t used.

yield.fn <- function(X)
yield(X[,1], X[,2], X[,3], X[,4], X[,5], X[,6])

Next, code below loops over each player’s database file, building up a data.frame of best
results by week. The game was run during weeks 38–51 in 2016, and these results were
captured during the final, 51st week.

wk <- 51
start.wk <- 38
weeks <- (start.wk-1):wk
Ybest <- matrix(-Inf, nrow=length(weeks), ncol=length(files))
for(i in 1:length(files)) {
data <- read.table(paste0("yield/leaderboard/", files[i]), header=TRUE)
wk <- data[,1]
xs <- data[,2:8]
for(j in 1:length(weeks)) {
wi <- wk == weeks[j]
if(j > 1) Ybest[j,i] <- Ybest[j-1,i]
if(sum(wi) == 0) next
ybnew <- max(as.matrix(yield.fn(xs[wi,-7])), na.rm=TRUE)
if(j == 1 || Ybest[j-1,i] < ybnew) Ybest[j,i] <- ybnew

}
}

In order to mask true outputs, lest players learn the actual (non-noisy) value of their best
response over the weeks, visuals of de-noised yields were provided on a normalized scale.

minY <- min(Ybest)
Ybest <- Ybest/minY - 1

Finally, player pin information is scrubbed to leave only initials for presentation in the
legend of the leaderboard.

initials <- files
for(i in 1:length(initials)) {
initials[i] <- sub("[0-9]+.txt", "", files[i])

}

Figure B.2 shows the result. On the x-axis is the week of game play, and on the y-axis is
normalized yield. Each player has a line in the plot.

matplot(weeks-start.wk+1, Ybest, type="l", ylab="max yield", xlab="week",
col=1:length(initials), lty=1:length(initials), lwd=2, xlim=c(0, 19))

legend("bottomright", initials, col=1:length(initials),
lty=1:length(initials), lwd=2)
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FIGURE B.2: De-noised view into real-time progress on yield optimization captured
during the final week of game play.

Observe from the figure that about half of all players’ progress is made in the first five
weeks, spanning around forty runs. This is a testament to the prowess of simple, classical
RSM from Chapter 3. Most subsequent refinement transpired using more modern, Chapter 7
techniques. Students “jh” and “fs” made rapid progress, whereas “hm” ends up at the same
place in the end, but with more steady increments. My own progress (“rbg”) placed me fifth
by this measure. I favored replication over unique runs in hopes of obtaining better main
effects, sensitivity indices, and estimates of variance over time.

Three other views are provided by the Rmarkdown file leader.Rmd residing in an archive
linked from the book web page4. One is similar to Figure B.2, presenting de-noised best
results over run number instead of by week. Since some students performed many more
unique runs than others who favored heavier replication, this view is harder to interpret.
Two others present the analog of the first two but without de-noising, and back on the
original un-normalized scale.

4http://bobby.gramacy.com/surrogates
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t-test, 361

pairwise, see training and testing
exercise, pairwise t-test

ABM, see agent-based model
accept–reject, 131
acquisition function, 58, 237, 261, 264, 284,

315, 481
believer, 493

active learning, 2, 188, 237, 254, 261, 416,
see also design of experiments,
sequential

algorithm, 235, 264
Cohn, 246, 249, 255, 257, 259, 264, 277,

285, 286, 408, 411, 414, 418, 421,
428

Fisher information, 251, 422, 438
MacKay, 237, 241, 249, 255, 258, 264,

271, 277, 285, 408, 411, 414
submodularity, 291

additive penalty method, see optimization,
additive penalty method

advection–diffusion, 493
AEM, see analytic element method
agent-based model, 14, 15, 457, 493
AIC, see Akaike information criteria
AID, see automatic interaction detection
aimprob, 306, 307, 311, 315, 321
aimprob2, 324
Akaike information criteria, 22
akima, 33, 449
ALBO, see augmented Lagrangian Bayesian

optimization
ALC, see active learning, Cohn
aleatoric uncertainty, 288
aliasing pattern, 123
ALM, see active learning, MacKay
ALoptim, 310, 321
ALwrap, 310
amplitude, see Gaussian process, scale
analytic element method, 53
anisotropy, 172

anistropic Gaussian, see kernel, separable
Gaussian

APM, see optimization, additive penalty
method

Apple OSX, 47, 54
Accelerate Framework, 379, 499, 503

ARD, see automatic relevance determination
assemble to order, see example, ATO
ATLAS project, 502
ATO, see example, ATO
augmented Lagrangian, 308, 309

algorithm, 308, 310, 314
inner loop, 309, 312, 319
method, 292, 308, 311
outer loop, 309, 314, 320
subproblem, 308, 309, 311

augmented Lagrangian Bayesian
optimization, 314, 423

algorithm, 319
composite random variable, 315
equality constraints, 316, 318, 320, 327
expected improvement, see expected

improvement, slack variable ALBO,
316, 320, 321, 324, 327, 331

EY, 315, 321, 331
gestalt approach, 314
implementation, 318
mixed constraints, 316, 320, 327
separate modeling, 315

augmenting design, 134, see also design of
experiments, sequential

automatic interaction detection, 396
automatic relevance determination, 219
autotuning, 416

BACCO, 361
bagging, 417
bakeoff, see training and testing exercise
BART, see Bayesian additive regression trees
BART, 416
Basic Linear Algebra Subprograms, 379, 499,

500, 502
BASS, 175, 220
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Bayes factor, 471
Jeffrey’s scale, 473

Bayes information criteria, 22
Bayesian additive regression trees, 416
Bayesian CART, see treed constant model
Bayesian inference, see posterior, see

Gaussian process, Bayesian
Bayesian optimization, 2, 16, 58, 64, 139,

181, 255, 261, 269, 328, 362, 415,
416, 423, 457, 481, 492, 505

batch acquisition, 415
EY, see EY
inner loop, 264, 272, 278
known constraints, 292
outer loop, 278
under constraints, 76
unknown binary constraint, 296
unknown numeric constraints, 305, 314

Bayesian treed *, see treed *
BayesTree, 416
believer, see acquisition function, believer
Bessel function, 192, 195
best linear unbiased predictor, 148, 458
best observed value, see progress meter, best

observed value
best valid value, see progress meter, best

valid value
betadist design, see design, distance

distributed
BF, see Bayes factor
bhat.fit, 343, 344
bias, see calibration, bias
bias, 446
BIC, see Bayes information criteria
bisection search, 95
blackbox, 55, 126, 255, 261, 267, 278, 296

constraints, 28, 291, 296, 305, 307, 309,
310, 330

noisy, 261, 262, 286, 288, 328, 329
noisy constraints, 328

BLAS, see Basic Linear Algebra
Subprograms

BLHS, see block-bootstrap Latin hypercube
scheme

block-bootstrap Latin hypercube sample,
434, 438, 444, 453

blocked design, see design of experiments,
blocked

BLUP, see best linear unbiased predictor
BO, see Bayesian optimization
boosting, 416

bootstrap, 175, 354, 372, 416, 434
borehole, 390
BOV, see progress meter, best observed

value
bov, 267
branch and bound, see optimization, branch

and bound
BVV, see progress meter, best valid value

C language, 47, 130, 181, 182, 427, 433, 494,
502

static variable, 347
C++ language, 53, 181

constructor, 181
destructor, 183

calib, 343, 344, 348, 351
calib.pred, 352, 354
calibration, 2, 15, 41, 44, 60, 333, 333, 334,

415, 452, 453, 471, 493, 497
as optimization, 345, 495
bias, 42, 44, 333, 335, 337, 342, 347,

353, 356, 360, 376, 447, 450, 455
computer model, 334, 336, 341
field/physical experiment, see field data
Kennedy and O’Hagan, 335, 356, 361,

372, 495
KOH algorithm, 337, 346, 356, 372
least squares, see calibration, nobias
likelihood, 336, 338, 357
modularized, 338, 350, 361, 377, 445,

455
modularized KOH algorithm, 339, 346,

445
nobias, 350, 352, 355, 445, 447, 495
parameter, 40, 44, 334, 343, 347, 360
real process, 333, 350

calibration parameter, 445, 447
CaliCo, 361
canonical analysis, 82, 85, 89, 92, 115

A-form, 110
axes, 90, 97
B-form, 85, 90, 110
confidence on eigenvalues, 110

CART, see classification and regression trees
categorical inputs, see kernel, qualitative

factors
central composite design, see design, central

composite
CFD, see computational fluid dynamics
characteristic lengthscale, see Gaussian

process, lengthscale
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Cholesky decomposition, 182, 379, 419
CI, see confidence interval
clang, see LLVM compilers
classification and regression tree

Bayesian, see treed constant model
classification and regression trees, 396
coda, 391
coded variables, 6, 113–115
cokriging, 215
compactly supported kernel, 381, 387, 409,

419, 435
Bayesian inference, 389
Bohman, 381–384
computation, 389
lengthscale, 381, 382
separable, 381
truncated power, 382

CompQuadForm, 317
computational fluid dynamics, 31
computer experiment, 1, 151, 161
concentrated log likelihood, 163, 167, 176,

180, 181, 202, 217, 219, 221, 500
derivative, 167, 170, 219

concept drift, 416
condition number, 145, 193, 196, 209, 424,

427, 432
conditional improvement, see improvement,

conditional
confidence interval, 100, 103, 105, 110
confirmation test, 13, 70, 91, 99
confounding, see identification
conjugate gradient, 503
conjugate updating, 217, 401
constrained ascent, 76, 113

hybrid path, 80
modified path, 76, 78

constrained Bayesian optimization, see
Bayesian optimization, under
constraints

constrained blackbox optimization, see
Bayesian optimization, under
constraints

contour finding, 261, 492, 493
maximum contour uncertainty, 493
stepwise uncertainty reduction, 493
target mean-squared error, 493

control variable, see inputs
convolution Gaussian process, see Gaussian

process, convolution
correlation function, see Gaussian process,

correlation function

correlation kernel, see kernel
covariance function, 144, 191
covariance kernel, see kernel
covariance tapering, 381
CRASH data, see radiative shock

hydrodynamics application
cross validation, 158, 173, 352, 376, 397, 442,

444
leave-one-out, 353, 355

crs, 445, 448
CSK, see compactly supported kernel
CUDA language, 438, 494
curve fitting, 22, 60
CV, see cross validation

data
Ackley function, 327
banana function, 4
bumper plating, 114
Friedman, 172, 177, 181, 218, 364, 370
gas turbine, 114
Goldstein–Price function, 263, 327, 330
heat transfer, 114
metallurgy, 113
piston, 27
SARCOS, 452
solar irradiance, 138, 141, 216
viscosity, 115
wire, 27

deduced variance, 247
deep Gaussian process, 209
deep neural network, xiv, 58
dependent variable, see response
derivative-free optimization, see

optimization, derivative-free
design, see design of experiments

A-optimal, 229, 247, 422
φp, 131, 141
φp LHS, 141
central composite, 87, 91, 92, 97, 105
distance distributed, 139, 254, 257, 434
factorial, 67, 70, 113
Latin hypercube sample, 20, 40, 49, 52,

118, 139, 140, 152, 173, 210, 223,
227, 232, 236, 237, 248, 257, 264,
329, 362, 366, 368, 370, 372, 377,
390, 442, 446, 469, 496, 500

maximin, 20, 117, 129, 139, 140, 223,
228, 231, 236, 257

maximin LHS, 137, 140, 210, 341, 378,
448, 497
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maximin sliced LHS, 138
maximum entropy, 224, 231, 237, 245,

255
maxpro, 138
minimax, 129
nested LHS, 129
orthogonal, 73
random uniform, 118, 139, 153, 219,

257, 474
sequential, 418
sequential IMSPE, 256
sequential maximin, 134, 136, 239
sequential maximum entropy, 225
sliced LHS, 138
treed maximum entropy, 414

design of experiments, 2, 13, 20, 26, 37, 63,
64, 103, see also design

batch sequential, 415
blocked, 46, 51
geometric criteria, 117
model-based, 223, 224
replication, 164, 287, 381, 457, 459, 463,

466, 476, 480, 484, 491, 494, 496
sequential, 26, 34, 58, 117, 129, 134,

139, 181, 188, 204, 223, 243, 261,
408, 413, 414, 457, 475, 476

space-filling, 20, 117, 138, 140, 153, 210,
225, 232, 243, 253, 257, 446, 469,
472, 476

design variable, see inputs, 46
DiceDesign, 138
DiceKriging, 459, 463
DiceOptim, 308, 321, 329
Dirac delta, 162
direction cosines, 73
Dirichlet distribution, 402
discrepancy, see calibration, bias
divide-and-conquer, see partition modeling
DLR, see double linear regression
DOS, see Microsoft, DOS
double linear regression, 110, 115
dynamic trees, 373, 416, 417

retirement, 416
dynaTree, 373, 416

earth, 175, 220
ECI, see improvement, expected conditional
effective sample size, see Markov chain

Monte Carlo, effective sample size
efficient global optimization, 272, 284
EFI, see expected feasible improvement

EGO, see efficient global optimization
EI, see expected improvement
EI, 277, 289
EI.search, 278–280
EM, see expectation maximization
empirical statistical modeling, see response

surface methodology
emulator, see surrogate
emulator, 181
entropy, 224
environmental variable, 46, see also inputs
epistemic uncertainty, 165, 191, 246, 288,

464, 476, 493
equality constraints, see optimization,

equality constraints
ESS, see Markov chain Monte Carlo,

effective sample size
estimation risk, 200, 202
Euler solver, 32
evidence, see marginal likelihood
example

1d sinusoid, 149, 156, 159, 190, 219, 277
1d sinusoid with noise, 164
2d exponential, 152, 219, 258, 405, 407
2d exponential with noise, 169, 219, 237,

257, 462
AIM constrained optimization, 28, 305,

311, 315, 321, 327, 330
air quality sensitivity, 374, 375
ATO, 474
ball drop calibration, 339, 348, 351, 356,

376
Bayes factor, 471
borehole, 389, 392, 426, 432, 434, 435,

499
calibration, 377, 446, 450
chemical process, 87, 111
compactly supported kernel, 383, 385
confidence region stationary point, 105
fabric strength, 78
Forrester, 483, 486
Goldstein–Price, 263, 277, 279, 291, 329
Herbie’s tooth, 423, 428, 439
Herbie’s tooth plus AIM constraints,

323
Higdon sinusoid, 201, 207, 212, 221
Jones EI, 274
motorcycle accident, 399, 404, 416, 464,

467
multimodal objective, 288
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multimodal objective, known constraint,
293

multimodal objective, unknown
constraint, 297

ocean oxygen, 494, 497
plasma etch process, 67
ridge analysis of saddle, 96
shrinkage, 70
SIR, 469, 488
wing weight, 16
yield, 505

expectation maximization, 309, 467
expected conditional improvement, see

improvement, expected conditional
expected feasible improvement, 292, 295

equality constraints, 327
unknown binary constraint, 296, 330
unknown numeric constraint, 305, 321,

331
expected improvement, 58, 272, 274, 278,

280, 285, 287, 294, 315, 319, 415,
492

generalized, 316
lookahead, 492
monotonicity condition, 286, 287
slack variable ALBO, 318, 321, 327

experimental design, see design of
experiments

explanatory variable, see inputs
exploration v. exploitation, 261, 271, 274,

314, 327, 487, 492
exploration v. replication, 481
EY, 263–265, 272, 315, 320
eyeball norm, 158, 202, 274, 277, 344

factorial design, see design, factorial
falling ridge, see ridge system, falling ridge
feature expansion, 60, 87, 89, 105, 111, 150,

207, 210, 386, 395
functional basis, 216
tensor product, 221

Feynman-Kac simulator, 493
field data, 2, 334, 338, 341, 350, 377, 445,

446, 495
fields, 181
finite elements, 14
first-order indices, see sensitivity analysis,

first-order indices
first-order model, 6, 12, 63, 64, 66, 67, 71,

73, 113, 224
with interactions, 7, 13, 64

Fisher information, 251, 422
fixed rank kriging, 380
forgetting factor, 416
Fortran language, 427, 502
fried, 173, 364
fsindn, 288, 297
full-scale approximation, 385, 394
function space, 144
functional basis, see feature expansion,

functional basis
functional output, see surrogate, functional

output

gamma distribution, 218
gamma function, 196, 216
Gaussian process, xi, 1, 22, 48, 112, 129, 138,

144, 168, 176, 261, 262, 284, 314,
380, 402

Bayesian, 147, 159, 175, 181, 187, 188,
200, 203, 216, 243, 403, 406

classification, 296, 330
computation, 155, 181, 204, 230, 242,

255, 258, 338, 379, 403, 458, 466,
483

convolution, 205
correlation function, 156, 162, 180, 191
heteroskedastic, see heteroskedastic

Gaussian process
hyperparameters, 155, 158, 361
latent random field, see latent random

field
lengthscale, 168, 176, 213, 238, 242, 253,

257, 276, 299, 336, 343, 346, 403,
421, 463

likelihood, 176, 336, 503
limiting linear model, 405
linear mean, 217, 258, 335, 385, 404
nonstationary, 380
nugget, 162, 169, 213, 242, 276, 288,

299, 336, 343, 346, 356, 445
posterior predictive, 147, 152, 159, 162,

165, 171, 180, 190, 202, 213, 217,
228, 273, 287, 337, 360, 363, 377,
392, 425, 500

prior, 143, 144, 146, 151, 155, 162, 335,
465

random subset, 434, 443, 453
regression algorithm, 180
scale, 145, 156, 162, 336, 346
sequential updating, 228, 235, 240, 254,

257, 301, 380, 424, 439, 483
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single-index model, 199
Woodbury trick, see Woodbury identity

gcc, see Gnu C compiler
gnl, 171, 174
gnlg, 167
Gnu C compiler, 47, 54, 502
Goldstein–Price function, 28
GP, see Gaussian process
GPfit, 181
GpGp, 419
GPMSA, 216, 361, 373
gpstuff, 181, 216
GPU, see graphical processing unit
GPy, 181, 215, 216
GPyTorch, 503
gradnl, 170
gradnlsep, 177
Gram matrix, 209
graphical model, 189
graphical processing unit, 427, 438, 503
greedy search, 137, 235, 421, 424, 438

Hadamard product, 170
Hartmann functions, 327, 329
herbtooth, 323, 423
heteroskedastic, 400, 403, 457, 463, 468, 473
heteroskedastic Gaussian process, 328, 347,

381, 457, 463, 465, 496
concentrated log likelihood, 466, 467
concentrated log likelihood derivative,

466
implementation, 467
nugget of nuggets, 465
sequential design, 476
Student-t errors, 471

hetGP, 229, 256, 460, 462, 466, 469, 474, 480,
483, 495

hidden Markov model, 189
hierarchical model, 189
high performance computing, 15, 19, 47
history matching, 335
HMM, see hidden Markov model
homoskedastic Gaussian process, 468
horse race, see training and testing exercise
HPC, see high performance computing
htc, 329
hybrid path, see constrained ascent, hybrid

path
hyperthreading, 427, 501

IBM, see agent-based model

IBM PAIRS, 138
identification, 334, 338, 341, 345, 361, 382,

451, 465
idiosyncratic noise, 5, 165, 334, see also

epistemic uncertainty
IECI, see integrated expected conditional

improvement
imspe.criteria, 232
importance tempering, 220, 415
improvement, 272, 273, 281, 320

conditional, 285
expected conditional, 285
noisy, 287, 288
reduction in, 286

IMSPE, see integrated mean-squared
prediction error

imspe, 230–232
IMSPE lookahead over replication, 481, 483

adapt horizon, 485, 487, 488, 491, 497
target horizon, 485

IMSPE.r, 478
in situ emulator, 452
incomplete Gamma inverse, 344
individual-based modeling, see agent-based

model
inducing points, 207, 380, 385, 457
information, 224
input variable, see inputs
inputs, 4
integrated expected conditional

improvement, 285, 285, 286, 288,
291, 293, 315, 481, 493

unknown binary constraint, 296, 301,
302, 330

unknown numeric constraint, 305, 331
integrated mean-squared prediction error,

229, 234, 236, 246, 250, 255, 261,
408, 441, 476, 493

computation, 477
derivative, 477, 481
lookahead, see IMSPE lookahead over

replication
Woodbury identity, 477

Intel Math Kernel Library, 379, 390, 444,
499–503

interpolate, 151, 154, 161, 162
inverse CDF, see quantile function
inverse exponentiated Euclidean distance,

144, 151, 163, 168, 225, 257, 336,
346, 419, 431, 463, 465

inverse gamma distribution, 216



Index 537

inverse problem, see calibration, 216
isotropic Gaussian, see kernel, isotropic

Gaussian
isotropy, 168

jackknife, 354, 376
jitter, 145, 151, 162, 193, 264, 342, 349, 382

k-d trees, 419
kB, 382
Kennedy & O’Hagan, see calibration,

Kennedy and O’Hagan
kergp, 199
kernel, 168, 180, 203, 315, 503

Bohman, see compactly supported
kernel, Bohman

compact support, 199, see compactly
supported kernel

derivative, 256, 422
exponential, 195, 198
hybrid, 198
isotropic Gaussian, 168, 191, 198, 201,

210, 229, 421, 425, 460, 483
linear, 200
Matèrn, 192, 219, 477
Matèrn 3/2, 196
Matèrn 5/2, 196, 467, 469
periodic, 199
piecewise polynomial, 199
polynomial, 200
power exponential, 195, 196, 381
properties, 169, 191
qualitative factors, 199, 216, 415
rational quadratic, 198
separable Gaussian, 176, 191, 201, 211,

227, 229, 259, 378, 421, 460, 477
separable Matèrn, 219, 460
spherical, 199
stationary, 191
truncated power, see compactly

supported kernel, Bohman
kernlab, 181, 216
KG, see knowledge gradient
knobs, see calibration, parameter
knowledge gradient, 285
KOH, see calibration, Kennedy and O’Hagan
Kolmogorov–Smirnov distance, 257
kriging, 1, 25, 143, 148, 172, 175, 204, 236,

237
KrigInv, 493
Kronecker delta, 162

Kronecker product, 215

LAGP, see local approximate Gaussian
process

laGP, 23, 50, 52, 169, 181, 185, 201, 212, 236,
243, 251, 256, 277, 287, 294, 301,
308, 321, 327, 331, 344, 425, 427,
452, 500

Lagrange multiplier, 66, 95, 308
Lanczos quadrature, 503
Langley Glide-Back Booster application, 31,

60, 138, 212, 220, 258, 380, 408,
409, 412

LAPACK, see Linear Algebra PACKage
lasso, 188, 207, 389

Bayesian, 188
latent function space, see latent random field
latent input dimension, 347
latent nuggets

see latent random field, for variance, 465
latent random field, 165, 189, 201, 288, 457,

476, 493
for variance, 457, 465, 467, 476, 496

Latin hypercube, 119
Latin hypercube sample, see design, Latin

hypercube sample
Latin sample, 119
Latin squares, 119, 140
LCB, see lower confidence bound
least squares, see ordinary least squares
Legendre polynomial, 385, 391
lengthscale, see Gaussian process,

lengthscale, 192
level-set finding, see contour finding
LGBB, see Langley Glide-Back Booster

application
LHD, see design, Latin hypercube sample
LHS, see design, Latin hypercube sample
lhs, 20, 137, 152, 169, 237, 341, 390, 500
LHS bakeoff algorithm, see training and

testing exercise, LHS bakeoff
algorithm

likelihood, 2, 158, 187, 190, 195, 201, 208,
235, 336, 460

composite, 380
concentrated, see concentrated log

likelihood, 385
integrated, 181
profile, see concentrated log likelihood

Linear Algebra PACKage, 379, 499, 500, 502
linear mapping, 148
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linear model, 13, 22, 27, 42, 60, 63, 73, 94,
101, 105, 110, 143, 169, 176, 199,
214, see also ordinary least squares

Bayesian, 187, 207
random effects, 207

linear model of coregionalization, 215
linear regression, see ordinary least squares
Linux, 47, 379, 499

Ubuntu, 499
llik, 357, 358
LLVM compilers, 47, 54
LMC, see linear model of coregionalization
local approximate Gaussian process, 52, 232,

255, 380, 418, 445
ALC greedy subdesign, 422, 427, 437,

439, 447, 453
algorithm, 436, 439
computation, 419
derivative-based search, 427, 438
global surrogate, 430, 433, 443
isotropic kernel, 447, 453
joint path sampling, 439, 441
line search, 427, 438, 453
modularized calibration algorithm, 445,

448, 454
MSPE greedy subdesign, 421, 424, 427,

437, 453
multi-resolution effect, 435, 443, 453
NN subdesign, 419, 420, 426, 427, 437,

453
nuggets, 438
separable kernel, 433, 443, 453

local kriging neighborhood, see local
approximate Gaussian process

Lockwood application, 52, 305, 306, 315, 331
log utility gap, see progress meter, log utility

gap
LOO-CV, see cross validation, leave-one-out
lookahead over replication, 493
low-order polynomial, 6, 94, 172
lower confidence bound, 271, 316
lowess, 372
lpost.invert, 495, 497
lprior, 357–359, 447

M, 446
MADS, see mesh adaptive direct search
MAE, see mean absolute error
Mahalanobis distance, 161, 174, 179, 219,

433

main effects, see sensitivity analysis, main
effects

main effects model, see first-order model
MAP, see maximum a posteriori
marginal likelihood, 190, 346
Markov chain Monte Carlo, 203, 273, 358,

372, 380, 392, 409, 463, 466, 467,
477

burn-in, 337
effective sample size, 358, 391
Gibbs sampler, 389
Metropolis–Hastings, 336, 347, 389
MH accept–reject, 337, 358, 398, 410
MH proposal, 337
mixing, 338, 391
proposal, 358, 394
random walk Metropolis, 358
reversible jump, 402, 471
trace plot, 358, 391

MARS, see multivariate adaptive regression
splines, see multivariate adaptive
regression splines

MASS, 399, 463
Matèrn family, see kernel, Matèrn
matern, 192, 193
mathematical model, 14, 334
mathematical program, 55, 66, 292, 296, 316,

346
MATLAB, xii, 15, 55, 152, 181, 216, 361,

415, 453, 474, 493, 494, 499
Matrix, 382
matrix derivative identities, 167
matrix determinant lemma, 459
maxent, 225, 230, 256
maxent design, see design, maximum entropy
maximin, 138, 142, 259
maximin design, see design, maximin
maximum a posteriori, 158, 339
maximum likelihood estimator, 13, 102, 159,

163, 170, 180, 188, 215, 237, 241,
336, 343, 394

MaxPro, 138
MCMC, see Markov chain Monte Carlo
mda, 175, 219, 220
mean absolute error, 128
mean function, 144
mean-square derivatives, 192, 195, 198, 382
mean-squared prediction error, 229
mesh adaptive direct search, 446
message passing interface, 46, 438
meta-modeling, see surrogate
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method of moments, 158, 457, 458, 465, 466,
468, 476

Metropolis–Hastings, see Markov chain
Monte Carlo, Metropolis–Hastings

MH, see Markov chain Monte Carlo,
Metropolis–Hastings

Microsoft
DOS, 47
R Open, 379, 499
Windows, 47, 379

mid-course correction, 70, 81, 309
missing data, 471
mixed constraints, see optimization, mixed

constraints
MKL, see Intel Math Kernel Library
MLE, see maximum likelihood estimator
mlegp, 181, 459, 463
modified path, see constrained ascent,

modified path
MOE, 308
MoM, see method of moments
monomvn, 471
monotonicity condition, see expected

improvement, monotonicity
condition

Monte Carlo, 14, 15, 49, 73, 140, 141, 183,
254, 258, 268, 273, 281, 287, 305,
316, 325, 364, 368, 370, 372, 378,
443, 452, 490, 494

MPI, see message passing interface
MSPE, see mean-squared prediction error
multi-armed bandit, 271
multi-start scheme, 239, 256, 277–279, 321
multi-tiered periodic example, see example,

Higdon sinusoid
multicore computing, see symmetric

multiprocessing
multivariate adaptive regression splines, 129,

172, 175, 179, 185, 219
multivariate normal, 144, 151, 156, 159, 168,

176, 200, 217, 336, 347
conditional distribution, 147, 154, 160,

165, 187, 337, 360, 377
MVN, see multivariate normal
mvtnorm, 145, 349, 495
mylhs, 120, 123, 128, 137
mylhs.beta, 125, 137
mymaximin, 133, 134, 139, 225, 239, 257
myminphi, 141

natural variables, 5, 113, 125

nearest neighbor Gaussian process, 419
nearest neighbors, 26, 419, 424, 425, 440
neural network, 237, 246
nl, 168, 169, 171, 174
nlg, 164, 167
nloptr, 29
nlsep, 176
NN, see nearest neighbors
NNGP, see nearest neighbor Gaussian

process
NOMAD, 446, 448
non-binding constraint, see optimization,

non-binding constraint
nonlinear program, see mathematical

program
nonparametric, 112, 200, 204

regression, 117, 143, 154, 254, 261, 361,
372, 402

nonstationary process, 25, 38, 199, 200, 209,
212, 256, 258, 315, 395, 400, 403,
405, 431, 434, 452

nugget, see Gaussian process, nugget

obj.alc, 247
obj.alm, 238
obj.EI, 277
obj.fish, 251
obj.mean, 264
objective improving candidates, 56

algorithm, 56
OIC, see objective improving candidates
OLS, see ordinary least squares
on-site surrogates, 452
one-dimensional uniformity, 21, 121, 133,

134, 136
OpenBLAS, 379, 502, 503
OpenMP, 46, 427, 433, 444, 502
optim.auglag, 321, 331
optim.efi, 321, 331
optim.EI, 281
optim.surr, 267, 268
optimal control, 237
optimization, 2, 55, 238, 425, 473, 477, see

also Bayesian optimization
additive penalty method, 55, 308
augmented Lagrangian, see augmented

Lagrangian, method
BFGS, 167, 238, 261, 347, 433, 444, 445,

461, 483
blackbox, 261
branch and bound, 278
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derivative-free, 58, 263, 445
equality constraints, 316
global, 261, 269, 284
known objective (unknown constraint),

305, 315, 317
Lagrange multiplier, 309
limited memory (L-BFGS), 271
mixed constraints, 316
mixed discrete, 480
Nelder-Mead, 271, 446
non-binding constraint, 307
open source software, 307
stochastic, 57, 269
under constraints, 28, 285, 291, 296, 305
with approximate derivatives, 270

ordinary least squares, 13, 22, 27, 42, 43, 60,
67, 73, 78, 92, 97, 101, 150, 187,
207, 254, 347, 361, 386

Cook’s distance, 361
leverage, 361

orthogonal design, see design, orthogonal
OSX, see Apple OSX
outcome variable, see response

particle learning, see sequential Monte Carlo
partition modeling, 25, 52, 199, 215, 221,

259, 380, 395, 403, 408, 418, 452,
457, 503, 504

trees, 381
Voronoi tesselation, 395, 418

partition tree, see tree
partitioned inverse equations, 254, 256, 285,

439, 477, 483
pass-by-copy, 182
pass-by-reference, 182
path of steepest ascent, 66, see steepest

ascent, path
PESC, see predictive entropy search
physical experiment, see field data
PI, see probability of improvement
plgp, 130, 145, 176, 203, 216, 225, 277, 301,

330, 382, 460
plot.moto, 400, 402–405
plotprob, 306, 311, 324
plotrix, 66
polynomial basis, see feature expansion
polynomial chaos, xiv
positive definite, 144, 380
posterior, 20, 158, 181, 187, 189, 215, 335,

336
conditional, 217

multimodal, 202, 203, 235, 257, 483
posterior distribution, 394, 397
powerexp, 196
prediction interval, 103
predictive benchmarking exercise, see

training and testing exercise
predictive distribution, see Gaussian process,

posterior predictive
predictive entropy search, 322
predictive log likelihood, 161
predictive process, see inducing points
principal components, 493
prior, 158, 187, 188, 190, 238, 243, 337, 338,

344, 357, 401
improper, 217, 218
Jeffrey’s, 495
reference, 159, 217, 335, 389, 397, 438

probability of improvement, 273, 315, 329
process improvement, 63
process optimization, see process

improvement
progress meter, 238, 243, 250, 253, 257, 321

best objective value, 263, 329
best observed value, 267, 269, 272, 329
best valid value, 292, 321, 326, 330
log utility gap, 322

proper scoring rule, see scoring rule
pseudorandom number generator, xii, 139
psuedo-inputs, see inducing points
pthreads, 502
pump-and-treat remediation, see

remediation
Python, xii, 55, 181, 215, 216, 308, 322, 503
PyTorch, 503

quadrature, 15
qualitative factors, see kernel, qualitative

factors
quantile function, 124
quantile kriging, 493
quantile regression, 216
queuing system, 457, 473

R language, xii, 15
radiative shock hydrodynamics application,

38, 60, 453
random forest, 296, 301, 330, 417
random walk Metropolis, see Markov chain

Monte Carlo, random walk
Metropolis

randomForest, 330, 417
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range parameter, see Gaussian process,
lengthscale

rank one update, 254
ratquad, 198
red–black trees, 399
reduction in improvement, see improvement,

reduction in
regret, 271
reinforcement learning, 188, 237, 474
remediation, 52
replication, see design of experiments,

replication
reproducibility, xi, 3
reproducing kernel Hilbert space, 144
response, 4
response surface methodology, xiii, 3, 3, 5,

14, 63, 262, 505, 509
response variable, see response
retirement, see dynamic trees, retirement
RF, see random forest
RI, see improvement, reduction in
ridge analysis, 12, 13, 64, 91, 94, 104, 110,

111, 114, 505
ridge regession, 207
ridge system, 91, 110

falling ridge, 11, 92
rising ridge, 10, 92, 93
stationary, 9, 92

rising ridge, see ridge system, rising ridge
Rmarkdown, xii
RMSE, see root mean-squared error
RMSPE, see root mean-squared percentage

error
RNG, see pseudorandom number generator
RobustGaSP, 181
root mean-squared error, 128, 174, 183, 185,

218, 238, 241, 245, 253, 257, 452,
489, 496

root mean-squared percentage error, 48, 50,
441, 453

root-finding, 95, 99
RSM, see response surface methodology
Rtools, 47
runlock, 54

SA, see sensitivity analysis
saddle system, 11, 82
sadists, 317
sampling distribution, 102
satellite drag application, 45, 61, 439, 442,

453

satellite points, 424, 425, 440
scale, see Gaussian process, scale
scatterplot3d, 136
score, 161, 179, 183
scorep, 393, 432
scoring rule, 128, 160, 179, 183, 185, 218,

376, 475, 489, 496
pointwise, 355, 393, 432

screening, 13, 14, 87
se2.fit, 350, 351
second-order model, 8, 12, 63, 82, 87, 92, 94,

97, 102, 110, 114
seed design, 139, 225, 235, 237, 254, 257, 264,

267, 287, 294, 300, 318, 322, 329
seed experiment, see seed design
semidefinite programming, 199
semiparametric process, 217
sensitivity analysis, 2, 17, 23, 27, 126, 333,

361, 362, 367, 415, 416, 507
Bayesian, 372, 373, 375, 377
first-order and total indices algorithm,

370
first-order indices, 362, 367, 370, 377
main effects, 23, 24, 333, 363, 367, 377
main effects algorithm, 363
Shapley effect, 370
Sobol indices, 362
total indices, 369, 370, 377

sensitivity index, 333
separable Gaussian, see kernel, separable

Gaussian
sequential design, see design of experiments,

sequential
sequential Monte Carlo, 416
Shapley effect, see sensitivity analysis,

Shapley effect
shared memory parallelization, 427
Sherman–Morrison identity, 254, 385
shiny app, 506
signal-to-noise, 165, 169, 202, 287, 297, 328,

329, 334, 457, 462, 468, 480, 487,
490

SIM, see Gaussian process, single-index
model

simple maximum, 9, 83
simulated annealing, 269, 416, 467
simulated tempering, 220
simulation, xi
single-index model, see Gaussian process,

single-index model
SiNK predictor, 466
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SIR, see example, SIR
SK, see stochastic kriging
slack variables, 316, 318, 320, 321

optimal setting, 320
SLHD, 138
smoothing kernel, 205, 208, 209

hockey stick, 205
SMP, see symmetric multiprocessing
space-filling design, see design of

experiments, space-filling
spam, 382
sparse matrix, 25, 199, 380, 381, 389, 394,

409, 418, 452, 460
SparseEm, 385
spatial data, 143
spBayes, 181, 203, 419
spearmint, 308, 322
splancs, 329
splines, 172, 205, 219, 221, 395, 477
static variable, 433
stationary point, 82, 85, 90, 94, 98, 104, 114

confidence region, 101, 105, 108, 115
stationary process, 155, 191, 212, 234, 277,

380, 402, 409, 430, 434, 463, 464,
504

steepest ascent, 13, 63, 64, 66, 113, 261, 505
algorithm, 70, 95
confidence region, 73, 74, 113
path, 64, 78, 82, 101, 113

stepwise selection, 22, 60, 421
stepwise uncertainty reduction, 291
stochastic exchange, 131, 137, 139, 225, 233,

234, 256
stochastic kriging, 158, 457, 458, 460, 463,

465–468, 485, 493, 496
stochastic optimization, see optimization,

stochastic
stochastic search, see optimization,

stochastic
stochastic simulation, 14, 381, 457, 463
Student-t distribution, 73, 102, 471
subdesign, 419, 425
submodularity, see active learning,

submodularity
sufficient statistic, 458, 459, 461, 462
supermartingale, 291
SUR, see stepwise uncertainty reduction
surrogate, 1, 19, 19, 23, 44, 48, 143, 151, 204,

261, 270, 314, 320, 336, 370, 380
classification/categorical output, 216,

296, 416

functional output, 215, 493
image output, 216
multifidelity modeling, 215
multiple outputs, 215
time series output, 216

surrogate-assisted optimization, 262, see also
Bayesian optimization

EY, see EY
susceptible, infected, recovered, see example,

SIR
symmetric multiprocessing, 46, 47, 52, 418,

438, 502, 503

Taylor’s theorem, 63, 91, 94
test particle Monte Carlo, 46, 52
testing data, 50, 127, 128
TGP, see treed Gaussian process
tgp, 181, 199, 203, 220, 373, 378, 399, 411,

452, 477, 502
Thompson sampling, 272, 288, 329
thread safety, 433, 502
timedrop, 341, 376
total indices, see sensitivity analysis, total

indices
tpm, 46, 52, 443
TPMC, see test particle Monte Carlo
trace plot, see Markov chain Monte Carlo,

trace plot
training and testing exercise, 49, 127, 129,

173, 184, 185, 218, 453, 474, 500
LHS bakeoff algorithm, 128, 136, 173,

183, 390
pairwise t-test, 129, 185, 323

training data, 48, 50, 127, 128, 204
transductive learning, 199, 381, 418, 452
tree, 395, 396, 458, 496

Bayesian, 397
boosting, 416
change move, 399
child node, 396, 398
grow move, 397, 399, 410, 411
internal node, 396
leaf model, 396, 401
leaf node, 396, 397, 409
marginal likelihood, 396, 398, 401, 402
maximum a posteriori, 400
MCMC, 397–400, 402
multinomial leaf model, see treed

classification
parent node, 396
prior, 397
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prior process, 416
prune move, 397, 399, 410
radical restructure move, 399
root node, 396
rotate move, 399
sibling node, 396
swap move, 399

treed classification, 402
treed constant model, 397, 399, 400
treed Gaussian process, 34, 403, 407, 409,

452
categorical predictors, 415
classification, 416
computation, 410
fast linear algebra, 415
linear burn-in, 412, 415
threaded prediction, 415

treed linear model, 401, 402, 414, 415
tuning, see calibration

uncertainty distribution, 362, 367, 370
uncertainty quantification, xii, 2, 20, 26, 73,

126, 203, 261, 333, 360, 372, 383,
388, 395, 452

propagation, 333
upcrossings, 169, 191
UQ, see uncertainty quantification

validation set, see testing data
variable selection, see screening
variance nonstationarity, see Gaussian

process, heteroskedastic
variogram, 158
Vecchia approximation, 419

Bayesian, see nearest neighbor Gaussian
process

ViVldet, 356, 357
Voronoi tesselation, see partition modeling,

Voronoi tesselation

warm start, 235, 236
warping, 380
web page, xiii
weighted sum of non-central chi-squares, 317
white noise process, 205, 206
Windows, see Microsoft, Windows
wingwt, see wing weight example
Woodbury identity, 459, 460, 462, 463, 465,

467, 477, 485
GP computation, 461
GP likelihood, 461, 462, 466

GP likelihood derivative, 461, 462
GP prediction, 461

WSNC, see weighted sum of non-central
chi-squares

xnp1.search, 239, 248, 256, 278

yield, 505
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